Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = MoTe2 nanosheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 13828 KB  
Article
Printable and Flexible Humidity Sensor Based on Graphene -Oxide-Supported MoTe2 Nanosheets for Multifunctional Applications
by Lei Ni, Xiaoyu Li, Fangkai Cai, Zhicheng Dong, Yuhong Deng, Tao Jiang, Zhengyang Su, Hao Chang, Zhongwen Zhang and Yang Luo
Nanomaterials 2023, 13(8), 1309; https://doi.org/10.3390/nano13081309 - 7 Apr 2023
Cited by 14 | Viewed by 2820
Abstract
This study focuses on a novel humidity sensor composed of graphene-oxide (GO)-supported MoTe2 nanosheets. Conductive Ag electrodes were formed on PET substrates by inkjet printing. A thin film of GO-MoTe2 was deposited on the Ag electrode used for adsorbing humidity. The [...] Read more.
This study focuses on a novel humidity sensor composed of graphene-oxide (GO)-supported MoTe2 nanosheets. Conductive Ag electrodes were formed on PET substrates by inkjet printing. A thin film of GO-MoTe2 was deposited on the Ag electrode used for adsorbing humidity. The experiment’s results demonstrate that MoTe2 are attached to GO nanosheets uniformly and tightly. The capacitive output of the sensors with various ratios of GO/MoTe2 has been tested for different levels of humidity (11.3–97.3%RH) at room temperature (25 °C). As a consequence, the obtained hybrid film exhibits superior sensitivity (94.12 pF/%RH). The structural integrity and interaction of different components were discussed to afford the prominent humidity sensitivity performance. Under the bending condition, the output curve of the sensor has no obvious fluctuation. This work provides a low-cost way to build flexible humidity sensors with high-performance in environmental monitoring and healthcare. Full article
(This article belongs to the Special Issue Advanced Nanocomposites for Sensing Applications)
Show Figures

Figure 1

11 pages, 2573 KB  
Article
Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber
by Bo Guo, Xinyu Guo, Renlai Zhou, Zhongyao Ren, Qiumei Chen, Ruochen Xu and Wenbin Luo
Nanomaterials 2023, 13(1), 177; https://doi.org/10.3390/nano13010177 - 30 Dec 2022
Cited by 13 | Viewed by 2518
Abstract
Bound solitons have become a hot topic in the field of nonlinear optics due to their potential applications in optical communication, information processing and radar systems. However, the trapping of the cascaded bound soliton is still a major challenge up to now. Here, [...] Read more.
Bound solitons have become a hot topic in the field of nonlinear optics due to their potential applications in optical communication, information processing and radar systems. However, the trapping of the cascaded bound soliton is still a major challenge up to now. Here, we propose and experimentally demonstrate a multi-pulse bound soliton fiber laser based on MoTe2 saturable absorber. In the experiment, MoTe2 nanosheets were synthesized by chemical vapor deposition and transferred to the fiber taper by optical deposition. Then, by inserting the MoTe2 saturable absorber into a ring cavity laser, the two-pulse, three-pulse and four-pulse bound solitons can be stably generated by properly adjusting the pump strength and polarization state. These cascaded bound solitons are expected to be applied to all-optical communication and bring new ideas to the study of soliton lasers. Full article
(This article belongs to the Special Issue Advanced Fiber Laser)
Show Figures

Figure 1

14 pages, 4048 KB  
Article
Gas Sensitive Characteristics of Polyaniline Decorated with Molybdenum Ditelluride Nanosheets
by Xinpeng Chen, Xiangdong Chen, Xing Ding and Xiang Yu
Chemosensors 2022, 10(7), 264; https://doi.org/10.3390/chemosensors10070264 - 6 Jul 2022
Cited by 14 | Viewed by 2437
Abstract
In this work, hydrochloric acid (HCl)-doped molybdenum ditelluride (MoTe2) nanosheets/polyaniline (PANI) nanofiber composites are prepared by in situ chemical oxidation polymerization, and then the composites are deposited on interdigital electrodes (IDEs) to fabricate a NH3 gas sensor. Morphological analysis of [...] Read more.
In this work, hydrochloric acid (HCl)-doped molybdenum ditelluride (MoTe2) nanosheets/polyaniline (PANI) nanofiber composites are prepared by in situ chemical oxidation polymerization, and then the composites are deposited on interdigital electrodes (IDEs) to fabricate a NH3 gas sensor. Morphological analysis of the composites reveals that the PANI fibers are deposited on 2D MoTe2 sheets, showing a porous mesh microstructure structure with a more continuous distribution of PANI layer. FTIR spectrum analysis indicates the interaction between the MoTe2 nanosheets and the PANI in the MoTe2/PANI composites. The results demonstrate that the as-prepared MoTe2/PANI composites exhibit higher response than the pure PANI, in particular, the 8 wt.% MoTe2/PANI composites display about 4.23 times enhancement in response value toward 1000 ppm NH3 gas compared with the pure PANI. The enhanced NH3 gas-sensitive properties may be due to the increasing surface area of MoTe2/PANI composite films and the possible interaction of the P-N heterojunctions formed between PANI and the 2H-MoTe2 nanosheets. Full article
Show Figures

Figure 1

23 pages, 4478 KB  
Review
Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules
by Rayhane Zribi and Giovanni Neri
Sensors 2020, 20(18), 5404; https://doi.org/10.3390/s20185404 - 21 Sep 2020
Cited by 24 | Viewed by 4703
Abstract
Mo-based layered nanostructures are two-dimensional (2D) nanomaterials with outstanding characteristics and very promising electrochemical properties. These materials comprise nanosheets of molybdenum (Mo) oxides (MoO2 and MoO3), dichalcogenides (MoS2, MoSe2, MoTe2), and carbides (MoC2 [...] Read more.
Mo-based layered nanostructures are two-dimensional (2D) nanomaterials with outstanding characteristics and very promising electrochemical properties. These materials comprise nanosheets of molybdenum (Mo) oxides (MoO2 and MoO3), dichalcogenides (MoS2, MoSe2, MoTe2), and carbides (MoC2), which find application in electrochemical devices for energy storage and generation. In this feature paper, we present the most relevant characteristics of such Mo-based layered compounds and their use as electrode materials in electrochemical sensors. In particular, the aspects related to synthesis methods, structural and electronic characteristics, and the relevant electrochemical properties, together with applications in the specific field of electrochemical biomolecule sensing, are reviewed. The main features, along with the current status, trends, and potentialities for biomedical sensing applications, are described, highlighting the peculiar properties of Mo-based 2D-nanomaterials in this field. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop