Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = NMR titrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10507 KiB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Viewed by 202
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

20 pages, 1887 KiB  
Article
Alkaline Extraction in Air Enhances Antioxidant and Biological Activities of Humic Acids
by Anna Zavarzina, Irina Davydova, Natalia Kulikova, Anastasiya Nikolaeva and Olga Philippova
Agronomy 2025, 15(3), 689; https://doi.org/10.3390/agronomy15030689 - 13 Mar 2025
Viewed by 166
Abstract
Humic acids (HAs) possess diverse functionalities, endowing them with multiple applications as bioactive compounds in agriculture. Alkaline extraction is key to obtaining HAs from their source material. The presence of oxygen during extraction can lead to oxidative changes in the humic structure. The [...] Read more.
Humic acids (HAs) possess diverse functionalities, endowing them with multiple applications as bioactive compounds in agriculture. Alkaline extraction is key to obtaining HAs from their source material. The presence of oxygen during extraction can lead to oxidative changes in the humic structure. The extent of HA transformation depending on their origin remains poorly understood, and the effect of alkaline extraction on the HA biological activities is yet to be estimated. Here, we compare the physicochemical properties of HAs extracted from fresh organic material, compost, in air (HA-O2) and under nitrogen (HA-N2). We also assess the antioxidant properties of HAs-O2 and HAs-N2 from compost (HAC), Retisol (HAR), and Chernozem (HACh) and relate them to the HA biological activities. Changes in the HAC properties were analyzed using the following techniques: elemental composition, ultraviolet–visible and infrared spectroscopy, 13C nuclear magnetic resonance (13C-NMR), electron paramagnetic resonance (EPR), gel filtration using Sephadex G-75 gel, and potentiometric titration. The HA antioxidant properties were explored using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay (antiradical activity) and phosphomolybdenum assay (total antioxidant capacity). The HA biological activity was estimated by priming radish and wheat seeds (0.5 g L−1 HAs, 25 °C, 5 h for radish and 14 h for wheat), followed by germination tests. Alkaline extraction of HAC in air vs. nitrogen resulted in a 1.2-fold increase in the O/C ratio and optical density at E465, oxidation of aliphatic fragments, a 2-fold increase in the contents of functional groups, and a 1.2-fold increase in the number of paramagnetic centers. All HA-O2 preparations have demonstrated an enhanced antiradical activity (1.3–1.6 times) and total antioxidant capacity (1.1–1.3 times) compared to HA-N2. The Vigor Index of seeds primed with HA-O2 was 1.1-to-1.8-fold higher than those treated with HA-N2, depending on the HA origin. We demonstrate that alkaline treatment in air benefits the antiradical and biological activities of HAs, making such preparations more attractive for use as natural antioxidants and priming agents. This opens up new perspectives for using O2-modified HAs as innovative plant stimulants in agriculture. Full article
Show Figures

Figure 1

12 pages, 2648 KiB  
Article
Development of a Rapid-Response Fluorescent Probe for H2S: Mechanism Elucidation and Biological Applications
by Trevor Dvorak, Haley Hernandez-Sandoval, Sunayn Cheku, Marijose Mora Valencia González, Linus Borer, Riley Grieser, Kimberly A. Carlson and Haishi Cao
Biosensors 2025, 15(3), 174; https://doi.org/10.3390/bios15030174 - 7 Mar 2025
Viewed by 434
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for [...] Read more.
Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for H2S detection via a nucleophilic aromatic substitution. M1 demonstrated high sensitivity and selectivity for H2S in aqueous media, with a detection limit of 0.64 µM and a strong linear fluorescence response in the range of 0–22 µM of NaHS. The reaction kinetics revealed a rapid response, with a reaction rate constant of 7.56 × 102 M−1 s−1, and M1 was most effective in the pH range of 6–10. Mechanism studies using 1H NMR titration confirmed the formation of 4-hydroxyphenyl-1,8-naphthalimide as the product of H2S-triggered nucleophilic substitution. M1 was applied in MDA-MB-231 cells for cell imaging, in which M1 provided significant fluorescence enhancement upon NaHS treatment, confirming its applicability for detecting H2S in biological environments. In comparison, M2, designed with extended conjugation for red-shifted emission, exhibited weaker sensitivity due to the reduced stability of its naphtholate product and lower solubility. These results demonstrate that M1 is a highly effective and selective fluorescent probe for detecting H2S, providing a valuable resource for investigating the biological roles of H2S in health and disease. Full article
Show Figures

