Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = MT3DMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2946 KB  
Article
Generalized Frequency Division Multiplexing—Based Direct Mapping—Multiple-Input Multiple-Output Mobile Electroencephalography Communication Technique
by Chin-Feng Lin and Kun-Yu Chen
Appl. Sci. 2025, 15(17), 9451; https://doi.org/10.3390/app15179451 - 28 Aug 2025
Viewed by 370
Abstract
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG [...] Read more.
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG communication technology (MECT) is proposed for implementation with the above-mentioned applications. The (2000, 1000) low-density parity-check (LDPC) code, four-quadrature amplitude modulation (4-QAM), a power assignment mechanism, and the 3rd Generation Partnership Project (3GPP) cluster delay line (CDL) channel model D were integrated into the proposed EEGCT. The transmission bit error rates (BERs), mean square errors (MSEs), and Pearson-correlation coefficients (PCCs) of the original and received EEG signals were evaluated. Simulation results show that, with a signal to noise ratio (SNR) of 14.51 dB, with a channel estimation error (CEE) of 5%, the BER, MSE, and PCC of the original and received EEG signals were 9.9777 × 10−8, 1.440 × 10−5 and 0.999999998, respectively, whereas, with an SNR of 15.0004 dB and a CEE of 10%, they were 9.9777 × 10−8, 1.4368 × 10−5, and 0.999999997622151, respectively. As the BER value, and PS saving are 9.9777 × 10−8, and 40%, respectively. With the CEE changes from 0% to 5%, and 5% to 10%, the N0 values of the proposed MECT decrease by approximately 0.0022 and 0.002, respectively. The MECT has excellent EEG signal transmission performance. Full article
(This article belongs to the Special Issue Communication Technology for Smart Mobility Systems)
Show Figures

Figure 1

17 pages, 1760 KB  
Article
In Vitro Culture Initiation and Micropropagation Optimization of Plantago Halophytes: A Sustainable Approach to Exploring Valuable Plant Species
by Aleksandra Koźmińska, Dawid Kocot and Karolina Kaleta
Sustainability 2025, 17(16), 7471; https://doi.org/10.3390/su17167471 - 18 Aug 2025
Viewed by 667
Abstract
Halophytes are salt-tolerant plants with ethnomedicinal value and growing potential in food and cosmetics; their adaptability to extreme conditions makes them promising candidates for sustainable agriculture and crop development in salt-affected areas. In vitro plant tissue culture further supports this by enabling resilient [...] Read more.
Halophytes are salt-tolerant plants with ethnomedicinal value and growing potential in food and cosmetics; their adaptability to extreme conditions makes them promising candidates for sustainable agriculture and crop development in salt-affected areas. In vitro plant tissue culture further supports this by enabling resilient plant production in the face of climate and food security challenges. In this study, in vitro cultures of two medicinal halophytes from the genus Plantago (P. coronopus and P. crassifolia) were established to optimize their micropropagation protocol. Seed germination percentages, growth parameters, micropropagation rates, rooting efficiency, and physiological condition were evaluated. Growth media (modified MS medium) differed in the type of cytokinin. The seed germination efficiency was monitored at weekly intervals for 8 weeks, and other growth parameters were evaluated in 6- and 12-week cultures. Differences in both the rate and efficiency of in vitro germination between the two species were observed, with approximately 73% germination reached by P. coronopus and 47% by P. crassifolia after 4 weeks, and 80% and 53% after 8 weeks, respectively. The addition of 0.5 mg dm−3 kinetin plus 0.5 mg dm−3 IAA (indole acetic acid) proved to be effective in promoting growth in P. coronopus, resulting in longer plantlets and higher multiplication rates, while the addition of meta-topolin (mT) was a better stimulator of shoot and root growth in P. crassifolia. The highest multiplication coefficient, 6.22 for P. coronopus and 4.90 for P. crassifolia, was obtained on the P1 medium for both species. Importantly, medium with mT also had a stimulating effect on rooting in both species over the long term (12-week culture). The developed PTC enables efficient propagation and trait selection in halophytes, supporting sustainable large-scale production of the studied Plantago species, and facilitating future research on salt stress tolerance. Full article
Show Figures

Figure 1

24 pages, 2384 KB  
Article
An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support
by Malgorzata Borowiecka, Mar Alcaraz and Marisol Manzano
Hydrology 2025, 12(6), 137; https://doi.org/10.3390/hydrology12060137 - 3 Jun 2025
Viewed by 1716
Abstract
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services [...] Read more.
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services Assessment (ESA) approach can be useful to support aquifer management plans aiming to recover aquifers’ capacity to provide good quality water. This work illustrates how to implement the ESA using groundwater flow and nitrate transport modelling for evaluating future trends of the provisioning service Groundwater of Good Quality for Human Supply. It has been applied to the Medina del Campo Groundwater Body (Spain), where the intensification of agricultural activities and groundwater exploitation since the 1970s caused severe nitrate pollution. Nitrate status and future trends under different fertilizer and aquifer exploitation scenarios were modelled with MT3DMS coupled to a MODFLOW model calibrated with piezometric time series. Historical land use and fertilizer data were compiled to assess nitrogen loadings. Besides the uncertainties of the model, the results clearly show that: (i) managing fertilizer loads is more effective than managing aquifer exploitation; and (ii) only the cessation of nitrogen application by the year 2030 would improve the evaluated provisioning service in the long term. The study illustrates how the ESA can be incorporated to evaluate the expected relative impact of different management actions aimed at improving significant groundwater services to humans. Full article
Show Figures

Figure 1

20 pages, 1310 KB  
Review
Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review
by Loukia Pliouta, Stamatios Lampsas, Aikaterini Kountouri, Emmanouil Korakas, John Thymis, Eva Kassi, Evangelos Oikonomou, Ignatios Ikonomidis and Vaia Lambadiari
J. Clin. Med. 2025, 14(11), 3706; https://doi.org/10.3390/jcm14113706 - 25 May 2025
Cited by 2 | Viewed by 2604
Abstract
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression [...] Read more.
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression of various cardiometabolic diseases (CMDs). Their role is crucial in diabetes mellitus (DM), since their dysfunction drives β-cell apoptosis, immune activation, and chronic inflammation through excessive ROS production, worsening endogenous insulin secretion. Moreover, sympathetic nervous system activation and altered dynamics, contribute to hypertension through oxidative stress, impaired mitophagy, endothelial dysfunction, and cardiomyocyte hypertrophy. Furthermore, the role of mitochondria is catalytic in endothelial dysfunction through excessive reactive oxygen species (ROS) production, disrupting the vascular tone, permeability, and apoptosis, while impairing antioxidant defense and promoting inflammatory processes. Mitochondrial oxidative stress, resulting from an imbalance between ROS/Reactive nitrogen species (RNS) imbalance, promotes atherosclerotic alterations and oxidative modification of oxidizing low-density lipoprotein (LDL). Mitochondrial DNA (mtDNA), situated in close proximity to the inner mitochondrial membrane where ROS are generated, is particularly susceptible to oxidative damage. ROS activate redox-sensitive inflammatory signaling pathways, notably the nuclear factor kappa B (NF-κB) pathway, leading to the transcriptional upregulation of proinflammatory cytokines, chemokines, and adhesion molecules. This proinflammatory milieu promotes endothelial activation and monocyte recruitment, thereby perpetuating local inflammation and enhancing atherogenesis. Additionally, mitochondrial disruptions in heart failure promote further ischemic injury and excessive oxidative stress release and impair ATP production and Ca2⁺ dysregulation, contributing to cell death, fibrosis, and decreased cardiac performance. This narrative review aims to investigate the intricate relationship between mitochondrial dysfunction and CMDs. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

