Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = Meq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 990 KB  
Article
Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile
by Gulzhan Tokysheva, Damilya Konysbayeva, Malika Myrzabayeva, Gulnazym Ospankulova, Kalamkas Dairova, Nuray Battalova and Kadyrzhan Makangali
Appl. Sci. 2025, 15(19), 10556; https://doi.org/10.3390/app151910556 - 30 Sep 2025
Abstract
This study investigated the incorporation of Salicornia perennans powder as a natural antioxidant and functional ingredient in cooked sausages, with the aim of improving product quality and promoting sustainable production strategies. The inclusion of 3% Salicornia perennans resulted in a nutritionally favorable shift [...] Read more.
This study investigated the incorporation of Salicornia perennans powder as a natural antioxidant and functional ingredient in cooked sausages, with the aim of improving product quality and promoting sustainable production strategies. The inclusion of 3% Salicornia perennans resulted in a nutritionally favorable shift in the fatty acid profile, with a 1.5-fold increase in α-linolenic acid ALA and the presence of long-chain ω-3 fatty acids EPA and DHA, along with improved PUFA/SFA and ω-6/ω-3 ratios. Lipid and protein oxidation were significantly suppressed during refrigerated storage, as evidenced by the reduced peroxide value of 10.6 vs. 12.8 meq/kg, thiobarbituric acid-reactive substance value of 0.158 vs. 0.210 mg MDA/kg, acid value of 4.6 vs. 5.5 mg KOH/g, and carbonyl compound value of 101.9 vs. 112.3 nmol/mg protein compared to the control. Color stability was enhanced, with ΔE* values remaining below perceptible thresholds in Salicornia perennans-supplemented sausages, highlighting its role in preserving visual quality. Antioxidant capacity was markedly higher, with FRAP values of 14.5 mg GAE/g undetected in the control and improved DPPH radical-scavenging activity of 22.6% vs. 12.5%. These findings demonstrate that Salicornia perennans not only enriches meat products with bioactive compounds and health-promoting lipids but also reduces oxidative spoilage, thereby extending shelf life. The results emphasize the potential of halophyte-based ingredients to support technological innovation, environmental impact reduction, and the development of clean-label functional meat products aligned with sustainable production strategies. Full article
Show Figures

Figure 1

22 pages, 6902 KB  
Article
Hydrothermal Carbonization of Sugarcane Tip (Saccharum officinarum L.) for Pb (II) Removal: Synthesis, Characterization, and Adsorption Equilibrium
by Dulce Carolina Acosta-Pintor, Candy Carranza-Álvarez, Habacuc Lorenzo-Márquez, Cynthia Wong-Arguelles and Cuitláhuac Mojica-Mesinas
AppliedChem 2025, 5(4), 24; https://doi.org/10.3390/appliedchem5040024 - 29 Sep 2025
Abstract
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the [...] Read more.
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the potential of sugarcane tip (ST) waste biomass treated by hydrothermal carbonization (HTC) to produce hydrochar as an adsorbent material for Pb2+ in aqueous solutions. Samples were synthesized from the waste biomass at temperatures of 180 °C, 215 °C, and 250 °C, with a constant pressure of 6 MPa. Aqueous solutions of Pb2+ were prepared at concentrations of 10, 25, 50, 75, and 100 mg/L. Each solution was stirred at 1 g of hydrochar at 150 rpm, 25 °C, and pH 5 for 15 to 120 min. The solutions were filtered and stored at 4 °C for flame atomic absorption spectrophotometry analysis. In all cases, equilibrium was reached rapidly—within 15 min or less—as indicated by the stabilization of qt values over time. At an initial concentration of 100 mg L−1, the highest equilibrium uptake was observed for the hydrochar synthesized at ST HTC 180 °C (4.90 mg g−1), followed by 4.58 mg g−1 and 4.52 mg g−1 for ST HTC 215 °C and ST HTC 250 °C, respectively. For the ST HTC 180 °C, the Sips model provided the best correlation with the experimental data, exhibiting a high maximum capacity (qmax = 240.8 mg g−1; Ks = 0.007; n = 1.09; R2 = 0.975), which reinforces the heterogeneous nature of the material’s surface. Hydrothermal synthesis increased the amount of acidic active sites in the ST HTC 180 °C material from 1.3950 to 3.8543 meq g−1, which may influence the electrical charge of the Pb2+ adsorption process. HTC-treated sugarcane tip biomass represents a promising alternative for the synthesis of adsorbent materials, contributing to water remediation and promoting the circular economy by sustainably utilizing agricultural waste. Full article
Show Figures