Graphical abstract

12 pages, 2388 KiB  
Article
Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay
by Shaowen Wu, Ke Feng, Jinlu Niu, Jintao Xu, Hualian Mo, Xiaoman She, Shang-Bo Yu, Zhan-Ting Li and Shijuan Yan
Toxins 2025, 17(3), 104; https://doi.org/10.3390/toxins17030104 - 25 Feb 2025
Viewed by 376
Abstract
Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus species, represents a significant health hazard due to its widespread contamination of agricultural products. The urgent need for sensitive and sustainable detection methods has driven the development of diverse analytical approaches, most [...] Read more.
Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus species, represents a significant health hazard due to its widespread contamination of agricultural products. The urgent need for sensitive and sustainable detection methods has driven the development of diverse analytical approaches, most of which heavily rely on organic solvents, posing environmental challenges for routine food safety analysis. Here, we introduce a supramolecular platform leveraging acyclic cucurbit[n]uril (acCB) as a host molecule for environmentally sustainable AFB1 detection. Screening various acCB derivatives identified acCB6 as a superior host capable of forming a stable 1:1 complex with AFB1 in an aqueous solution, exhibiting a high binding affinity. Proton nuclear magnetic resonance (1H NMR) spectroscopy confirmed that AFB1 was deeply encapsulated within the host cavity, with isothermal titration calorimetry (ITC) experiments and molecular dynamics simulations further substantiating the stability of the interaction, driven by enthalpic and entropic contributions. This supramolecular host was incorporated into a scaffold-assembly-based bioluminescent enzyme immunoassay (SA-BLEIA), providing a green detection platform that rivals the performance of traditional organic solvent-based assays. Our findings highlight the potential of supramolecular chemistry as a foundation for eco-friendly mycotoxin detection and offer valuable insights into designing environmentally sustainable analytical methods. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (Volume III))
Show Figures

Figure 1

11 pages, 3137 KiB  
Article
Molecular Interaction of Water-Soluble Resorcinarenes for Potential Choline Detectors
by Cielo Urquijo, Miguel Vela, Roger Sarmiento and Mauricio Maldonado
Processes 2025, 13(2), 553; https://doi.org/10.3390/pr13020553 - 16 Feb 2025
Viewed by 504
Abstract
The molecular interactions of water-soluble crown resorcinarenes with choline were analyzed. To this end, four sulfonated resorcinarenes were synthesized and characterized by ATR-IR, 1H-NMR, and 13C-NMR spectroscopy. The molecular interaction studies with choline were carried out through FT-IR spectroscopy, 1H-NMR [...] Read more.
The molecular interactions of water-soluble crown resorcinarenes with choline were analyzed. To this end, four sulfonated resorcinarenes were synthesized and characterized by ATR-IR, 1H-NMR, and 13C-NMR spectroscopy. The molecular interaction studies with choline were carried out through FT-IR spectroscopy, 1H-NMR titrations, and conductimetric titrations, with which it was possible to determine that the complexes formed 1:1 stoichiometries with the host, in addition to showing good interaction in the electronic cavity of the macrocycle, demonstrating great potential for host–guest systems for choline detection in aqueous media. Finally, the incidence of the structural aspects of sulfonated resorcinarenes were analyzed. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