22 pages, 2863 KB  
Article
Predicting Thermal Performance of Aquifer Thermal Energy Storage Systems in Depleted Clastic Hydrocarbon Reservoirs via Machine Learning: Case Study from Hungary
by Hawkar Ali Abdulhaq, János Geiger, István Vass, Tivadar M. Tóth, Tamás Medgyes, Gábor Bozsó, Balázs Kóbor, Éva Kun and János Szanyi
Energies 2025, 18(10), 2642; https://doi.org/10.3390/en18102642 - 20 May 2025
Cited by 1 | Viewed by 1087
Abstract
This study presents an innovative approach for repurposing depleted clastic hydrocarbon reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, integrating numerical heat transport modeling and machine learning optimization. A detailed hydrogeological model of the Békési Formation was built using historical [...] Read more.
This study presents an innovative approach for repurposing depleted clastic hydrocarbon reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, integrating numerical heat transport modeling and machine learning optimization. A detailed hydrogeological model of the Békési Formation was built using historical well logs, core analyses, and production data. Heat transport simulations using MODFLOW/MT3DMS revealed optimal dual-well spacing and injection strategies, achieving peak injection temperatures around 94.9 °C and thermal recovery efficiencies ranging from 81.05% initially to 88.82% after multiple operational cycles, reflecting an efficiency improvement of approximately 8.5%. A Random Forest model trained on simulation outputs predicted thermal recovery performance with high accuracy (R2 ≈ 0.87) for candidate wells beyond the original modeling domain, demonstrating computational efficiency gains exceeding 90% compared to conventional simulations. The proposed data-driven methodology significantly accelerates optimal site selection and operational planning, offering substantial economic and environmental benefits and providing a scalable template for similar geothermal energy storage initiatives in other clastic sedimentary basins. Full article
(This article belongs to the Special Issue Energy, Engineering and Materials 2024)
Show Figures

Figure 1

15 pages, 2656 KB  
Article
Endothelial–Mesenchymal Transition and Possible Role of Cytokines in Streptozotocin-Induced Diabetic Heart
by Hsu Lin Kang, Ákos Várkonyi, Ákos Csonka, András Szász, Tamás Várkonyi, Anikó Pósa and Krisztina Kupai
Biomedicines 2025, 13(5), 1148; https://doi.org/10.3390/biomedicines13051148 - 9 May 2025
Cited by 1 | Viewed by 1098
Abstract
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct [...] Read more.
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct markers and take on a mesenchymal phenotype during EndMT, expressing distinct products. Methods: In this study, type 1 Diabetes mellitus (T1DM) was induced in rats with streptozotocin (STZ) by intraperitoneal injection at a 60 mg/kg dose. Diabetic rats were randomly divided into two groups, namely, control and diabetic rats, for 4 weeks. Heart, aorta, and plasma samples were collected at the end of 4 weeks. Sequentially, biochemical parameters, cytokines, reactive oxygen species (ROS), protein expression of EndMT markers (Chemokine C-X-C motif ligand-1 (CXCL-1), vimentin, citrullinated histone H3 (H3Cit), α-smooth muscle actin (α-SMA), and transforming growth factor beta (TGF-β) and versican), components of the extracellular matrix (matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinase-1(TIMP-1), and discoidin domain tyrosine kinase receptor 2 (DDR-2)) were detected by ELISA or Western blot, respectively. Results: Cytokines and ROS were increased in diabetic hearts, which induced partial EndMT. Among EndMT markers, histone citrullination, α-SMA, and CXCL-1 were increased; vimentin was decreased in DM. The endothelial marker endothelin-1 was significantly higher in the aortas of DM rats. Interestingly, TGF-β showed a significant decrease in the diabetic heart, plasma, and aorta. Additionally, MMP-2/TIMP-1 levels also decreased in DM. Conclusions: To sum up, the identification of molecules and regulatory pathways involved in EndMT provided novel therapeutic approaches for cardiac pathophysiological conditions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 1713 KB  
Article
Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus
by Ligia Petrica, Florica Gadalean, Adrian Vlad, Danina Mirela Muntean, Daliborca Vlad, Victor Dumitrascu, Flaviu Bob, Oana Milas, Anca Suteanu-Simulescu, Mihaela Glavan, Sorin Ursoniu, Lavinia Balint-Marcu, Maria Mogos-Stefan, Silvia Ienciu, Octavian Marius Cretu, Roxana Popescu, Cristina Gluhovschi, Lavinia Iancu and Dragos Catalin Jianu
Int. J. Mol. Sci. 2025, 26(10), 4481; https://doi.org/10.3390/ijms26104481 - 8 May 2025
Viewed by 926
Abstract
Diabetic kidney disease (DKD) displays a high prevalence of cardiovascular and cerebrovascular disease. Both the kidney and the brain share common pathogenic mechanisms, such as inflammation, endothelial dysfunction, oxidative stress, and mitochondrial dysfunction. The aim of this study was to establish a potential [...] Read more.
Diabetic kidney disease (DKD) displays a high prevalence of cardiovascular and cerebrovascular disease. Both the kidney and the brain share common pathogenic mechanisms, such as inflammation, endothelial dysfunction, oxidative stress, and mitochondrial dysfunction. The aim of this study was to establish a potential association of cerebral vessel remodeling and its related functional impairment with biomarkers of inflammation, oxidative stress, and mitochondrial dysfunction in the early stages of DKD in type 2 diabetes mellitus (DM) patients. A cohort of 184 patients and 39 healthy controls was assessed concerning serum and urinary stromal cell-derived factor-1 (SDF-1), P-selectin, advanced oxidation protein products (AOPPs), urinary synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), and N-acetyl-β-(D)-glucosaminidase (NAG). The quantification of the mitochondrial DNA copy number (mtDNA-CN) and nuclear DNA (nDNA) in urine and peripheral blood was conducted using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Using TaqMan tests, the beta-2 microglobulin nuclear gene (B2M) and the cytochrome b (CYTB) gene, which encodes subunit 2 of NADH dehydrogenase (ND2), were evaluated. The MtDNA-CN is the ratio of mitochondrial DNA to nuclear DNA copies, ascertained through the examination of the CYTB/B2M and ND2/B2M ratios. The intima-media thickness (IMT) measurements of the common carotid arteries (CCAs), along with the pulsatility index (PI) and resistivity index (RI) of the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), were obtained through cerebral Doppler ultrasonography (US). Additionally, the breath-holding index (BHI) was also measured by cerebral Doppler US. PI-ICAs, PI-MCAs, CCAs-IMT, RI-MCAs, and RI-ICAs demonstrated direct relationships with SDF-1, P-selectin, AOPPs, urine mtDNA, podocalyxin, synaptopodin, NAG, and KIM-1 while showing indirect correlations with serum mtDNA and the eGFR. In contrast, the BHI had negative correlations with SDF-1, P-selectin, AOPPs, urine mtDNA, synaptopodin, podocalyxin, KIM-1, and NAG while showing direct associations with serum mtDNA and the eGFR. In conclusion, a causative association exists among SDF-1, P-selectin, and AOPPs, as well as mitochondrial dysfunction, in early diabetic kidney disease (DKD) and significant cerebrovascular alterations in patients with type 2 diabetes mellitus and normoalbuminuric DKD, with no neurological symptoms. Full article
(This article belongs to the Special Issue Cell Biology in Diabetes and Diabetic Complications)
Show Figures

