Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Mode Division Multiplexing (MDM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3753 KB  
Article
Design and Characteristic Study of Terahertz Photonic Crystal Fiber for Orbital Angular Momentum Modes
by Jingxuan Yang and Wei Li
Photonics 2025, 12(9), 881; https://doi.org/10.3390/photonics12090881 - 31 Aug 2025
Viewed by 636
Abstract
In this paper, we design a new type of terahertz orbital angular momentum (OAM) optical fiber with excellent transmission characteristics over a wide frequency range. Within the 0.8–1.8 THz frequency band, it shows stable support for transmission of the fifth-order OAM mode. Its [...] Read more.
In this paper, we design a new type of terahertz orbital angular momentum (OAM) optical fiber with excellent transmission characteristics over a wide frequency range. Within the 0.8–1.8 THz frequency band, it shows stable support for transmission of the fifth-order OAM mode. Its dispersion control effect is excellent; it maintains the confinement loss of most modes at the extremely low level of 10−10 dB/m; its maximum dispersion is only 5.57 ps/THz/cm; and its effective mode field area is greater than 1.11 × 10−7 m2. These characteristics jointly endow this optical fiber with broad application prospects and significant research value in the field of terahertz communication. With the continuous advancement of technology in this field, this optical fiber is expected to become a key component when building efficient, reliable, and large-capacity communication systems. Full article
Show Figures

Figure 1

13 pages, 2078 KB  
Article
Concentric Intensity-Based Adjacent OAM Mode Separation for High-Efficiency Free-Space Optical Spatial Multiplexing
by Ji-Yung Lee, Jiyeon Baek, Junsu Kim, Sujan Rajbhandari, Seung Ryong Park and Hyunchae Chun
Appl. Sci. 2025, 15(16), 8949; https://doi.org/10.3390/app15168949 - 13 Aug 2025
Viewed by 561
Abstract
The rapid growth of data traffic in modern communication networks has led to the development of advanced high-capacity multiplexing methods. Orbital angular momentum (OAM)–based mode division multiplexing (MDM) offers a promising scheme by utilizing the orthogonality of helical phase modes to transmit independent [...] Read more.
The rapid growth of data traffic in modern communication networks has led to the development of advanced high-capacity multiplexing methods. Orbital angular momentum (OAM)–based mode division multiplexing (MDM) offers a promising scheme by utilizing the orthogonality of helical phase modes to transmit independent data streams simultaneously. In this work, we introduce a novel adjacent mode separation method exploiting OAM’s concentric intensity characteristics for free-space optical (FSO) spatial multiplexing. This method enables the detection of each OAM channel based on its distinctive ring-shaped intensity distribution, contrary to the conventional on-axis phase flattening approach. Two spatially multiplexed signals with different modes are separated by aligning its concentric intensity ring with the active area of an avalanche photodiode (APD), effectively suppressing crosstalk from adjacent modes. Experimental measurements demonstrate that our method achieves a bit-error-rate (BER) performance not exceeding the forward error correction (FEC) threshold, 3.8×103, at up to 160 Mbps of data rate, while the conventional detection scheme fails beyond 5 Mbps. The analysis of the eye diagram confirms that our concentric-ring demultiplexing system achieves a high signal-to-noise ratio (SNR) and mode selectivity. These results support the feasibility of the proposed concentric intensity-based mode separation methodology for constructing compact, high-throughput OAM-multiplexed FSO links. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