Figure 1

21 pages, 1537 KB  
Article
Multistage Countercurrent Extraction of Abalone Viscera Oil and Its Hypolipidemic Action on High-Fat Diet-Induced Hyperlipidemia Mice
by Meiling Tian, Chunjiang Li, Lili Liu, Fahui Xiang, Weiwei Li, Changcheng Li, Binxiong Liu and Ting Fang
Nutrients 2025, 17(19), 3062; https://doi.org/10.3390/nu17193062 - 25 Sep 2025
Abstract
Background/Objectives: Marine-derived oils rich in long-chain polyunsaturated fats have long been associated with positive effects on plasma lipid levels and anti-inflammatory responses. Abalone viscera are rich in oils that are rarely extracted and made available. Methods: Abalone viscera oil (AVO) was extracted by [...] Read more.
Background/Objectives: Marine-derived oils rich in long-chain polyunsaturated fats have long been associated with positive effects on plasma lipid levels and anti-inflammatory responses. Abalone viscera are rich in oils that are rarely extracted and made available. Methods: Abalone viscera oil (AVO) was extracted by multistage countercurrent extraction using ethanol as a solvent, and its oil quality, fatty acid composition, and in vitro antioxidant activity were determined. Meanwhile, the anti-hyperlipidemic effect of AVO on HFD-induced hyperlipidemia mice was evaluated. Results: The abalone viscera were extracted at a solid–liquid ratio of 1:3 with an oscillation frequency of 300 rpm for 40 min, and the extraction rate was 81.18% after four-stage countercurrent extraction. The acid value, iodine value, peroxide value, vitamin E, and astaxanthin of AVO were 1.26 mg KOH/g, 140.9 g/100 g, 3.6 meq/kg, 105 mg/kg, and 533.8 mg/kg, respectively. The unsaturated fatty acids of AVO account for 56.60%, with eicosapentaenoic acid (C20:5n3) and arachidonic acid (C20:4n6) the two predominant PUFAs, and oleic acid (C18:1n9) the most dominant MUFA. The DPPH, ABTS, and ·OH radicals scavenging capacities of AVO increased with concentration, and the IC50 values were 6.30 mg/mL, 0.45 mg/mL, and 8.95 mg/mL, respectively. Moreover, the administration of AVO significantly alleviated HFD-induced weight gain, liver fat accumulation, lipid disorder, and oxidative stress in mice. Conclusions: Collectively, our study provides a theoretical basis for the application of AVO and the comprehensive utilization of abalone viscera, which helps increase the additional value of abalone. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