Graphical abstract

12 pages, 3746 KB  
Article
Optimizing In Vitro Metacyclogenesis: Strain-Specific Variability in Trypanosoma cruzi Responses to Nutritional and pH Stress
by Virginia Perdomo, Victoria Boselli, Romina Manarin and Esteban Serra
Parasitologia 2025, 5(2), 20; https://doi.org/10.3390/parasitologia5020020 - 6 May 2025
Viewed by 798
Abstract
Metacyclogenesis is a critical process in the Trypanosoma cruzi life cycle. This transition naturally occurs in an insect vector’s gut. Although Triatomine Artificial Urine (TAU) medium is the widely adopted approach to metacyclogenesis in vitro, its efficiency decreases with prolonged epimastigote culture, limiting [...] Read more.
Metacyclogenesis is a critical process in the Trypanosoma cruzi life cycle. This transition naturally occurs in an insect vector’s gut. Although Triatomine Artificial Urine (TAU) medium is the widely adopted approach to metacyclogenesis in vitro, its efficiency decreases with prolonged epimastigote culture, limiting the availability of metacyclic trypomastigotes for study. We aimed to establish a practical and efficient method for generating high concentrations and purities of metacyclic trypomastigotes in vitro. Epimastigotes of the Dm28c strain were exposed to pH shifts in nutrient-rich (MT-LIT) and nutrient-poor (M16) media, under static or agitated conditions. Both media promoted higher metacyclogenesis rates than TAU, with epimastigotes’ adherence to the substrate being a crucial factor. Metacyclogenesis efficiency varies depending on the strains and culture conditions. Notably, both LIT and M16 at pH 6 produced metacyclic trypomastigotes with infective capacity on Vero cells. Under these conditions, a variety of intermediate forms were observed compared to those induced by TAU metacyclogenesis. Our findings further emphasize the strain-dependent nature of optimal in vitro metacyclogenesis conditions and offer new opportunities for studying the intermediate forms involved in this essential process. Full article
Show Figures