38 pages, 5445 KiB  
Article
Speciation of Potentially Carcinogenic Trace Nickel(II) Ion Levels in Human Saliva: A Sequential Metabolomics-Facilitated High-Field 1H NMR Investigation
by Kayleigh Hunwin, Georgina Page, Mark Edgar, Mohammed Bhogadia and Martin Grootveld
Metabolites 2025, 15(1), 4; https://doi.org/10.3390/metabo15010004 - 30 Dec 2024
Viewed by 635
Abstract
Introduction/Objectives: Since the biological activities and toxicities of ‘foreign’ and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution 1H NMR analysis to explore the ‘speciation’ of paramagnetic Ni(II) ions in human saliva, [...] Read more.
Introduction/Objectives: Since the biological activities and toxicities of ‘foreign’ and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution 1H NMR analysis to explore the ‘speciation’ of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the in vivo corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Methods: Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation. Microlitre aliquots of stock aqueous Ni(II) solutions were sequentially titrated into WMSS samples via micropipette. Any possible added concentration-dependent Ni(II)-mediated pH changes therein were experimentally controlled. 1H NMR spectra were acquired on a JEOL JNM-ECZ600R/S1 spectrometer. Results: Univariate and multivariate (MV) metabolomics and MV clustering analyses were conducted in a sequential stepwise manner in order to follow the differential effects of increasing concentrations of added Ni(II). The results acquired showed that important Ni(II)-responsive biomolecules could be clustered into distinguishable patterns on the basis of added concentration-dependent responses of their resonance intensities and line widths. At low added concentrations (71 µmol/L), low-WMSS-level N-donor amino acids (especially histidine) and amines with relatively high stability constants for this paramagnetic metal ion were the most responsive (severe resonance broadenings were observed). However, at higher Ni(II) concentrations (140–670 µmol/L), weaker carboxylate O-donor ligands such as lactate, formate, succinate, and acetate were featured as major Ni(II) ligands, a consequence of their much higher WMSS concentrations, which were sufficient for them to compete for these higher Ni(II) availabilities. From these experiments, the metabolites most affected were found to be histidine ≈ methylamines > taurine ≈ lactate ≈ succinate > formate > acetate ≈ ethanol ≈ glycine ≈ N-acetylneuraminate, although they predominantly comprised carboxylato oxygen donor ligands/chelators at the higher added Ni(II) levels. Removal of the interfering effects arising from the differential biomolecular compositions of the WMSS samples collected from different participants and those from the effects exerted by a first-order interaction effect substantially enhanced the statistical significance of the differences observed between the added Ni(II) levels. The addition of EDTA to Ni(II)-treated WMSS samples successfully reversed these resonance modifications, an observation confirming the transfer of Ni(II) from the above endogenous complexants to this exogenous chelator to form the highly stable diamagnetic octahedral [Ni(II)-EDTA] complex (Kstab = 1.0 × 1019 M−1). Conclusions: The results acquired demonstrated the value of linking advanced experimental design and multivariate metabolomics/statistical analysis techniques to 1H NMR analysis for such speciation studies. These provided valuable molecular information regarding the identities of Ni(II) complexes in human saliva, which is relevant to trace metal ion speciation and toxicology, the in vivo corrosion of NiC-MADPs, and the molecular fate of ingested Ni(II) ions in this biofluid. The carcinogenic potential of these low-molecular-mass Ni(II) complexes is discussed. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