21 pages, 2064 KB  
Review
Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World
by Maya P. Bhatt, Ganesh B. Malla and Jacob C. Yde
Water 2025, 17(19), 2811; https://doi.org/10.3390/w17192811 - 24 Sep 2025
Viewed by 19
Abstract
Glaciers play a crucial role in shaping global hydrology and biogeochemical cycles, yet their climate-forced dynamic impact on chemical denudation and solute yields remain poorly understood. This study compiled data on 40 well-documented cationic denudation rates (CDR) from glaciers across Northwest America, the [...] Read more.
Glaciers play a crucial role in shaping global hydrology and biogeochemical cycles, yet their climate-forced dynamic impact on chemical denudation and solute yields remain poorly understood. This study compiled data on 40 well-documented cationic denudation rates (CDR) from glaciers across Northwest America, the Svalbard/Arctic Canada, Iceland, Greenland, Europe, China-Tibet, Antarctica, and the Himalayas, revealing substantial spatial variability. CDRs ranged from 46 to 4160 meq m−2 yr−1. Northwest American and Himalayan glaciers exhibited the highest CDRs, with the Himalayan denudation rate exceeding the global average by more than fourfold. The exceptionally high mean chemical weathering intensity (CWI) of 801 meq m−3 from the Himalayan glaciers indicate a wide range of geochemical and climatic conditions within the region, while Northwest American and Greenland glaciers show comparatively lower mean intensities (273 and 247 meq m−3, respectively) suggesting a consistent geochemical regime. Northwest American glaciers had the highest specific discharge rates, while Svalbard/Arctic Canada glaciers had the lowest, reflecting regional disparities influenced by climatic and geological factors. A Bonferroni post hoc test highlighted significant differences in specific discharge between Northwest American glaciers and two other basins, emphasizing their distinct hydrological behavior. Predictive modeling revealed a statistically significant but weak relationship between CDR and specific discharge (R2 = 57%), suggesting that much of the variability in CDR cannot be explained by specific discharge alone. A regression coefficient of 382 meq m−2 yr−1 indicates that CDR increases with glacier discharge, although basin-specific analyses showed minimal variation in this relationship across regions. Svalbard/Arctic Canada, Antarctic, Greenlandic, Icelandic, and European Alpine glaciers displayed lower CDRs, which varied depending on underlying lithology, with higher rates observed in carbonate and basaltic terrains compared to other lithologies. We hypothesize that glacier retreat enhances the downward progression of the weathering reaction front, increasing CDR, particularly in rapidly retreating glaciers. Full article
Show Figures

Figure 1

19 pages, 3044 KB  
Article
Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers
by Manhal H. Ibrahim Al-Mashhadani, Gábor Pál Szijjártó, Asmaa Selim, Zoltán Sebestyén, Judith Mihály and András Tompos
Membranes 2025, 15(9), 280; https://doi.org/10.3390/membranes15090280 - 18 Sep 2025
Viewed by 384
Abstract
Novel blend membranes containing S-PVA and PEBAX 1657 at a blend ratio of 8:2 were doped with varying amounts of titanium dioxide phosphate (TiO2PO4) as a nanoparticle filler at concentrations of 0, 3, 5, and 7 wt%. The membranes [...] Read more.
Novel blend membranes containing S-PVA and PEBAX 1657 at a blend ratio of 8:2 were doped with varying amounts of titanium dioxide phosphate (TiO2PO4) as a nanoparticle filler at concentrations of 0, 3, 5, and 7 wt%. The membranes were fabricated using the solution-casting technique. The effect of the TiO2PO4 nanofiller on the polymer matrix was thoroughly investigated. Our aim was to investigate how the incorporation of TiO2PO4 nanofillers into non-fluorinated SPP-based membranes affects their structural, physicochemical, and electrochemical properties for application in fuel cells. Crystallinity of the samples was checked by means of X-ray diffraction (XRD), while FTIR was used to investigate the contact between the nanofiller and the polymers. The good compatibility resulted in strong interactions between the constituents and led to increased crystallinity of the membrane as well. Furthermore, SEM images confirmed the uniform distribution of the nanofiller. These structural features led to good thermal stability, as evidenced by thermogravimetric analysis (TGA), and good mechanical strength, as proved by tensile tests. Among the samples investigated, the highest water uptake of 51.70% was achieved on the composite membrane containing 3 wt% TiO2PO4, which also showed the highest ion exchange capacity at room temperature, reaching 1.13 meq/g. In line with these properties, among the synthesized membranes, the membrane labeled SPP 3% TiO2PO4 has the highest current density and power density, with values of 175.5 mA/cm2 and 61.52 mW/cm2, respectively. Full article
Show Figures