Figure 1

22 pages, 4535 KB  
Article
Groundwater Nitrate-Nitrite Modeling in a Grazed Hillslope with Agroforestry and Grass Buffers
by Miguel Salceda-Gonzalez, Ranjith P. Udawatta and Martin S. Appold
Water 2025, 17(5), 608; https://doi.org/10.3390/w17050608 - 20 Feb 2025
Viewed by 851
Abstract
Groundwater pollution negatively impacts aquatic ecosystems and human health. On the other hand, conservation practices can help reduce groundwater and surface water pollution. Baseflow from agricultural fields can be an important source of nitrate-nitrite (NN) loads in lakes and other surface water bodies. [...] Read more.
Groundwater pollution negatively impacts aquatic ecosystems and human health. On the other hand, conservation practices can help reduce groundwater and surface water pollution. Baseflow from agricultural fields can be an important source of nitrate-nitrite (NN) loads in lakes and other surface water bodies. Riparian agroforestry buffers can be an effective barrier between groundwater NN and surface water bodies. The study aimed to determine the effects of agroforestry buffers and widths on groundwater nitrate-nitrite (NN) exports from an agricultural grazing area into a farm lake using flow and solute transport models. The flow and solute models were calibrated and validated for the weather and land use (grazing) conditions observed during the monitoring period, and these conditions were repeated throughout the 10-year projection. The calibration and validation of the flow and solute transport models were satisfactory, yielding determination coefficients R2 > 0.95 and Nash-Sutcliffe coefficients > 0.94. The area of study was modeled under four scenarios: tree-only buffers [cottonwood (Populus deltoides Bortr. ex Marsh.)]; grass-only buffers ([Tall fescue Schedonorus phoenix (Scop.) Holub, Red clover (Trifolium pretense L.), and Lespedeza (Lespedeza Michx)]); tree + grass buffers (a combination of the same tree and grass species of the other two scenarios; and a no-buffer scenario. The tree-only, grass-only, and tree + grass buffers reduced the total mass of NN discharged from the study unit to the lake by 98%, 97%, and 99%, respectively, compared to the no-buffer scenario. Doubling the buffer width from 15 m to 30 m decreased the NN discharge to the lake by 16-fold. Moreover, 7.5 m wide buffers had up to nine times greater NN discharge than 15 m buffers. Results show that agroforestry buffers with trees and grasses in riparian areas significantly remove NN exports in groundwater from agricultural fields, protecting the environment and human health. Full article
Show Figures

Figure 1

13 pages, 1041 KB  
Article
Quantitative Analysis of Early Retinal Changes and OCT Parameters in Diabetic Subjects with and Without Retinopathy
by Sulaiman Aldakhil, Naveen Challa, Saja A. Alhoshan, Foziyah Abohaimed, Bashair N. Alnasser, Hana A. Almuhawas, Saif AlObaisi and Saif H. Alrasheed
Diagnostics 2025, 15(4), 451; https://doi.org/10.3390/diagnostics15040451 - 13 Feb 2025
Viewed by 1148
Abstract
Aim: The aim of this paper is to assess the changes in optical coherence tomography angiography (OCTA) parameters among normal individuals and for type 2 diabetes mellitus (DM) patients, with and without retinopathy, in the adult Saudi population. Methods: This was a [...] Read more.
Aim: The aim of this paper is to assess the changes in optical coherence tomography angiography (OCTA) parameters among normal individuals and for type 2 diabetes mellitus (DM) patients, with and without retinopathy, in the adult Saudi population. Methods: This was a prospective cross-sectional study; subjects were divided into four groups. Group 1, the control group, consisted of 40 eyes from normal healthy individuals, while the other three groups included subjects diagnosed with type 2 DM at various stages of retinopathy. All subjects’ OCT and OCTA images were acquired using a swept-source OCT (DRI Triton, Topcon, Inc., Tokyo, Japan). Parameters collected included superficial capillary plexus (SCP) vessel density (VD), foveal avascular zone (FAZ), macular thickness (MT), ganglion cell layer (GCL) thickness, and retinal nerve fiber layer (RNFL) thickness at central and perifoveal locations. OCTA acquisition included a 4.5 × 4.5 mm scan to measure FAZ and SCP VD, with the FAZ manually mapped onto OCTA images at the SCP. Results: There was a significant decrease in SCP VD (p < 0.05) in all quadrants except the central as the severity of diabetes increased. SCP VD was considerably lower in DM patients without retinopathy compared to controls. Additionally, the FAZ area exhibited a significant increasing trend as the severity of diabetic retinopathy (DR) increased. Regression analysis showed a significant decrease in RNFL thickness (p < 0.01) and GCL thickness (p < 0.01) in the nasal quadrant as DR severity increased, even after adjusting for age, gender, and mean arterial pressure. Furthermore, SCP VD showed a significant negative correlation with both the duration of DM and contrast sensitivity. Conclusions: OCT and OCTA parameters were significantly different between the control and diabetic patients with and without DR. The observed microvascular and contrast sensitivity alterations may precede detectable DR damage or changes in visual acuity. Full article
(This article belongs to the Special Issue Visual Impairment: Diagnosis and Management)
Show Figures

Figure 1

16 pages, 270 KB  
Article
Effects of Dietary Copper Sources and Levels on Liver Copper Metabolism and the Expression of Transporters in Growing Pigs
by Rui Sun, Meng Li, Tianrui Zhang, Wenyan Yang and Lianyu Yang
Animals 2025, 15(4), 526; https://doi.org/10.3390/ani15040526 - 12 Feb 2025
Viewed by 1278
Abstract
Research on the effects of organic and inorganic Cu sources on metabolic processes and mechanisms in pigs is lacking. This study investigated the effects of different copper (Cu) sources and levels on hepatic Cu metabolism and transporter factors in growing pigs. Sixty healthy [...] Read more.
Research on the effects of organic and inorganic Cu sources on metabolic processes and mechanisms in pigs is lacking. This study investigated the effects of different copper (Cu) sources and levels on hepatic Cu metabolism and transporter factors in growing pigs. Sixty healthy piglets (initial body weight 14.00 ± 0.30 kg) were randomly divided into four groups with five replicates of three pigs each. Four diets (AM, AH, BM, and BH) had different Cu sources [Cu sulphate (CuSO4): A and Cu amino acids (Cu-AA): B] and levels [supplemented (120 mg/kg DM): M, supplemented (240 mg/kg DM): H]. The pre-feeding period was 7 days, followed by a 45-day feeding period. Slaughter and sample collection were carried out on the 46th day of the formal feeding period. Significant differences were considered at p < 0.05. The final weight and average daily gain (ADG) of growing pigs in the Cu-AA groups were significantly higher than those in the CuSO4 groups. Serum Cu increased with increasing Cu supplementation on days 20 and 40. Cu concentrations in muscle, liver, and liver subcellular organelles were higher in Cu-AA groups. In the CuSO4 groups, Cu concentrations were higher in kidneys and faeces. In Cu-AA groups, both the Cu concentrations in lysosomes and cytosol were higher, and the activities of cathepsin D (CTSD), β-glucosidase (BGL), and acid phosphatase (ACP) in lysosomes and cytoplasm were higher. Comparisons between groups showed that liver mRNA of copper transporter protein 1 (CTR1), ATPase copper-transporting beta (ATP7B), ceruloplasmin (CP), antioxidant protein 1 (ATOX1), and metallothionein (MT) was lower in the CuSO4 group than in the Cu-AA group, with the best performance at 120 mg/kg Cu. mRNAs for ATPase copper-transporting alpha (ATP7A), cytochrome c oxidase copper chaperone 17 (COX17), and copper chaperone for superoxide dismutase (CCS) showed a decreasing trend in the Cu-AA groups. Cu-AA is better for Cu deposition, enhances the utilisation of Cu, reduces Cu excretion, and promotes the expression of relevant enzymes and transporters in the liver. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
11 pages, 2078 KB  
Communication
The Diurnal Variation in Mitochondrial Gene in Human Type 2 Diabetic Mesenchymal Stem Cell Grafts
by Michiko Horiguchi, Kenichi Yoshihara, Yoichi Mizukami, Kenji Watanabe, Yuya Tsurudome and Kentaro Ushijima
Int. J. Mol. Sci. 2025, 26(2), 719; https://doi.org/10.3390/ijms26020719 - 16 Jan 2025
Viewed by 1183
Abstract
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to [...] Read more.
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice. Diurnal variation in mitochondrial genes was assessed by next-generation sequencing. As a result, the diurnal variation in mitochondrial genes showing troughs at ZT10 and ZT22 was observed in the group transplanted with adipose-derived mesenchymal stem cells derived from healthy individuals (N-ADSC). On the other hand, in the group transplanted with T2DM-ADSCs, diurnal variation indicative of troughs was observed at ZT18, with a large phase and amplitude deviation between the two groups. To evaluate the diurnal variation in mitochondrial function, we quantified mitochondrial DNA copy number using the Human mtDNA Monitoring Primer Set, measured mitochondrial membrane potential using JC-1, and evaluated mitophagy staining. The results showed a diurnal variation in mitochondrial DNA copy number, mitophagy, mitochondrial membrane potential, and NF-kB signaling in the N-ADSC transplant group. In contrast, no diurnal variation was observed in T2DM-ADSC transplants. The diurnal variation in mitochondrial function revealed in this study may be a new marker for the efficiency of T2DM-ADSC transplantation. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

19 pages, 9128 KB  
Article
Design, Implementation and Environmental Impact of Cutoff Wall for Pollution Control in an Industrial Legacy Site
by Lu Yu, Sichen Chen, Jinnan Wang, Zhihong Zhang and Yan Huang
Toxics 2025, 13(1), 11; https://doi.org/10.3390/toxics13010011 - 25 Dec 2024
Viewed by 846
Abstract
Heavy metal-organic pollutants compound pollution at industrial legacy sites and have caused damage to the ecological environment and human health during recent decades. In view of the difficulty and high cost of post-contamination remediation, it is worth studying, and practically applying, cutoff walls [...] Read more.
Heavy metal-organic pollutants compound pollution at industrial legacy sites and have caused damage to the ecological environment and human health during recent decades. In view of the difficulty and high cost of post-contamination remediation, it is worth studying, and practically applying, cutoff walls to reduce the spread of pollution in advance. In this study, field-scale studies were carried out at e-waste dismantling legacy sites in Taizhou, Zhejiang Province of China, through the process of site investigation, numerical simulation, and cutoff wall practical application. Firstly, the concentrations and spatial distributions of Pb, Cd and polychlorinated biphenyls (PCBs) and poly brominated diphenyl ethers (PBDEs) were identified in both soil and groundwater. Then, potential dispersal routes of key combined contaminants (Pb and PCBs) at the soil–groundwater interface were systematically studied through numerical simulation applying Visual MODFLOW-MT3DMS. One site was chosen to predict the barrier effect of differently sized cutoff walls based on the migration path of compound pollutants. A protocol for a cutoff wall (50 m length × 2 m width × 3 m height) was finally verified and applied at the real contaminated site for the blocking of compound pollutant diffusion. Further, the groundwater quality of the contaminated site was monitored consecutively for six months to ensure the durability and stability of barrier measures. All pollutant indicators, including for Pb and PCB complex pollutants, were reduced to below the national Grade IV groundwater standard value, achieving environmental standards at these polluted sites and providing possibilities for land reuse. In summary, this field-scale test provided new ideas for designing cutoff walls to block the diffusion of complex pollutants; it also laid a basis for the practical application of cutoff walls in pollution prevention and control of complex contaminated sites and for soil–groundwater environmental protection at industrial heritage sites. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Graphical abstract