24 pages, 6456 KiB  
Article
Investigation of Host–Guest Interactions in 2-Ureido-4-ferrocenylpyrimidine Derivatives
by Márk Váradi, Soma J. Keszei, Ágnes Gömöry, Margit Kovács, Tamás Kégl, Lajos Fodor and Rita Skoda-Földes
Int. J. Mol. Sci. 2024, 25(24), 13552; https://doi.org/10.3390/ijms252413552 - 18 Dec 2024
Viewed by 503
Abstract
In the present study, synthesis, conformational behavior, host–guest complex formation, and electrochemical properties of novel 6-substituted-2-ureido-4-ferrocenylpyrimidines were explored. A comprehensive NMR spectroscopic investigation was carried out to confirm the structure and conformational equilibrium of the ureidopyrimidines through studying the temperature- and concentration dependence [...] Read more.
In the present study, synthesis, conformational behavior, host–guest complex formation, and electrochemical properties of novel 6-substituted-2-ureido-4-ferrocenylpyrimidines were explored. A comprehensive NMR spectroscopic investigation was carried out to confirm the structure and conformational equilibrium of the ureidopyrimidines through studying the temperature- and concentration dependence of NMR spectra. Low-temperature NMR measurements were used to clarify structural changes inflicted by a 2,6-diaminopyridine guest. Association constant (Kassoc) values of host–guest complexes were calculated based on low-temperature titrations. It was shown that the introduction of a pyridin-2-yl substituent in the pyrimidine ring in host 10 induced a considerable change not only in the conformational equilibrium of the host itself but also in that of the host–guest complex. Geometries and relative stabilities of the conformers of host 10 as well as its host–guest complexes were determined by quantum chemical calculations. Electrochemical behavior of ureidopyrimidine hosts and host–guest complexes was investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) measurements. Two ureidopyrimidine derivatives were immobilized on the surface of spectral graphite electrodes, and their electrochemical response on the addition of 2,6-diaminopyridine was compared. These results also supported the importance of the pyridin-2-yl substituent in the efficient sensing of the guest. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 2163 KiB  
Article
Novel Quaternary Ammonium Derivatives Based on Apple Pectin
by Magdalena-Cristina Stanciu, Daniela Ionita, Daniel Tȋmpu, Irina Popescu, Dana Mihaela Suflet, Florica Doroftei and Cristina G. Tuchilus
Polymers 2024, 16(23), 3352; https://doi.org/10.3390/polym16233352 - 29 Nov 2024
Viewed by 559
Abstract
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy [...] Read more.
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy (FTIR), and 13C nuclear magnetic resonance (13C NMR). Viscosity measurements enabled the evaluation of the viscosity average molar mass (Mv) for the unmodified polysaccharide, as well as its intrinsic viscosity ([η]) value. Dynamic light scattering (DLS) analysis revealed that the PA and its quats formed aggregates in an aqueous solution with either a unimodal (PA) or bimodal (QPAs) distribution. Scanning transmission electron microscopy analysis (STEM) of the PA and its derivatives demonstrated the presence of individual polymeric chains and aggregates in aqueous solution, with the smallest sizes being specific to amphiphilic polymers. Thermal stability, as well as wide-angle X-ray diffraction (WAXD) studies, generally indicated a lower thermal stability and crystallinity of the QPAs compared with those of the PA. Antipathogenic activity demonstrated that the PA and its derivatives exhibited effectiveness against S. aureus ATCC 25923 bacterium and C. albicans ATCC 10231 pathogenic yeast. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

