Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,196)

Search Parameters:
Keywords = N concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4629 KB  
Article
Mandragora autumnalis: Phytochemical Composition, Antioxidant and Anti-Cancerous Bioactivities on Triple-Negative Breast Cancer Cells
by Ghosoon Albahri, Adnan Badran, Heba Hellany, Serine Baydoun, Rola Abdallah, Mohamad Alame, Akram Hijazi, Marc Maresca and Elias Baydoun
Int. J. Mol. Sci. 2025, 26(17), 8506; https://doi.org/10.3390/ijms26178506 (registering DOI) - 1 Sep 2025
Abstract
Breast cancer is a common and chronic condition, and despite improvements in diagnosis, treatment, and prevention, the number of cases of breast cancer is rising annually. New therapeutic drugs that target specific checkpoints should be created to fight breast cancer. Mandragora autumnalis possesses [...] Read more.
Breast cancer is a common and chronic condition, and despite improvements in diagnosis, treatment, and prevention, the number of cases of breast cancer is rising annually. New therapeutic drugs that target specific checkpoints should be created to fight breast cancer. Mandragora autumnalis possesses substantial cultural value as a herb and is regarded as one of the most significant medicinal plants; however, little is known about its anticancerous biological activity and chemopreventive molecular pathways against the triple-negative breast cancer (MDA-MB-231) cell line. In this study, the antioxidant, anticancer, and underlying molecular mechanisms of the Mandragora autumnalis ethanolic leaves extract (MAE) were evaluated, and its phytochemical composition was determined. Results indicated that MAE diminished the viability of MDA-MB-231 cells in a concentration- and time-dependent manner. Although MAE exhibited 55% radical scavenging activity at higher concentrations in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the attenuation of its cytotoxic effects in MDA-MB-231 cells with N-acetylcysteine (NAC) co-treatment suggests a potential role of oxidative stress. Additionally, MAE caused an increase in the tumor suppressor p53. Moreover, this extract caused a significant decrease in the expression of Ki-67 (a cellular proliferation marker), MMP-9 (matrix metalloproteinase-9, an enzyme involved in extracellular matrix degradation and metastasis), and STAT-3 (a transcription factor regulating cell growth and survival). Also, MAE altered cell cycle, cell migration, angiogenesis, invasion, aggregation, and adhesion to suppress cellular processes linked to metastasis. All of our research points to MAE’s potential to function as an anticancer agent and opens up new possibilities for the development of innovative triple-negative breast cancer treatments. Full article
Show Figures