15 pages, 4643 KB  
Article
Comparing Recovery Volumes of Steady and Unsteady Injections into an Aquifer Storage and Recovery Well
by Saeid Masoudiashtiani and Richard C. Peralta
Earth 2024, 5(4), 990-1004; https://doi.org/10.3390/earth5040051 - 9 Dec 2024
Viewed by 1342
Abstract
Aquifer Storage and Recovery (ASR) can involve injecting available surface water into an unconfined aquifer and then extracting it to provide secondary water for irrigation. This study demonstrates a method for evaluating the appropriateness of steady injection versus unsteady injection for an assumed [...] Read more.
Aquifer Storage and Recovery (ASR) can involve injecting available surface water into an unconfined aquifer and then extracting it to provide secondary water for irrigation. This study demonstrates a method for evaluating the appropriateness of steady injection versus unsteady injection for an assumed situation. In design, it can be important to affect the transient: the proportion of the injected water that would be subsequently extracted (versus that remaining in the aquifer) and the proportion within the extracted water that would be an injectate (versus ambient groundwater). These proportions can be predicted from the predicted value of an ASR well’s Recovery Effectiveness (REN)—the time-varying proportion of injectate that is extracted subsequently from the same fully penetrating well. Applying the demonstrated procedure with appropriately detailed data and simulation models can predict the REN values resulting from steady versus unsteady injection, followed by steady extraction. For convenience in displaying and computing REN, the injectate was assumed to have a 100 ppm conservative solute concentration. For this demonstration, a homogenous isotropic unconfined one-layer aquifer was assumed. The scenarios involved steady or unsteady injection for 61 days via a fully penetrating ASR well. Then, 91 days of steady pumping led to the extraction of a total volume equal to that injected. For the assumed hydrogeologic data—31 years of Salt Lake City, Utah, rainfall data and estimated captured runoff—the results show that steady injection is more likely to cause a predictable REN but might not cause a higher REN than daily varying injection of the same total volume. Assuming different runoff or hydrogeologic flows would lead to different REN values. Steady injection causes a predictable groundwater mound and can assure a sufficient vadose zone thickness for overlying plants. Augmentation and storage of captured rainwater can help to provide a steady injection rate. For a situation that requires REN management, appropriate simulations can help water managers design ASR systems that will achieve REN goals and increase sustainable groundwater availability. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

18 pages, 14676 KB  
Article
Study on the Fine Characterization of Spatial Distribution and Predictive Modeling of Remediation of Site Pollution
by Jun Yang and Caijie Wei
Water 2024, 16(21), 3154; https://doi.org/10.3390/w16213154 - 4 Nov 2024
Viewed by 1026
Abstract
The present study focuses on a site contaminated with halogenated hydrocarbons, utilizing a detailed inventory of contamination data to achieve the precise characterization of groundwater pollution. Employing MOFLOW-2000 software, a groundwater flow model was established for the study area. In conjunction with MT3DMS, [...] Read more.
The present study focuses on a site contaminated with halogenated hydrocarbons, utilizing a detailed inventory of contamination data to achieve the precise characterization of groundwater pollution. Employing MOFLOW-2000 software, a groundwater flow model was established for the study area. In conjunction with MT3DMS, a predictive model was constructed to simulate and forecast the spatiotemporal distribution of contaminant migration and attenuation following site remediation. The simulation area was delineated based on geographical features, with the vertical simulation range of strata also determined. To establish a hydrogeological conceptual model for the target remediation site, comprehensive hydrogeological data were collected, encompassing geological structures, hydrological parameters, and rainfall information. Model calibration was based on the six layers of low-permeability aquifer intervals revealed by geological exploration wells MW1–5, as well as the distribution of groundwater-level contours and rainfall data. Based on data from September 2010, an initial three-dimensional model of tetrachloroethylene (PCE) distribution was generated. Subsequently, a solute transport model for PCE was established, incorporating various enhanced reductive dechlorination (ERD) remediation strategies applied at different times and locations. Calibration against actual monitoring data revealed the presence of unmonitored dense non-aqueous phase liquids (DNAPLs) at the site, contributing to the continuous release and elevation of PCE concentrations. By accounting for DNAPL release, the calibrated transport and attenuation model closely matched observed concentration decay patterns, effectively capturing the actual dynamics of contaminant transport and attenuation within the groundwater system. The modeling approach proposed in this study provides important support for contamination remediation and attenuation at the current site, and it is also applicable to simulating and predicting pollution scenarios at similar sites. Full article
(This article belongs to the Topic Organic Pollution in Soil and Groundwater)
Show Figures

Figure 1

Back to TopTop