12 pages, 2993 KB  
Article
Integrated Multiband-Mode Multiplexing Photonic Lantern for Selective Mode Excitation and Preservation
by Li Zhao, Ting Yu, Yunhao Chen and Jianing Tang
Photonics 2025, 12(7), 729; https://doi.org/10.3390/photonics12070729 - 17 Jul 2025
Cited by 1 | Viewed by 501
Abstract
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three [...] Read more.
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three 980 nm single-mode fibers (SMFs) and two few-mode fibers (FMFs) operating at 1310 nm and 1550 nm, respectively. Simulations verify that 980 nm input signals can selectively excite LP01, LP11a, and LP11b modes at the FMF output, while the modal integrity of high-order linear polarized modes is preserved at 1310 nm and 1550 nm. The fabricated IM3PL device is experimentally validated via near-field pattern measurements, confirming the selective excitation at 980 nm and low-loss, mode-preserving transmission at the signal bands. This work offers a scalable and reconfigurable solution for multiband high-order-mode multiplexing, with promising applications in mode-division multiplexed fiber communication systems and multiband high-mode fiber lasers. Full article
Show Figures

Figure 1

18 pages, 4683 KB  
Article
Transmission of LG Modes in High-Capacity 16 × 10 Gbps FSO System Using FBG Sensors Under Different Channel Scenarios
by Meet Kumari and Satyendra K. Mishra
Micromachines 2025, 16(7), 738; https://doi.org/10.3390/mi16070738 - 24 Jun 2025
Viewed by 849
Abstract
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, [...] Read more.
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, a 16 × 10 Gbps MDM-FSO system using fiber Bragg grating (FBG) sensors for the coexistence of communication and sensing, exploiting FSO links to transmit distinct Laguerre-Gaussian (LG) beams at a 1000–1900 m range, is proposed. The results illustrate that the system can transmit higher-order LG beams with sensor temperatures of 20–120 °C over a 1500 m range under clear air, drizzle, and moderate haze weather. Also, an improved performance is achieved in gamma–gamma compared to the log-normal distribution model for 10−6–10−2.5 index modulation under weak-to-strong turbulence. The proposed system is capable of offering a high optical signal-to-noise ratio (OSNR) and gain of 113.39 and 15.43 dB, respectively, at an aggregate data rate of 160 Gbps under different atmospheric scenarios. Moreover, the proposed system achieves better system performance compared to existing works. Full article
Show Figures

Figure 1

12 pages, 4233 KB  
Article
L-Band Erbium-Doped Fiber Optimization and Transmission Investigation
by Kaihua Hu, Li Pei, Jianshuai Wang, Zhouyi Hu, Wenxuan Xu, Long Zhang, Jing Li and Li Zhong
Photonics 2025, 12(5), 480; https://doi.org/10.3390/photonics12050480 - 13 May 2025
Viewed by 791
Abstract
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division [...] Read more.
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division multiplexing (MDM) method has been applied to increase the number of channels. However, the few-mode erbium-doped fiber amplifier must be redesigned to overcome the power differences among channels. In this work, a few-mode erbium-doped fiber (FM-EDF) is optimized and manufactured. Then, an in-line gain-equalized L-band FM-EDFA is constructed. The experimental results show that the FM-EDFA works well in the wavelength range between 1575 nm and 1610 nm. The minimum differential modal gain (DMG) is 0.54 dB, and the maximum modal gain is 22.22 dB. Due to the excellent performance of the L-band FM-EDFA, a DSP-free transmission scheme in the L-band is demonstrated. The bit error rates (BERs) of each channel are below 1 × 10−5 with a DSP-free receiver. Full article
(This article belongs to the Special Issue Optical Fiber Amplifiers and Their Applications)
Show Figures

Graphical abstract

17 pages, 5879 KB  
Article
Modeling and Performance Analysis of MDM−WDM FSO Link Using DP-QPSK Modulation Under Real Weather Conditions
by Tanmeet Kaur, Sanmukh Kaur and Muhammad Ijaz
Telecom 2025, 6(2), 29; https://doi.org/10.3390/telecom6020029 - 22 Apr 2025
Viewed by 1019
Abstract
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link [...] Read more.
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link as a result of aggregate attenuation caused by different weather conditions in a region. In the present work, empirical models have been derived in terms of visibility, considering fog, haze, and cloud conditions of diverse geographical regions of Delhi, Washington, London, and Cape Town. Mean square error (MSE) and goodness of fit (R squared) have been employed as measures for estimating model performance. The dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique has been employed with hybrid mode and the wave division multiplexing (MDM-WDM) scheme for analyzing the performance of the FSO link with two Laguerre Gaussian modes (LG00 and LG 01) at 5 different wavelengths from 1550 nm to 1554 nm. The performance of the system has been analyzed in terms of received power and signal to noise ratio with respect to the transmission range of the link. Minimum received power and SNR values of −52 dBm and −33 dB have been obtained over the observed transmission range as a result of multiple impairments. Random forest (RF), k-nearest neighbors (KNN), multi-layer perceptron (MLP), gradient boosting (GB), and machine learning (ML) techniques have also been employed for estimating the SNR of the received signal. The maximum R squared (0.99) and minimum MSE (0.11), MAE (0.25), and RMSE (0.33) values have been reported in the case of the GB model, compared to other ML techniques, resulting in the best fit model. Full article
Show Figures

Figure 1

17 pages, 956 KB  
Article
Digital Frequency-Domain MIMO Equalizer Enabling Six-LP-Mode Strong-Coupling IM/DD MDM Optical Transmission System
by Jianyu Long, Chen Wang, Ying Wu, Bohan Sang, Chengzhen Bian, Xiongwei Yang, Long Zhang, Yifan Chen, Qinyi Zhang, Ying Wang, Yichen Li, Wen Zhou, Kaihui Wang, Bo Liu, Lei Shen and Jianjun Yu
Sensors 2025, 25(8), 2562; https://doi.org/10.3390/s25082562 - 18 Apr 2025
Viewed by 738
Abstract
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received [...] Read more.
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received signals, two approaches have been explored to address this issue: one involves the application of all-link weakly coupled components to suppress modal crosstalk, while the other utilizes optical multiple-input–multiple-output (MIMO) equalizers based on optical devices for signal decoupling. However, pure digital signal processing (DSP)-based schemes for mode decoupling in IM/DD MDM systems with strong mode coupling remain unexplored. In this paper, we propose to use a frequency-domain MIMO equalizer for compensating the modal interference in the strong-coupling linear-polarized (LP) MDM IM/DD system. The signal recovery capability of the proposed method is verified through numerical simulation. Finally, we successfully experimentally demonstrate the transmission of on–off-key (OOK) signals in a six-LP-mode strong-coupling MDM IM/DD system over a 10 km few-mode fiber, employing a pair of strong-coupling mode multiplexers/demultiplexers. The experimental results indicate that, with the frequency-domain MIMO equalizer, OOK signals from all modes can be recovered with an 11% hard-decision forward error correction threshold of 8.3 × 103. The proposed method facilitated by flexible DSP software offers an alternative for short-reach communication systems and has the potential to advance the practical application of MDM techniques in the future. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

18 pages, 4345 KB  
Article
Performance Optimization of 120 Gbps–120 GHz Hybrid MDM-FSO Utilizing Non-Coherent Modified Duobinary Modulations for Optical Wireless Distributed Networks
by Rabiu I. Sabitu and Amin Malek
Appl. Sci. 2025, 15(7), 3659; https://doi.org/10.3390/app15073659 - 26 Mar 2025
Viewed by 1676
Abstract
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The [...] Read more.
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The study also includes the parametric optimization of various components to enhance system performance. The findings are significant for achieving high data rate links for backhaul solutions and improving bandwidth for future MDM-based wireless distributed networks. The research shows that employing three linearly polarized modes as data transmission channels with direct detection can be effective. Additionally, it is discovered that adjusting the bias voltages of the two LiNbO3 modulators can improve power sharing between the modes, thereby mitigating the power penalty. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

11 pages, 2029 KB  
Communication
Efficient Frequency-Domain Block Equalization for Mode-Division Multiplexing Systems
by Yifan Shen, Jianyong Zhang, Shuchao Mi, Guofang Fan and Muguang Wang
Photonics 2025, 12(2), 161; https://doi.org/10.3390/photonics12020161 - 17 Feb 2025
Viewed by 718
Abstract
In this paper, an adaptive frequency-domain block equalizer (FDBE) implementing the adaptive moment estimation (Adam) algorithm is proposed for mode-division multiplexing (MDM) optical fiber communication systems. By packing all frequency components into frequency-dependent blocks of a specified size B, we define an [...] Read more.
In this paper, an adaptive frequency-domain block equalizer (FDBE) implementing the adaptive moment estimation (Adam) algorithm is proposed for mode-division multiplexing (MDM) optical fiber communication systems. By packing all frequency components into frequency-dependent blocks of a specified size B, we define an adaptive equalization matrix to simultaneously compensate for multiple frequency components at each block, which is computed iteratively using the Adam, recursive least squares (RLS) and least mean squares (LMS) algorithms. Simulations show that the proposed FDBE using the Adam algorithm outperforms those using the LMS and RLS algorithms in terms of adaptation speed and symbol error rate (SER) performance. The FDBE using the Adam algorithm with B=1 has the fastest adaption time, requiring about ntr=100 and ntr=900 less training blocks than the RLS algorithm at the SER of 3.8×103 for the accumulated mode-dependent loss (MDL) of ξ=1 dB and ξ=5 dB, respectively. The Adam algorithm with B=16 and B=8 has 0.4 dB and 0.3 dB SNR better than the RLS algorithm with B=4 for MDL and ξ=1 dB and ξ=55 dB, respectively. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

12 pages, 2882 KB  
Article
Enhancing Sustainable Transportation with Advancements in Photonic Radar Technology with MIMO and IIR Filtering for Adverse Weather Conditions
by Sushank Chaudhary, Abhishek Sharma, Qirui Li, Yahui Meng and Jyoteesh Malhotra
Sustainability 2024, 16(13), 5426; https://doi.org/10.3390/su16135426 - 26 Jun 2024
Cited by 9 | Viewed by 1906
Abstract
Sustainable transportation is crucial in addressing global road safety and environmental challenges. This study introduces a novel photonic radar system, leveraging Linear Frequency-Modulated Continuous Wave (LFMCW) technology for high-speed data transmission. Operating in a homodyne configuration, this system uses a single oscillator to [...] Read more.
Sustainable transportation is crucial in addressing global road safety and environmental challenges. This study introduces a novel photonic radar system, leveraging Linear Frequency-Modulated Continuous Wave (LFMCW) technology for high-speed data transmission. Operating in a homodyne configuration, this system uses a single oscillator to generate both signal and reference waveforms. It incorporates mode division multiplexing (MDM) to enable the detection and ranging of multiple targets, even under adverse atmospheric conditions. To counter atmospheric attenuation, the system is equipped with a 2 × 2 MIMO technique and an Infinite Impulse Response (IIR) filter. Numerical simulations demonstrate the system’s superior performance in range resolution and target detection, achieving significant power improvements. The IIR filter further enhances detection, achieving a power improvement of 200% for target 1 and 276% for target 2. With low power requirements and enhancement through IIR filter equalization, this system presents a viable option for battery-operated vehicles. This innovative approach offers a low-power high-efficiency solution suitable for battery-operated vehicles, promoting safer and more reliable sustainable transportation. Full article
Show Figures

Figure 1

8 pages, 4038 KB  
Communication
PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator
by Jiaqi Liang, Daming Zhang, Xinyu Lv, Guoyan Zeng, Pai Cheng, Yuexin Yin, Xiaoqiang Sun and Fei Wang
Micromachines 2024, 15(6), 792; https://doi.org/10.3390/mi15060792 - 16 Jun 2024
Viewed by 1395
Abstract
The mode rotator is an important component in a PLC-based mode-division multiplexing (MDM) system, which is used to implement high-order modes with vertical intensity peaks, such as LP11b mode conversions from LP11a in PLC chips. In this paper, an LP11 [...] Read more.
The mode rotator is an important component in a PLC-based mode-division multiplexing (MDM) system, which is used to implement high-order modes with vertical intensity peaks, such as LP11b mode conversions from LP11a in PLC chips. In this paper, an LP11 mode rotator based on a polymer/silica hybrid inverted ridge waveguide is demonstrated. The proposed mode rotator is composed of an asymmetrical waveguide with a trench. According to the simulation results, the broadband conversion efficiency between the LP11a and LP11b modes is greater than 98.5%, covering the C-band after optimization. The highest mode conversion efficiency (MCE) is 99.2% at 1550 nm. The large fabrication tolerance of the proposed rotator enables its wide application in on-chip MDM systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 6713 KB  
Article
Advanced Various Fault Detection Scheme for Long-Reach Mode Division Multiplexing Transmission
by Feng Liu, Zicheng Huang and Tianle Gu
Photonics 2024, 11(6), 523; https://doi.org/10.3390/photonics11060523 - 30 May 2024
Viewed by 923
Abstract
This paper presents a few-mode fiber (FMF) various fault-detection method for long-reach mode division multiplexing (MDM) based on multi-mode transmission reflection analysis (MM-TRA). By injecting unmodulated continuous light into the FMF, and measuring and quantitatively analyzing the transmitted and reflected or Rayleigh backscattering [...] Read more.
This paper presents a few-mode fiber (FMF) various fault-detection method for long-reach mode division multiplexing (MDM) based on multi-mode transmission reflection analysis (MM-TRA). By injecting unmodulated continuous light into the FMF, and measuring and quantitatively analyzing the transmitted and reflected or Rayleigh backscattering power of different spatial modes, it is possible to accurately detect and locate reflective and non-reflective fault events. This paper discusses the localization accuracy of fault types such as FMF break, FMF link connector mismatch, and FMF bending. Theoretical analysis and simulation experimental results demonstrate that the proposed MM-TRA can provide an effective characterization of various faults and can achieve high fault localization accuracy. In addition, the influence of mode crosstalk of mode multiplexer/demultiplexer and mode coupling in FMF on the localization accuracy of various faults are considered. The results indicate that when using the combination of LP01 and LP21 modes, the localization errors for the FMF break, connector mismatch, and bending are 3.42 m, 1.97 m, and 3.29 m, respectively, demonstrating good fault localization performance. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

10 pages, 3166 KB  
Article
All-Fiber Low-Modal-Crosstalk Demultiplexers for DSP-Free IM/DD LP-Mode MDM Transmission
by Yuyang Gao, Jian Cui, Xian Zhou, Zhangyuan Chen and Juhao Li
Photonics 2024, 11(3), 271; https://doi.org/10.3390/photonics11030271 - 19 Mar 2024
Cited by 1 | Viewed by 1539
Abstract
Weakly coupled mode-division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission are promising methods of enhancing the capacity of short-reach scenarios in which low-modal-crosstalk-mode demultiplexers for degenerate linear polarized (LP) modes are highly desired. In this paper, we review two [...] Read more.
Weakly coupled mode-division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission are promising methods of enhancing the capacity of short-reach scenarios in which low-modal-crosstalk-mode demultiplexers for degenerate linear polarized (LP) modes are highly desired. In this paper, we review two degenerate-mode reception schemes. Firstly, a low-modal-crosstalk orthogonal combined reception method for degenerate modes is proposed based on all-fiber mode-selective couplers, in which signals in both degenerate modes are demultiplexed into the LP01 mode of single-mode fibers and then are multiplexed into the mutually orthogonal LP01 and LP11 modes of a two-mode fiber (TMF) for simultaneous detection. Secondly, a novel degenerate-mode-selective coupler consisting of an input few-mode fiber and an output TMF is proposed, which could demultiplex degenerate LP modes without any digital signal processing (DSP). Both demultiplexers are achieved based on the taper and polish process. The fabricated devices are characterized and compared. The results show that the proposed schemes can pave the way to the practical implementation of DSP-free IM/DD LP-mode MDM transmission systems. Full article
(This article belongs to the Special Issue Space Division Multiplexing Techniques)
Show Figures

Figure 1

15 pages, 3321 KB  
Article
Target Detection in Challenging Environments: Photonic Radar with a Hybrid Multiplexing Scheme for 5G Autonomous Vehicles
by Sushank Chaudhary, Abhishek Sharma, Muhammad Ali Naeem and Yahui Meng
Sustainability 2024, 16(3), 991; https://doi.org/10.3390/su16030991 - 23 Jan 2024
Cited by 6 | Viewed by 2538
Abstract
The rapid deployment of 5G autonomous vehicles has placed a premium on low-latency communication and reliable sensor technologies for the real-time mapping of road conditions, aligning with sustainability objectives in transport. In response to this imperative, photonic-based radar systems have emerged as an [...] Read more.
The rapid deployment of 5G autonomous vehicles has placed a premium on low-latency communication and reliable sensor technologies for the real-time mapping of road conditions, aligning with sustainability objectives in transport. In response to this imperative, photonic-based radar systems have emerged as an increasingly attractive solution, characterized by their low power consumption and cost-effectiveness. This study delves into the application of linear frequency-modulated continuous wave (FMCW) techniques within photonic radar sensors for the precise detection of multiple targets. Our proposed system seamlessly integrates mode-division multiplexing (MDM) and polarization-division multiplexing (PDM) to achieve a robust target detection capability, contributing to sustainable traffic management. To assess its effectiveness, we rigorously evaluated the system’s performance under challenging conditions, marked by a high atmospheric attenuation of 75 dB/km and a low material reflectivity of 20%. Our results unequivocally demonstrate the efficacy of the MDM-PDM photonic radar in successfully detecting all four specified targets, underscoring its potential to enhance road safety in the realm of autonomous vehicles. The adoption of this technology supports sustainable mobility by mitigating human errors and optimizing the real-time mapping of road conditions. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

15 pages, 5777 KB  
Article
Experimental Dataset of Tunable Mode Converter Based on Long-Period Fiber Gratings Written in Few-Mode Fiber: Impacts of Thermal, Wavelength, and Polarization Variations
by Juan Soto-Perdomo, Erick Reyes-Vera, Jorge Montoya-Cardona and Pedro Torres
Data 2024, 9(1), 10; https://doi.org/10.3390/data9010010 - 31 Dec 2023
Cited by 1 | Viewed by 2440
Abstract
Mode division multiplexing (MDM) is currently one of the most attractive multiplexing techniques in optical communications, as it allows for an increase in the number of channels available for data transmission. Optical modal converters are one of the main devices used in this [...] Read more.
Mode division multiplexing (MDM) is currently one of the most attractive multiplexing techniques in optical communications, as it allows for an increase in the number of channels available for data transmission. Optical modal converters are one of the main devices used in this technique. Therefore, the characterization and improvement of these devices are of great current interest. In this work, we present a dataset of 49,736 near-field intensity images of a modal converter based on a long-period fiber grating (LPFG) written on a few-mode fiber (FMF). This characterization was performed experimentally at various wavelengths, polarizations, and temperature conditions when the device converted from LP01 mode to LP11 mode. The results show that the modal converter can be tuned by adjusting these parameters, and that its operation is optimal under specific circumstances which have a great impact on its performance. Additionally, the potential application of the database is validated in this work. A modal decomposition technique based on the particle swarm algorithm (PSO) was employed as a tool for determining the most effective combinations of modal weights and relative phases from the spatial distributions collected in the dataset. The proposed dataset can open up new opportunities for researchers working on image segmentation, detection, and classification problems related to MDM technology. In addition, we implement novel artificial intelligence techniques that can help in finding the optimal operating conditions for this type of device. Full article
Show Figures

Figure 1

Back to TopTop