Graphical abstract

20 pages, 1268 KB  
Article
An Iron-Dependent Alcohol Dehydrogenase Is Involved in Ethanol Metabolism of Aromatoleum aromaticum
by Yvonne Gemmecker, Iris Schall, Andreas Seubert, Nicole Paczia and Johann Heider
Reactions 2025, 6(3), 46; https://doi.org/10.3390/reactions6030046 (registering DOI) - 1 Sep 2025
Abstract
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of [...] Read more.
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of Fe, Zn, and Ni and a yet unidentified nucleotide-like cofactor, as indicated by mass spectrometric data. As suggested by its narrow substrate spectrum and complementation of a related species to growth on ethanol, the most probable physiological function of AdhB is the oxidation of short aliphatic alcohols such as ethanol or n-propanol. The enzyme also exhibits a very high tolerance to ethanol and n-propanol, showing moderately substrate-inhibited Michaelis–Menten kinetics up to concentrations of 20% (v/v). AdhB can also be applied biotechnologically to convert acetate to ethanol in coupled enzyme assays with the tungsten enzyme aldehyde oxidoreductase, showing activity with either another aldehyde or pre-reduced benzyl viologen as electron donors. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
23 pages, 5277 KB  
Article
Investigation of Phase Segregation in Highly Doped InP by Selective Electrochemical Etching
by Yana Suchikova, Sergii Kovachov, Ihor Bohdanov, Anatoli I. Popov, Zhakyp T. Karipbayev, Artem L. Kozlovskiy and Marina Konuhova
Technologies 2025, 13(9), 395; https://doi.org/10.3390/technologies13090395 (registering DOI) - 1 Sep 2025
Abstract
We demonstrate that selective electrochemical etching is a reliable method for detecting and observing the uneven concentration distribution of impurities in indium phosphide crystals, which accompanies the growth of highly doped crystals using the Czochralski method. Even though selective electrochemical etching, as a [...] Read more.
We demonstrate that selective electrochemical etching is a reliable method for detecting and observing the uneven concentration distribution of impurities in indium phosphide crystals, which accompanies the growth of highly doped crystals using the Czochralski method. Even though selective electrochemical etching, as a method of detecting defects in the crystal lattice, has been discussed many times in the literature, it has not yet been described for indium phosphide. In this work, we investigated etching in compositions of various selective electrolytes for InP of n- and p-type conductivity with different surface orientations. We present in detail the features of detecting the striped inhomogeneity of impurity distribution. The mechanisms and peculiarities of the formation of oxide crystallites on the surface of InP during electrochemical processing are presented, including structures like flower-like and parquet crystallites. The formation of porous surfaces, terraces, tracks, and crystallites is explained from the perspective of the defect-dislocation mechanism. Full article
(This article belongs to the Section Manufacturing Technology)
21 pages, 5424 KB  
Article
PPARγ Agonism Modulates Synovial Macrophage and Cartilage Responses in an Equine Model of Synovial Inflammation—Implications for Joint Therapy
by Slàine F. Chaimbeul, Nubia N. P. Rodrigues, Danny D. Thurston, Kirsten E. Scoggin, Jennifer Janes, Cale A. Jacobs, James N. MacLeod, Austin V. Stone and Bruno C. Menarim
Biomolecules 2025, 15(9), 1267; https://doi.org/10.3390/biom15091267 - 1 Sep 2025
Abstract
Synovitis resolution is critical for joint homeostasis and prevents the progression of osteoarthritis (OA). Treatments like NSAIDs and intra-articular corticosteroids relieve symptoms by blocking pro-inflammatory mediators, but also impair the production of pro-resolving mediators, contributing to the likelihood of chronic synovitis. PPARγ signaling [...] Read more.
Synovitis resolution is critical for joint homeostasis and prevents the progression of osteoarthritis (OA). Treatments like NSAIDs and intra-articular corticosteroids relieve symptoms by blocking pro-inflammatory mediators, but also impair the production of pro-resolving mediators, contributing to the likelihood of chronic synovitis. PPARγ signaling is an essential mechanism of synovitis resolution, which is decreased in OA tissues. To evaluate the potential of PPARγ agonists to promote pro-resolving pathways, equine macrophages cultured in autologous, normal, or inflamed synovial fluid (n = 10 horses) were treated with pioglitazone, geraniol, or both. Treatments modulated patterns of gene expression, increasing the expression of early drivers of resolution RELB and IL6, followed by increased NRF2 and PPARGC1A expression. Concentrations of TNF-α in conditioned synovial fluid significantly decreased as an early response to treatment, while IL10 concentrations also declined over time, suggesting increased tolerance to inflammatory stimuli and decreased compensatory feedback. Using an equine model of synovitis, intra-articular delivery of pioglitazone (n = 3 horses) or geraniol (n = 4 horses) was associated with decreased markers of synovium inflammation (geraniol) and enhanced cartilage proteoglycan preservation (geraniol and pioglitazone). In this small cohort of horses, no systemic or articular side effects were observed. Further studies optimizing treatment doses and regimens for intra-articular PPARγ agonism as a pro-resolving OA therapy are warranted. Full article
Show Figures