Figure 1

12 pages, 612 KB  
Article
Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products
by Koray Korkmaz and Serpil Öztürk
Foods 2025, 14(18), 3227; https://doi.org/10.3390/foods14183227 - 17 Sep 2025
Viewed by 246
Abstract
The growing demand for sustainable food sources requires the efficient use of aquaculture by-products. This study aimed to optimize enzymatic hydrolysis conditions for the simultaneous recovery of fish protein hydrolysate (FPH) and oil from rainbow trout (Oncorhynchus mykiss) processing by-products. Hydrolysis [...] Read more.
The growing demand for sustainable food sources requires the efficient use of aquaculture by-products. This study aimed to optimize enzymatic hydrolysis conditions for the simultaneous recovery of fish protein hydrolysate (FPH) and oil from rainbow trout (Oncorhynchus mykiss) processing by-products. Hydrolysis was performed at different temperatures (30–50 °C), enzyme concentrations (0.5–1.5%), and durations (30–90 min), and the optimal conditions were determined as 40 °C, 1% enzyme concentration, and 60 min. Under these conditions, oil yield reached 11.46%, while quality indices remained within acceptable limits (peroxide value: 1.78–3.47 meq O2/kg; thiobarbituric acid reactive substances: 0.41–1.41 mg MDA/kg; free fatty acids: 0.27–4.12%). Fatty acid analysis revealed 22.5% saturated, 46.31% monounsaturated, and 23.52% polyunsaturated fatty acids, including notable levels of EPA and DHA. The protein hydrolysates obtained under optimized conditions contained 22.61% protein and essential amino acids, accounting for 52.4% of the total amino acid content, confirming their high nutritional value. Overall, the findings demonstrate that rainbow trout by-products can be effectively valorized through enzymatic hydrolysis to produce oil and protein hydrolysates of acceptable quality, which may serve as alternative ingredients for food and feed applications. Full article
Show Figures

Graphical abstract

14 pages, 1594 KB  
Article
Eating Right, Sleeping Tight? A Cross-Sectional Study on the Student-Athlete Paradox for Diet and Sleep Behaviors
by Olga Papale, Emanuel Festino, Francesca Di Rocco, Marianna De Maio, Carl Foster, Cristina Cortis and Andrea Fusco
Nutrients 2025, 17(18), 2946; https://doi.org/10.3390/nu17182946 - 12 Sep 2025
Viewed by 917
Abstract
Background: Student-athletes face the dual challenge of balancing academic and athletic commitments, which may simultaneously promote healthy lifestyle habits while increasing psychosocial and physiological stressors, particularly among female student-athletes. Understanding how these competing demands affect key behavioral (e.g., dietary habits, sleep, and chronotype) [...] Read more.
Background: Student-athletes face the dual challenge of balancing academic and athletic commitments, which may simultaneously promote healthy lifestyle habits while increasing psychosocial and physiological stressors, particularly among female student-athletes. Understanding how these competing demands affect key behavioral (e.g., dietary habits, sleep, and chronotype) and psychological (e.g., body image) factors is essential for supporting their overall well-being. Therefore, this cross-sectional study investigated body dissatisfaction, adherence to the Mediterranean diet, sleep quality, and chronotype in female student-athletes compared to sedentary peers. Methods: Twenty-eight female participants voluntarily participated in the study. Twelve volleyball student-athletes (age 21.6 ± 2.4 years) were assessed during their competitive in-season period, and sixteen non-athlete students with a high sitting time (age 24.0 ± 3.2 years) completed the Mediterranean Diet Adherence questionnaire (PREDIMED), Pittsburgh Sleep Quality Index (PSQI), Morningness–Eveningness Questionnaire (MEQ), and Body Image Dimensional Assessment (body dissatisfaction) to assess their overall well-being. Results: Student-athletes showed significantly (p < 0.05) higher adherence to the Mediterranean diet (PREDIMED: 8.5 ± 1.5 score), although experiencing poorer sleep quality (PSQI: 6.8 ± 3.0 score) compared to non-athlete students with higher sitting times (PREDIMED: 6.7 ± 1.6 score; PSQI: 4.6 ± 2.3 score). Conversely, comparative body dissatisfaction was significantly higher in non-athlete students with a high sitting time (19.4 ± 24.5%) than in student-athletes (5.6 ± 10.5%). No significant differences emerged for chronotype or overall body dissatisfaction. Conclusions: These findings highlight a paradoxical health pattern in female student-athletes who combine healthier eating habits with poorer sleep quality. The results emphasize the importance of comprehensive wellness strategies that integrate dietary habits, sleep hygiene, and psychophysiological factors to better support female student-athletes in managing dual-career demands. Full article
Show Figures