Figure 1

15 pages, 4009 KB  
Article
Towards the Potential of Using Downstream-Separated Solvents as the Pulping Liquor of Upstream Lignocellulose Fractionation for Enhanced Acetone–Butanol–Ethanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Hao Wen, Rui Chen, Jiajing Wang, Yujie Li, Mingyuan Sun, Jikang Cao and Di Cai
Fermentation 2025, 11(9), 514; https://doi.org/10.3390/fermentation11090514 (registering DOI) - 1 Sep 2025
Abstract
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient [...] Read more.
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient and economic closed-circuit clean fractionation of the lignocelluloses for biological acetone–butanol–ethanol (ABE) production. Parameters, including concentration and temperature of the organosolv pulping, were optimized systematically. Results indicated that the 50 wt% ethanol and 30 wt% acetone aqueous solutions and pulping at 200 °C for 1 h exhibited better corn stover fractionation performances with higher fermentable sugar production. The total monosaccharide recovery (including glucose and xylose) was 50.92% and 50.89%, respectively, in subsequent enzymatic saccharification. While pulping corn stover using n-butanol solution as initial liquor showed higher delignification 86.16% (50 wt% of n-butanol and 200 °C for 1 h), the hydrolysate obtained by the organosolv pulps always exhibited good fermentability. A maximized 15.0 g/L of ABE with 0.36 g/g of yield was obtained in Ethanol-200 °C-50% group, corresponding to 112 g of ABE production from 1 kg of raw corn stover. As expected, the lignin specimens fractionated by closed-circuit organosolv pulping exhibited narrow molecule weight distribution, high purity, and high preservation of active groups, which supports further valorization. This novel strategy tightly bridges the upstream and downstream processes of second-generation ABE production, providing a new route for ‘energy-matter intensive’ and environmentally friendly lignocelluloses biorefineries. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

10 pages, 655 KB  
Article
Comparative Effects of C3 and C4 Forages on Growth Performance, Digestibility, and Nitrogen Balance in Korean Crossbred Black Goats
by Xue-Cheng Jin, Seong-Jin Kim, Won-Young Lee, Hyun-Jung Park, Jeong-Sung Jung and Na-Yeon Kim
Animals 2025, 15(17), 2569; https://doi.org/10.3390/ani15172569 - 1 Sep 2025
Abstract
This study compared the effects of two C3 forages (Italian ryegrass [RG], Timothy grass [TG]) and two C4 forages (Klein grass [KG], Bermuda grass [BG]) on growth performance, nutrient digestibility, and nitrogen (N) balance in Korean crossbred black goats to evaluate C4 warm-season [...] Read more.
This study compared the effects of two C3 forages (Italian ryegrass [RG], Timothy grass [TG]) and two C4 forages (Klein grass [KG], Bermuda grass [BG]) on growth performance, nutrient digestibility, and nitrogen (N) balance in Korean crossbred black goats to evaluate C4 warm-season forages as alternatives under changing climate conditions. Sixteen castrated goats (10 months old) were allocated to four treatments using a randomized complete block design. Diets contained 40% treatment-specific forage and 60% commercial concentrate. After adaptation periods, a 5-day metabolism trial measured performance and digestibility parameters. No significant differences occurred among treatments for growth performance or digestibility of dry matter, crude protein, neutral detergent fiber, ash, and non-fiber carbohydrate. C4 grasses showed significantly lower acid detergent fiber and ether extract digestibility than C3 grasses, with KG having the lowest ether extract digestibility. The KG group had higher N intake and absorption than the TG group, while BG showed lower urinary and total N excretion than KG. No differences existed in retained N, utilization efficiency, or biological value among groups. Both C3 and C4 forages supported comparable goat growth performance, providing a reference for utilizing different photosynthetic pathway forages under changing climatic conditions. Full article
(This article belongs to the Special Issue Forage-Based Production Systems for Small Ruminants)
Show Figures

Figure 1

17 pages, 1263 KB  
Article
Serotyping and Antibiotic Resistance Profiles of Salmonella spp. and Listeria monocytogenes Strains Isolated from Pet Food and Feed Samples: A One Health Perspective
by Nikolaos D. Andritsos, Antonia Mataragka, Nikolaos Tzimotoudis, Anastasia-Spyridoula Chatzopoulou, Maria Kotsikori and John Ikonomopoulos
Vet. Sci. 2025, 12(9), 844; https://doi.org/10.3390/vetsci12090844 (registering DOI) - 1 Sep 2025
Abstract
Foodborne pathogenic bacteria, like Salmonella spp. and Listeria monocytogenes, can be detected in the primary food production environment. On the other hand, and in the current context of One Health, antimicrobial resistance (AMR) is gaining increased attention worldwide, as it poses significant [...] Read more.
Foodborne pathogenic bacteria, like Salmonella spp. and Listeria monocytogenes, can be detected in the primary food production environment. On the other hand, and in the current context of One Health, antimicrobial resistance (AMR) is gaining increased attention worldwide, as it poses significant threat to public health. The purpose of this study was to confirm the presence of Salmonella spp. and L. monocytogenes in pet food and feed samples, by means of biochemical and/or serological testing of the microbial isolates, and then to screen for AMR against a panel of selected antibiotics. Serotyping of the isolates with multiplex polymerase chain reaction revealed the presence of three of the most common clinical Salmonella serovars (S. Enteritidis, S. Typhimurium, S. Thompson) and the major epidemiologically important L. monocytogenes serotypes (1/2a, 1/2b, 1/2c, 4b) in 15 and 9 confirmed isolates of the pathogens, respectively. Strains of Salmonella spp. showed resistance to tetracycline (n = 3) and combined AMR to tetracycline with either ampicillin (n = 2) or trimethoprim-sulfamethoxazole (n = 3), without any multidrug resistance (MDR) being recorded whatsoever. AMR in L. monocytogenes was documented in 55.5% of the bacterial strains (n = 5) tested against ciprofloxacin, meropenem, penicillin, trimethoprim-sulfamethoxazole, and tetracycline. Alarmingly, one strain of L. monocytogenes was MDR to the latter five antibiotics and deemed resistant in three antibiotic groups (carbapenems, penicillins, tetracyclines), after exhibiting minimum inhibitory concentrations (MICs) to meropenem (MIC = 4 μg/mL), penicillin (MIC = 4 μg/mL), and tetracycline (MIC = 48 μg/mL). To the best of our knowledge, finding an MDR L. monocytogenes in pet food is something reported for the first time herein. The results presented in this study highlight the presence of important foodborne bacterial pathogens, such as Salmonella spp. and L. monocytogenes, with increased AMR to antibiotics and possible MDR at the primary production and at the farm level, due to the misuse of pharmacological substances used to treat zoonotic diseases, probably resulting in detection of resistant strains of these pathogenic bacteria in animal-originated food products (e.g., meat, milk, eggs). Full article
Show Figures

Figure 1

20 pages, 2002 KB  
Article
Evaluating Growth and Nitrogen and Phosphorus Removal of Four Microalgae in Different Nutrient Concentrations
by Peizhen Ma, Xiaoqin Li, Biao Wu, Zhihong Liu, Zhuanzhuan Li, Xiujun Sun, Liqing Zhou and Meirong Du
Biology 2025, 14(9), 1155; https://doi.org/10.3390/biology14091155 - 1 Sep 2025
Abstract
The environmental problems brought about by factory-based aquaculture have become increasingly prominent. Reducing nitrogen and phosphorus concentrations in tailwater has become the key to tailwater management. In order to assess the potential of microalgae in removing nitrogen and phosphorus ions from aquaculture wastewater, [...] Read more.
The environmental problems brought about by factory-based aquaculture have become increasingly prominent. Reducing nitrogen and phosphorus concentrations in tailwater has become the key to tailwater management. In order to assess the potential of microalgae in removing nitrogen and phosphorus ions from aquaculture wastewater, four microalgae species, i.e., Chlorella sp., Dicrateria zhanjiangensis, Nitzschia closterium minutissima, and Platymonas subcordiformis, were used in this study, and their growth and nitrogen and phosphorus removal rates in four nutrient concentrations of simulated aquaculture wastewater were systematically evaluated. After 15 days of cultivation, the cell counts of all four types of microalgae increased. Three species, i.e., Chlorella sp., N. closterium minutissima, and P. subcordiformis, grew best in high PO43− and low NH4+ medium, whereas D. zhanjiangensis possessed best growth in low PO43− and high NH4+ medium. The removal rate of PO43−, NH4+, NO3, and NO2 by four microalgae species exceeded 82.64%, 89.06%, 59.27%, and 42.15%, respectively, even though the four microalgae had different performance in the removal of nitrogen and phosphorus. All microalgae in the low-phosphorus groups removed PO43− at significantly lower rates than those in the high–phosphorus groups, while high NH4+ removal rates were observed in all four microalgae groups. Moreover, in phosphorus-limited conditions, four microalgae exhibit lower removal rates of NO3 when nitrogen content was high. The chlorophyll a contents of microalgae in four culture media strictly corresponded to their final cell densities. P. subcordiformis exhibited the highest intracellular polysaccharide accumulation in high PO43− and low NH4+ type medium, whereas D. zhanjiangensis demonstrated the strongest protein synthesis capacity in high PO43− and low NH4+ medium. The activities of acid phosphatase in all microalgae were higher under phosphorus–deficient conditions than phosphorus-sufficient conditions. Our results might provide useful references for microalgae selection in the treatment of different aquaculture wastewater conditions. Full article
Show Figures

Figure 1

15 pages, 7305 KB  
Article
Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency
by Jolly Mathew, Shyju Thankaraj Salammal, Anandhi Sivaramalingam and Paulraj Manidurai
J. Compos. Sci. 2025, 9(9), 462; https://doi.org/10.3390/jcs9090462 (registering DOI) - 1 Sep 2025
Abstract
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 [...] Read more.
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 nanostructures via electrochemical anodization, using them as an electron-transporting layer in DSSCs. TiNTs maintain tubular arrays for a limited time before becoming nanocrystals with {001} facets. Using FESEM and TEM, we observed that the TiO2 nanobundles were transformed into nanocubes with {001} facets and lower fluorine concentrations. Optimizing the reaction approach resulted in better-ordered, crystalline anatase TiNTs/Ncs being formed on the Ti metal foil. The anatase phase of as-grown TiO2 was confirmed by XRD, with (101) being the predominant intensity and preferred orientation. The nanostructured TiO2 had lattice values of a = 3.77–3.82 and c = 9.42–9.58. The structure and morphology of these as-grown materials were studied to understand the growth process. The photoconversion efficiency and impedance spectra were explored to analyze the performance of the designed DSSCs, employing N719 dye as a sensitizer and the I/I3− redox pair as electrolytes, sandwiched with a Pt counter-electrode. As a result, we found that self-assembled TiNTs/Ncs presented a more effective photoanode in DSSCs than standard TiO2 (P25). TiNcs (0.5 and 0.25 NH4F) and P25 achieved the highest power conversion efficiencies of 3.47, 3.41, and 3.25%, respectively. TiNcs photoanodes have lower charge recombination capability and longer electron lifetimes, leading to higher voltage, photocurrent, and photovoltaic performance. These findings show that electrochemical anodization is an effective method for preparing TiNTs/Ncs and developing low-cost, highly efficient DSSCs by fine-tuning photoanode structures and components. Full article
Show Figures

Figure 1

20 pages, 2498 KB  
Article
Combined Effects of Carbon-to-Nitrogen (C/N) Ratio and Nitrate (NO3-N) Concentration on Partial Denitrification (PD) Performance at Low Temperature: Substrate Variation, Nitrite Accumulation, and Microbial Transformation
by Ying Cai, Yujun Song, Tangbing Yin, Miao Zhang and Junjie Ji
Water 2025, 17(17), 2583; https://doi.org/10.3390/w17172583 - 1 Sep 2025
Abstract
In this study, the combined effects of influent carbon-to-nitrogen ratio (C/N = 0.8, 1.5, 2.5, 3.5, 4.5) and nitrate (NO3-N) concentration (40 and 80 mg/L, labeled as R40 and R80) on the partial denitrification (PD) performance were [...] Read more.
In this study, the combined effects of influent carbon-to-nitrogen ratio (C/N = 0.8, 1.5, 2.5, 3.5, 4.5) and nitrate (NO3-N) concentration (40 and 80 mg/L, labeled as R40 and R80) on the partial denitrification (PD) performance were investigated using an intermittent sequencing batch reactor (SBR) process. With sodium acetate as an additional carbon source, the substrate variation, microbial diversity, and functional bacteria evolution were also explored to reveal the nitrite (NO2-N) accumulation mechanism at low temperatures (3–12 °C). The results showed that the 3.5-R40 and 2.5-R80 systems both presented the optimal NO2-N accumulation at a temperature of 10 °C, with the NO2-N transformation rate (NTR) of 66.89% and 76.79%, respectively. In addition, as the temperature reduced from 10 °C to 5 °C, the NO2-N accumulation performance was significantly suppressed, where the average effluent NO2-N of 3.5-R40 (20.00 → 11.00 mg/L) and 2.5-R80 (43.00 → 18.90 mg/L) systems reduced by nearly half. It is worth noting that there was almost no NO2-N accumulation at a C/N ratio of 0.8, although higher NO3-N concentration promoted NTR under the same C/N ratio. The high-throughput sequencing showed that the minimum Shannon value of 3.81 and the maximum Simpson value of 0.095 both occurred at a C/N ratio of 2.5, suggesting the downshifted microbial richness. Proteobacteria and Bacteroides increased significantly from 35.31% and 18.34% to 51.69–60.35% and 18.08–35.21%, as compared with the seeding sludge. Thauera and Flavobacterium as the main contributors to NO2-N accumulation accounted for 31.83% and 20.30% at the C/N ratio of 2.5 under a low temperature of 5 °C. The above discussion suggested that higher temperature (10 °C), lower C/N ratio (2.5–3.5), and higher NO3-N concentration (80 mg/L) were more favorable for the stable PD formation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

11 pages, 992 KB  
Article
Neopterin Concentration in Umbilical Cord Blood as a Reflection of Maternal Insulin Resistance—A Pilot Study
by Aleksandra Chęcińska-Kopeć, Ewa Pruszynska-Oszmalek, Zuzanna Checinska-Maciejewska, Anna Rekas-Dudziak, Małgorzata Wojciechowska, Piotr Ślósarz, Hanna Krauss, Krzysztof Szymanowski and Pawel A. Kolodziejski
Biology 2025, 14(9), 1157; https://doi.org/10.3390/biology14091157 - 1 Sep 2025
Abstract
Background/Objective: Insulin resistance (IR) during pregnancy, even in women with normal body mass index (BMI), may affect maternal and fetal metabolic and immune status. This study aimed to evaluate neopterin (NPT), leptin, insulin, and ghrelin concentrations in maternal blood (MB) and umbilical cord [...] Read more.
Background/Objective: Insulin resistance (IR) during pregnancy, even in women with normal body mass index (BMI), may affect maternal and fetal metabolic and immune status. This study aimed to evaluate neopterin (NPT), leptin, insulin, and ghrelin concentrations in maternal blood (MB) and umbilical cord blood (CB) in normoglycemic women with and without IR, all with normal BMI. Methods: Peripheral and cord blood was collected from 36 Caucasian women with term, uncomplicated vaginal deliveries. The participants were classified into control (n = 16; age = 30.81 ± 4.875 years) and IR (n = 20; age = 31.95 ± 4.979 years) groups based on a professional medical diagnosis. Anthropometric parameters were recorded, and metabolic/hormonal markers were measured using ELISA and RIA. Results: NPT concentrations in CB were significantly higher in the IR group (p < 0.05), correlated positively with MB NPT levels (r = 0.3809, p < 0.05). A significantly higher concentration of both insulin and leptin was observed in the MB of women with IR compared to the control group (p < 0.0001), whereas in CB, only insulin concentration was significantly higher in the IR group than in healthy controls (p < 0.05). Ghrelin levels did not differ between the groups. Conclusions: Insulin resistance in non-obese pregnant women is associated with increased NPT concentration in CB, which may suggest fetal immune activation. However, defining the role of NTP as a metabolic “messenger” between mother and child requires further study. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

23 pages, 3267 KB  
Article
Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination
by Mengjing Zheng, Yingjia Zhao, Lihua Zhang, Liyan Hao, Zhongyi Zhang, Lihua Lv and Jingting Zhang
Plants 2025, 14(17), 2713; https://doi.org/10.3390/plants14172713 - 1 Sep 2025
Abstract
Micro-sprinkling fertigation, a novel irrigation and fertilization way, can improve the grain yield (GY) and nitrogen use efficiency (NUE) of winter wheat to meet sustainable agriculture requirements. In order to clarify the physiological basis behind the improvements, a field experiment with a split-plot [...] Read more.
Micro-sprinkling fertigation, a novel irrigation and fertilization way, can improve the grain yield (GY) and nitrogen use efficiency (NUE) of winter wheat to meet sustainable agriculture requirements. In order to clarify the physiological basis behind the improvements, a field experiment with a split-plot design was conducted during the 2020–2021 and 2021–2022 growing seasons. The main plot encompassed two irrigation and fertilization modes, namely, conventional irrigation and fertilization (CIF) and micro-sprinkling fertigation (MSF), and the subplots included four nitrogen application rates (0, 120, 180, and 240 kg ha−1, denoted as N0, N120, N180, and N240, respectively). Moreover, a 15N isotopic tracer experiment was performed to determine the distributions of nitrogen in the soil. Compared with those under CIF, the GY under MSF at N180 and N240 significantly increased by 9.09% and 9.72%, which was driven mainly by increases in the grain number (GN) and thousand-grain weight (TGW). The increase in the TGW under MSF was the result of the significantly increased net photosynthesis rate at the grain-filling stage. Notably, the number and dry weight of inefficient tillers and the number of ears with fewer than 10 grains were significantly lower under MSF than those under CIF. In addition, the 15N isotopic tracer experiment revealed that nitrogen was primarily concentrated in the 0–30 cm soil layers under MSF, which conforms well with the spatial distributions of the roots and water, and subsequently improved the NUE under N180 and N240. In conclusion, MSF enhanced both the GY and NUE at the N180 level by optimizing root–water–nitrogen spatiotemporal coordination and reducing redundant tillering. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 1079 KB  
Article
Isotopic N,N-Dimethyl Leucine-Based Mass Spectrometric Quantification of Metabolites Following Copper Exposure
by Olga Riusech and Lingjun Li
Biomolecules 2025, 15(9), 1264; https://doi.org/10.3390/biom15091264 - 1 Sep 2025
Abstract
Crustaceans are particularly sensitive to copper toxicity, and although the downstream effects of increased copper exposure on the metabolome are often postulated and observed, they are rarely measured. To perform absolute quantification of hydrophilic small-molecule metabolites in the hemolymph of the crustacean Cancer [...] Read more.
Crustaceans are particularly sensitive to copper toxicity, and although the downstream effects of increased copper exposure on the metabolome are often postulated and observed, they are rarely measured. To perform absolute quantification of hydrophilic small-molecule metabolites in the hemolymph of the crustacean Cancer borealis, we derivatized targeted metabolites related to copper toxicity using in-house-developed isotopic N,N-dimethyl leucine (iDiLeu) tags. Selected analytes were pooled at previously determined concentrations to serve as internal standards, and a calibration curve was generated. The sample loss was minimized by optimizing the derivatization-assisted sample cleanup using dispersive liquid–liquid microextraction (DLLME) and hydrophilic–lipophilic balancing (HLB). Calibration curves were then used for the absolute quantification of metabolites of interest following 30 min, 1 h, and 2 h exposures to 10 µM CuCl2. We found that glutamic acid was downregulated after 2 h of copper exposure, which may disrupt cellular metabolism and increase oxidative stress in crustaceans. These changes could have significant impacts on crustacean populations and the ecosystems they support. Full article
Show Figures

Figure 1

13 pages, 3135 KB  
Article
High-Density Microfluidic Chip with Vertical Structure for Digital PCR
by Peng Sun, Huaqing Si, Gangwei Xu and Dongping Wu
Sensors 2025, 25(17), 5379; https://doi.org/10.3390/s25175379 (registering DOI) - 1 Sep 2025
Abstract
Digital PCR, as a nucleic acid absolute quantification method at the single-molecule level, has been widely applied in early cancer screening, single-cell analysis, and other biomedical fields. However, existing digital PCR methods still suffer from high costs, complex operations, and low detection dynamic [...] Read more.
Digital PCR, as a nucleic acid absolute quantification method at the single-molecule level, has been widely applied in early cancer screening, single-cell analysis, and other biomedical fields. However, existing digital PCR methods still suffer from high costs, complex operations, and low detection dynamic range, which limit their applications. In the study, we developed a microfluidic chip-based digital PCR with a high-density vertical structure using PDMS (polydimethylsiloxane) flexible material. The chip features a three-layer structure of glass–PDMS–glass, with the PDMS structural layer containing 30,000 reaction chambers, each with a volume of 0.713 nL. This vertical-structured chip can increase the total volume and the total number of chambers by 50% without changing the chip area and chamber volume, thereby significantly enhancing dynamic range and sensitivity of the chip detection. This chip is theoretically capable of achieving a nucleic acid detection dynamic range close to 105. Moreover, the digital PCR quantitative detection results of five different concentrations of serially diluted KRAS plasmid DNA templates using this chip also validated the accuracy and reliability of the nucleic acid quantitative detection results. The vertical-structured digital PCR chip, with its simple manufacturing process, uniform and stable sample partitioning, wide detection dynamic range, and low cost, will promote the widespread application of digital PCR. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

29 pages, 2543 KB  
Article
Synergistic Extraction of Samarium(III) from Water via Emulsion Liquid Membrane Using a Low-Concentration D2EHPA–TOPO System: Operational Parameters and Salt Effects
by Ahlem Taamallah and Oualid Hamdaoui
Separations 2025, 12(9), 233; https://doi.org/10.3390/separations12090233 - 1 Sep 2025
Abstract
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. [...] Read more.
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. Among the tested extractants, a binary mixture of 0.1% (w/w) D2EHPA and 0.025% (w/w) TOPO achieved 100% samarium(III) extraction at a low loading. This mixture outperformed D2EHPA-TBP and other systems because D2EHPA strongly binds to Sm(III) ions, while TOPO increases the solubility and transport efficiency of metal complexes. Additionally, process factors that optimize performance and minimize emulsion breakage were examined. Key insights for successfully implementing the process include the following: 5 min emulsification with 0.75% Span 80 in kerosene at pH 6.7 (natural), 250 rpm stirring, a 1:1 internal/membrane phase volume ratio, a 20:200 treatment ratio, and a 0.2 N HNO3 stripping agent. These insights produced stable, fine droplets, enabling complete recovery and rapid carrier regeneration without emulsion breakdown. Extraction kinetics accelerate with temperature up to 35 °C but declined above this limit due to emulsion rupture. The activation energy was calculated to be 33.13 kJ/mol using pseudo-first-order rate constants. This suggests that the process is diffusion-controlled rather than chemically controlled. Performance decreases with Sm(III) feed concentrations greater than 200 mg/L and in high-salt matrices (Na2SO4 > NaCl > KNO3). Integrating these parameters yields a scalable, low-loading ELM framework capable of achieving complete Sm(III) separation with minimal breakage. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

Back to TopTop