Figure 1

14 pages, 1701 KB  
Article
Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides
by Won Seok Jae, Ha-Kyung Choi, Han Su Lee, Chinh Hoang Tran, Chi Le Hoang Tran, Khoa Anh Trinh and Il Kim
Polymers 2025, 17(18), 2458; https://doi.org/10.3390/polym17182458 - 11 Sep 2025
Viewed by 473
Abstract
A series of polyether and poly(ether carbonate) polyols have been synthesized via Zn(II)-Co(III) double metal cyanide (DMC)-catalyzed ring-opening (co)polymerization of various epoxides, such as propylene oxide, 1,2-epoxybutane, epichlorohydrin, styrene oxide, and glycidol, with and without CO2. The resulting polyether polyols exhibit [...] Read more.
A series of polyether and poly(ether carbonate) polyols have been synthesized via Zn(II)-Co(III) double metal cyanide (DMC)-catalyzed ring-opening (co)polymerization of various epoxides, such as propylene oxide, 1,2-epoxybutane, epichlorohydrin, styrene oxide, and glycidol, with and without CO2. The resulting polyether polyols exhibit linear and branched architectures (degrees of branching, DB = 0.27), high catalytic activities with turnover frequencies up to 461 min−1, narrow dispersities (1.15–1.25), and low levels of unsaturation (0.004 meq g−1). The DMC catalysts also enable the efficient synthesis of poly(propylene carbonate) polyol with carbonate contents up to 40% and yields reaching 63%. Additionally, branched poly(ether carbonate) polyols with tunable DB values (0.14–0.21), yields up to 70%, and carbonate contents up to 33% are synthesized via CO2 fixation to glycidol. The synthesized polyols hold strong potential for industrial applications in polyurethanes and other advanced materials, offering versatile performance for use in coatings, adhesives, sealants, and elastomers. Overall, this study highlights the effectiveness of DMC catalysts in producing high-performance polyols, contributing to the development of sustainable materials with precise architectural control. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

17 pages, 2006 KB  
Article
Valorization of Coffee Pulp: Spray-Dried Hemp Oil Microcapsules Stabilized with Coffee Pectin and Maltodextrin
by Ozan Kahraman, Greg E. Petersen and Christine Fields
Sustainability 2025, 17(18), 8152; https://doi.org/10.3390/su17188152 - 10 Sep 2025
Viewed by 383
Abstract
The global challenge of food waste presents an opportunity to explore the untapped potential of agricultural by-products. Coffee pulp, a major by-product of the coffee industry, is a promising source of functional polysaccharides such as coffee pectin, which can be valorized for sustainable [...] Read more.
The global challenge of food waste presents an opportunity to explore the untapped potential of agricultural by-products. Coffee pulp, a major by-product of the coffee industry, is a promising source of functional polysaccharides such as coffee pectin, which can be valorized for sustainable applications in food systems. This study investigates the microencapsulation of hemp seed oil—rich in essential fatty acids and bioactive lipids—using coffee pectin and maltodextrin as wall materials via spray drying. Emulsions with varying oil-to-wall ratios were formulated and characterized for viscosity, particle size, and zeta potential. The resultant microcapsules were analyzed for physicochemical properties, encapsulation efficiency, oxidative stability (peroxide value), and in vitro release in simulated gastrointestinal fluids. Encapsulation efficiencies ranged from 63.27% to 70.77%, with lower oil content formulations exhibiting higher efficiency. The peroxide values indicated enhanced oxidative stability, with the lowest value (10.69 meq O2/kg oil) observed in the most efficient encapsulation formulation. Microcapsule morphology analysis confirmed the formation of spherical particles with varying degrees of surface roughness. Release studies demonstrated controlled oil delivery, with higher retention in gastric conditions and progressive release in intestinal fluids. These findings demonstrate the potential of upcycled coffee pulp-derived pectin as a functional, sustainable encapsulant, aligning with circular economy principles and supporting the development of stable bioactive delivery systems for nutraceutical and food applications. Full article
Show Figures

Figure 1

20 pages, 3258 KB  
Article
Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment
by Carla Candeias, Helena Santos and Fernando Rocha
Minerals 2025, 15(9), 910; https://doi.org/10.3390/min15090910 - 27 Aug 2025
Viewed by 511
Abstract
The technological potential and sustainability of red clays from the Taveiro region (Coimbra, Portugal) for structural ceramic applications have been investigated. Thirteen representative samples granulometric, mineralogical, chemical analysis, and technological characterization were conducted to determine the suitability for extrusion-based ceramics, aligned with circular [...] Read more.
The technological potential and sustainability of red clays from the Taveiro region (Coimbra, Portugal) for structural ceramic applications have been investigated. Thirteen representative samples granulometric, mineralogical, chemical analysis, and technological characterization were conducted to determine the suitability for extrusion-based ceramics, aligned with circular economy and climate goals (e.g., PNEC2030, RNC2050). The samples exhibited a high fine fraction content (<0.002 mm up to 76%) and plasticity index (PI; up to 41%), associated with significant smectite, illite, and kaolinite content. Bulk mineralogy was dominated by Σ phyllosilicates (up to 77%) and quartz (12%–29%), while chemical analyses showed high SiO2 and Al2O3 content, moderate Fe2O3, and low CaO/MgO, typical of aluminosilicate clays for red ceramics. High cation exchange capacity (CEC; up to 49 meq/100 g) and specific surface area (SSA; up to 83 m2/g) reflected smectite-rich samples. Firing tests at 900 and 1000 °C demonstrated decreasing water absorption and shrinkage with increased temperature, with some samples yielding lower porosity and higher strength (~12 MPa), confirming suitability for bricks and tiles. Two samples showed higher plasticity but greater shrinkage and porosity, suggesting applicability in porous ceramics or blends. This work highlights the role of mineralogical and technological indicators in guiding the eco-efficient use of georesources for ceramic manufacturing. Full article
(This article belongs to the Special Issue From Clay Minerals to Ceramics: Progress and Challenges)
Show Figures

Figure 1

20 pages, 491 KB  
Article
Sleep Characteristics and Prevalence of Perceived Insufficient Sleep Across Age Groups in the Japanese Community-Based General Population: The Japan Multi-Institutional Collaborative Cohort Daiko Study
by Emi Morita, Hiroshi Kadotani, Naoto Yamada, Yoko Mitsuda, Takashi Tamura and Kenji Wakai
Int. J. Environ. Res. Public Health 2025, 22(9), 1338; https://doi.org/10.3390/ijerph22091338 - 27 Aug 2025
Viewed by 1458
Abstract
This study aimed to provide basic data according to age on objective sleep duration distribution and sleep characteristics via subjectivity, and to determine the prevalence of insufficient sleep and related sleep parameters in the general Japanese population. Data from the second survey of [...] Read more.
This study aimed to provide basic data according to age on objective sleep duration distribution and sleep characteristics via subjectivity, and to determine the prevalence of insufficient sleep and related sleep parameters in the general Japanese population. Data from the second survey of the Japan Multi-Institutional Cohort (J-MICC) Daiko Study were used for the analysis, with 2091 participants (1556 women; 58.6 ± 9.8 years old) included. Questionnaires included subjective sleep duration, perceived sufficiency, regularity, the Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Morningness–Eveningness Questionnaire (MEQ), and Epworth Sleepiness Scale (ESS). Sleep measurements were taken via actigraphy for one week. In total, 247 (11.8%) respondents reported insufficient sleep and 953 (45.6%) reported somewhat insufficient sleep. Working-age adults had shorter subjective and measured sleep durations than those aged ≥ 60 years. About 20% of those aged ≥ 50 years and more than 30% of those aged < 50 years reported ≥2 h of sleep deprivation. Perceived insufficient sleep was associated with irregular sleep but not sleep efficiency or sleep latency. Additionally, sleep duration perceived as insufficient varied among individuals. Individual differences in sleep duration and sleep efficiency were greater than those based on age. In conclusion, implementing measures to address sleep deprivation in Japan’s working-age population are essential, and future epidemiological studies should consider individual differences. Full article
(This article belongs to the Special Issue Exploring the Link—Better Sleep Equals Better Health)
Show Figures

Figure 1

24 pages, 1271 KB  
Article
Unlocking Pomegranate’s Potential: Ultrasonication-Enriched Oil in Nanobeads for Innovative Cosmetic Hydrogels
by Ameni Ben Abdennebi, Iness Bettaieb Rebey, Rym Essid, Majdi Hammami, Hamza Gadhoumi, Raghda Yazidi, Emna Chaabani, Saber Khammessi, Salma Nait Mohamed, Walid Yeddes and Moufida Saidani-Tounsi
Cosmetics 2025, 12(5), 180; https://doi.org/10.3390/cosmetics12050180 - 25 Aug 2025
Viewed by 1065
Abstract
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using [...] Read more.
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using optimized ultrasonication, followed by encapsulation in alginate nanobeads and integration into a minimalist hydrogel formulation. A Box–Behnken experimental design was employed to optimize ultrasonication parameters (15 min, 90% power, 202 mg/mL powder-to-oil ratio), yielding an enriched PSO with significantly enhanced total phenolic content (TPC: 69.23 ± 1.66 mg GAE/g), total flavonoid content (TFC: 61.09 ± 1.66 mg QE/g), and robust DPPH antioxidant activity (78.63 ± 3.81%). The enriched oil exhibited enhanced oxidative stability (peroxide value: 5.75 ± 0.30 meq O2/kg vs. 50.95 ± 0.07 meq O2/kg for neutral oil), improved fatty acid profile, and significant anti-inflammatory (IC50 = 897.25 µg/mL for NO inhibition) and antibacterial activities. Alginate nanobeads (432.46 ± 12.59 nm, zeta potential: −30.74 ± 3.20 mV) ensured bioactivity preservation, while the hydrogel maintained physicochemical and microbial stability over 60 days under accelerated conditions (40 ± 2 °C, 75 ± 5% RH). This multifunctional formulation, integrating sustainable extraction, advanced encapsulation, and a minimalist delivery system, represents a highly promising natural ingredient for anti-aging and antioxidant cosmetic applications. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Design, Production and Quality Assessment of Antioxidant-Enriched Olive Paste Dips Using Agro-Food By-Products
by Efimia Dermesonlouoglou, Athanasios Limnaios, Ioanna Bouskou, Athina Ntzimani, Maria Tsevdou and Petros Taoukis
Molecules 2025, 30(17), 3459; https://doi.org/10.3390/molecules30173459 - 22 Aug 2025
Viewed by 762
Abstract
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were [...] Read more.
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were extracted from tomato and olive pomace, respectively. For further enrichment, BACs were incorporated in olive paste dips into a second product (OPDEnr) in encapsulated form (Product 2: OPDEnr). The total carotenoids (TC) of OPD and OPDEnr were 20.0 ± 2.0 and 30.2 ± 1.0 mg/kg, respectively. Similarly, the total phenolic content (TPC) and the antioxidant activity (AA) were 1.62 ± 0.08 and 3.05 ± 0.10 mg GAE/g, and 0.801 ± 0.075 and 0.976 ± 0.032 mg Trolox/g, respectively. The quality of the developed olive paste dip product prototypes was assessed using the Accelerated Shelf Life Testing (ASLT) methodology at a temperature range of 20–40 °C. Both OPDEnr and OPD were microbiologically stable during storage (i.e., not exceeding 4 logCFU/g for total mesophilic counts), and no lipid oxidation evolution was observed (Peroxide Value, PV did not exceed 4 meq O2/kg), while TC, TPC and AA values remained stable. The shelf life of OPDEnr and OPD was determined based on the overall sensory quality and was found to be 120 and 211 d at 25 °C, respectively. OPDEnr and OPD were characterized by a high quality (color and texture), with an overall sensory score of 8.0/9.0 and 9.0/9.0, respectively, in the acceptability–hedonic scale 1 (dislike extremely)-9 (like extremely), and they could potentially be consumed as an antioxidant-enriched olive paste dip. Full article
Show Figures

Figure 1

23 pages, 1339 KB  
Article
Physico-Chemical and Antimicrobial Evaluation of Ozonated Olive Oil Produced with a Medical-Grade Generator for Veterinary Purposes
by Călin Cosmin Repciuc, Giulia-Ana-Maria Vișan, Bernadette-Emoke Teleky, Adela Pintea, Cristiana Ștefania Novac and Nicușor Valentin Oros
Microorganisms 2025, 13(8), 1932; https://doi.org/10.3390/microorganisms13081932 - 18 Aug 2025
Viewed by 720
Abstract
The search for broad-spectrum antimicrobial products that do not generate resistance upon multiple applications has led to increased scientific and clinical interest in ozonated oils. The aim of this preliminary study was to evaluate the physico-chemical structure and antimicrobial properties of 1–12 h [...] Read more.
The search for broad-spectrum antimicrobial products that do not generate resistance upon multiple applications has led to increased scientific and clinical interest in ozonated oils. The aim of this preliminary study was to evaluate the physico-chemical structure and antimicrobial properties of 1–12 h ozonated extra virgin olive oil produced in a veterinary clinic with a medical-grade generator. Prolonging the ozonation time causes a decrease in the iodine index, followed by significant increases in viscosity, acidity index, and peroxide values (p < 0.001). Other similar studies using industrial generators obtained satisfactory clinical results at peroxide values between 335 and 3590 mEq O2/Kg. Contrary to these established minimum thresholds, we found that ozonated olive oil with a peroxide index of 184 and 224 mEq O2/Kg exhibits fungicidal and bactericidal effects, demonstrating significant differences (p < 0.05) between tested and control samples for strains such as Staphylococcus aureus, E. faecalis, and E. coli. The 12 h ozonated oil showed itself to be efficient in the treatment of a 3-year-old cat presenting a chronic infected wound. The results encourage more detailed investigations of the antimicrobial effect of ozonated oils obtained with medical-grade generators and their evaluation on bacterial strains isolated from different individuals, followed by clinical evaluations and standardization. Full article
(This article belongs to the Special Issue Research on Antimicrobial Resistance and New Therapeutic Approaches)
Show Figures

Figure 1

13 pages, 1062 KB  
Article
Can the DSE Fungus Exserohilum rostratum Mitigate the Effect of Salinity on the Grass Chloris gayana?
by Natalia Elizabeth Tobar Gomez, Marcos Ameijeiras, Hernan E. Benitez, Federico N. Spagnoletti, Viviana M. Chiocchio and Raúl S. Lavado
Plants 2025, 14(16), 2537; https://doi.org/10.3390/plants14162537 - 15 Aug 2025
Cited by 1 | Viewed by 447
Abstract
Dark septate endophytes (DSEs) are commonly found in saline environments, such as the Flooding Pampas (Argentina), where the forage grass Chloris gayana has been introduced. This study evaluated the effect of salinity on the DSE fungus Exserohilum rostratum, isolated from C. gayana [...] Read more.
Dark septate endophytes (DSEs) are commonly found in saline environments, such as the Flooding Pampas (Argentina), where the forage grass Chloris gayana has been introduced. This study evaluated the effect of salinity on the DSE fungus Exserohilum rostratum, isolated from C. gayana, and its contribution to the grass’s salinity tolerance. Two greenhouse experiments were conducted under three salinity levels (0, 40, and 80 meq Na·L−1), with and without fungal inoculation. Fungal growth, root colonization, functional traits, plant biomass, chemical composition, and salinity tolerance indices were assessed. The fungus tolerated salinity and colonized roots, showing qualitative evidence of enzyme production and phosphate solubilization. In both experiments, shoot and root biomass decreased with increasing salinity. Inoculation significantly enhanced shoot biomass only under non-saline conditions in the first experiment, whereas in the second experiment no inoculation effect was observed on shoots. For roots, no effect of inoculation occurred in the first experiment, but a positive interaction between salinity and inoculation was recorded in the second experiment, where moderate salinity increased root biomass in inoculated plants. The K/Na and Ca/Na ratios decreased under salinity regardless of inoculation, indicating limited influence on ionic balance. These results suggest that although E. rostratum tolerates salinity and expresses functional traits, its ability to enhance plant performance under stress is context-dependent and restricted to specific conditions. Full article
Show Figures

Figure 1

Back to TopTop