24 pages, 6883 KiB  
Article
Organic Moiety on Sn(IV) Does Matter for In Vitro Mode of Action: nBu3Sn(IV) Compounds with Carboxylato N-Functionalized 2-Quinolones Induce Anoikis-like Cell Death in A375 Cells
by Marijana P. Kasalović, Sanja Jelača, Dušan Dimić, Danijela Maksimović-Ivanić, Verica V. Jevtić, Sanja Mijatović, Tobias Rüffer, Goran N. Kaluđerović and Nebojša Đ. Pantelić
Pharmaceutics 2024, 16(12), 1529; https://doi.org/10.3390/pharmaceutics16121529 - 28 Nov 2024
Viewed by 734
Abstract
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) [...] Read more.
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains. A theoretical structural analysis was performed by optimization employing B3LYP-D3BJ functional and 6-311++G(d,p)/def2-TZVP(Sn) basis sets for H, C, N, O/Sn, respectively. The interactions between tin(IV) and surrounding atoms were examined by QTAIM approach. The in vitro antiproliferative activity of the synthesized compounds was evaluated by MTT and CV assays versus MCF-7 (human breast adenocarcinoma), HCT116 (human colorectal carcinoma), A375 (human melanoma), 4T1 (mouse breast carcinoma), CT26 (mouse colon carcinoma) and B16 (mouse melanoma) tumor cell lines. Results: Both synthesized compounds (nBu3SnL1 and nBu3SnL2) exerted powerful micromolar IC50 cytotoxicity values and demonstrated high selectivity toward malignant cells. Both experimental drugs affected cell adhesion and induced anchorage independent apoptosis, a favorable type of cell death with an essential role in cancer dissemination prevention. The BSA-binding affinity of the obtained organotin compounds was followed by spectrofluorometric titration and molecular docking simulations. Conclusions: The tributyltin(IV) compounds selectively induce anoikis-like cell death in A375 cells, also highlighting the importance of the organic moiety on the tin(IV) ion in the mechanism of action. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Figure 1

20 pages, 2348 KiB  
Article
Study of Host-Guest Interaction and In Vitro Neuroprotective Potential of Cinnamic Acid/Randomly Methylated β-Cyclodextrin Inclusion Complex
by Federica De Gaetano, Loredana Leggio, Consuelo Celesti, Fabio Genovese, Marco Falcone, Salvatore Vincenzo Giofrè, Nunzio Iraci, Nunzio Iraci and Cinzia Anna Ventura
Int. J. Mol. Sci. 2024, 25(23), 12778; https://doi.org/10.3390/ijms252312778 - 28 Nov 2024
Cited by 1 | Viewed by 891
Abstract
Cinnamic acid (CA) has many beneficial effects on human health. However, its poor water solubility (0.23 g/L, at 25 °C) is responsible for its poor bioavailability. This drawback prevents its clinical use. To overcome the solubility limits of this extraordinary natural compound, in [...] Read more.
Cinnamic acid (CA) has many beneficial effects on human health. However, its poor water solubility (0.23 g/L, at 25 °C) is responsible for its poor bioavailability. This drawback prevents its clinical use. To overcome the solubility limits of this extraordinary natural compound, in this study, we developed a highly water-soluble inclusion complex of CA with randomly methylated-β-cyclodextrin (RAMEB). The host-guest interaction was explored in liquid and solid states by UV-Vis titration, phase solubility analysis, FT-IR spectroscopy, and 1H-NMR. Additionally, molecular modeling studies were carried out. Both experimental and theoretical studies revealed a 1:1 CA/RAMEB inclusion complex, with a high apparent stability constant equal to 15,169.53 M−1. The inclusion complex increases the water solubility of CA by about 250-fold and dissolves within 5 min. Molecular modeling demonstrated that CA inserts its phenyl ring into the RAMEB cavity with its propyl-2-enoic acid tail leaning from the wide rim. Finally, a biological in vitro study of the inclusion complex, compared to the free components, was performed on the neuroblastoma SH-SY5Y cell line. None of them showed cytotoxic effects at the assayed concentrations. Of note, the pretreatment of SH-SY5Y cells with CA/RAMEB at 10, 30, and 125 µM doses significantly counteracted the effect of the neurotoxin MPP+, whilst CA and RAMEB alone did not show any neuroprotection. Overall, our data demonstrated that inclusion complexes overcome CA solubility problems, supporting their use for clinical applications. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 1626 KiB  
Article
Comparison of Orthogonal Determination Methods of Acid/Base Constants with Meta-Analysis
by Tamás Pálla, Károly Mazák, Dania Mohammed Alkhazragee, György Tibor Balogh, Béla Noszál and Arash Mirzahosseini
Int. J. Mol. Sci. 2024, 25(23), 12727; https://doi.org/10.3390/ijms252312727 - 27 Nov 2024
Viewed by 830
Abstract
The accurate determination of acid/base constants (proton dissociation constants—pKa, or equivalently protonation constants—logK) is essential for the physicochemical characterization of new molecules, especially in drug design and development, as these parameters thoroughly influence the pharmacokinetics and pharmacodynamics of [...] Read more.
The accurate determination of acid/base constants (proton dissociation constants—pKa, or equivalently protonation constants—logK) is essential for the physicochemical characterization of new molecules, especially in drug design and development, as these parameters thoroughly influence the pharmacokinetics and pharmacodynamics of drug action. While pH/potentiometric titration remains the gold standard method for determining acid/base constants, spectroscopic techniques—particularly nuclear magnetic resonance spectroscopy (as NMR/pH titrations)—have emerged as powerful alternatives for specific challenges in analytical chemistry, providing also information on the structure and site of protonation. In this study, we performed a comprehensive meta-analysis of protonation constants reported in the literature, measured using both potentiometry and NMR titrations. Our analysis compiled the available literature data and assessed the agreement between the two methods, taking into consideration various experimental conditions, such as temperature and ionic strength. The results provide insights into the reliability and applicability of NMR titrations compared with potentiometry, offering guidance for selecting appropriate methodologies in drug design. Full article
(This article belongs to the Special Issue Drug Discovery: Design, Synthesis and Activity Evaluation)
Show Figures

Figure 1

15 pages, 4451 KiB  
Article
Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment
by Kendra Sorroza-Martínez, Ignacio González-Sánchez, Raúl Villamil-Ramos, Marco Cerbón, Jorge Antonio Guerrero-Álvarez, Cristina Coronel-Cruz, Ernesto Rivera and Israel González-Méndez
Pharmaceutics 2024, 16(12), 1509; https://doi.org/10.3390/pharmaceutics16121509 - 23 Nov 2024
Viewed by 1004
Abstract
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results [...] Read more.
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane–hydrazone–doxorubicin (Ad-h-Dox) prodrug. Methods: The formation of inclusion complexes (ICs) between the prodrug and all the βCD cavities present on the surface of the PAMAM-βCD dendrimer was followed by 1H-NMR titration and corroborated by 2D NOESY experiments. A full characterization of the supramolecular assembly was performed in the solid state by thermal analysis (DSC/TGA) and scanning electron microscopy (SEM) and in solution by the DOSY NMR technique in D2O. Furthermore, the Dox release profiles from the PAMAM-βCD/Ad-h-Dox assembly at different pH values was studied by comparing the efficiency against a native βCD/Ad-h-Dox IC. Additionally, in vitro cytotoxic activity assays were performed for the nanocarrier alone and the two supramolecular assemblies in different carcinogenic cell lines. Results: The PAMAM-βCD/Ad-h-Dox assembly was adequately characterized, and the cytotoxic activity results demonstrate that the nanocarrier alone and its hydrolysis product are innocuous compared to the PAMAM-βCD/Ad-h-Dox nanocarrier that showed cytotoxicity equivalent to free Dox in the tested cancer cell lines. The in vitro drug release assays for the PAMAM-βCD/Ad-h-Dox system showed an acidic pH-dependent behavior and a prolonged profile of up to more than 72 h. Conclusions: The design of PAMAM-βCD/Ad-h-Dox consists of a new controlled and prolonged Dox release system for potential use in cancer treatment. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Gene and Drug Delivery Applications)
Show Figures

Figure 1

18 pages, 3736 KiB  
Article
A 11B-NMR Method for the In Situ Monitoring of the Formation of Dynamic Covalent Boronate Esters in Dendrimers
by Yi-Wen Yao, Ching-Hua Tsai, Chih-Yi Liu, Fang-Yu Wang, Sodio C. N. Hsu, Chun-Cheng Lin, Hui-Ting Chen and Chai-Lin Kao
Polymers 2024, 16(23), 3258; https://doi.org/10.3390/polym16233258 - 23 Nov 2024
Cited by 1 | Viewed by 772
Abstract
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and 11B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic [...] Read more.
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and 11B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the 11B NMR spectra. The same titration did not alter the resonance of amine-coordinated boronate esters, which gave resonances of 14 ppm in the 11B NMR spectra. Therefore, boronic acids, boronate esters, and amine-coordinated boronate esters gave three identical resonances, and the ratio of each component was obtained by deconvolution for a further equilibrium analysis. This method monitored the conversion among three species in various conditions, including separation. Accordingly, boronate esters were more stable after precipitation than chromatography, in which 29% and 20% of boronate esters were lost after purification. This method was applied to study the reaction between the boronic acid-decorated defect lysine dendron (16) and dopamine. No boronic acid signal was observed after adding 1 equivalent of dopamine; no boronic acid signal was observed in the NMR spectrum. According to the spectrum, the product contains 65% boronate ester and 35% N–B-coordinated derivatives. This method helps identify the presence of the three intermediates and provides more insights into this reaction. Full article
(This article belongs to the Special Issue Research and Application of Molecularly Imprinted Polymers)
Show Figures

Graphical abstract

12 pages, 1615 KiB  
Article
Strategies to Stabilize Dalbavancin in Aqueous Solutions; Section-2: The Effects of 2 Hydroxypropyl-β-Cyclodextrin and Acetate Buffer with and Without Divalent Metal Ions
by Sardar M. Jakaria, David E. Budil, James Murtagh and Graham Revilla
Pharmaceutics 2024, 16(12), 1503; https://doi.org/10.3390/pharmaceutics16121503 - 22 Nov 2024
Cited by 1 | Viewed by 845
Abstract
Objectives: The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca2+, Mg2+, and Zn2+) on the stability of dalbavancin in acetate buffer was investigated. Methods: Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions [...] Read more.
Objectives: The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca2+, Mg2+, and Zn2+) on the stability of dalbavancin in acetate buffer was investigated. Methods: Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). Results: The stability of the dalbavancin formulations after 4 weeks at 55 °C in 10 mM acetate buffer was significantly improved with 0.6 mM, 5.5 mM, and 55 mM 2HPβCD relative to without 2HPβCD. No further improvement was observed with the addition of any of the divalent cations. Dalbavancin in a 1:10 molar ratio with 2HPβCD was more stable at a concentration of 1 mg/mL than at 20 mg/mL under accelerated conditions at 40 °C for six months. ITC revealed two 2HPβCD binding sites to dalbavancin in 10 mM acetate: one with a 1:1 stoichiometry and thermodynamics consistent with known cyclodextrin–drug interactions, and a second with 0.1:1 stoichiometry, a positive binding enthalpy, and an unusually large entropy of binding. NMR spectroscopy indicates that dalbavancin exhibits aggregation in acetate buffer that is disrupted by 2HPβCD binding. Conclusions: 2HPβCD significantly improves the short- and long-term heat stability of dalbavancin in pH 4.5 acetate buffer at and above molar ratios of 1:1. The strong 1:1 binding of 2HPβCD to dalbavancin demonstrated by ITC confirms that this stability is conferred by the formation of a stable complex. This observation, combined with the NMR results, points to the aliphatic hydrocarbon chain of the glycone moiety as the most likely site of 2HPβCD–dalbavancin interaction. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

22 pages, 8110 KiB  
Article
Synthesis and Physiochemical Properties of Sulphated Tamarind (Tamarindus indica L.) Seed Polysaccharide
by Sabrina Ziliani, Anna Alekseeva, Carlo Antonini, Emiliano Esposito, Fabio Neggiani, Marco Sansò, Marco Guerrini and Sabrina Bertini
Molecules 2024, 29(23), 5510; https://doi.org/10.3390/molecules29235510 - 21 Nov 2024
Viewed by 879
Abstract
Tamarind seed polysaccharide (TSP) is a neutral water-soluble galactoxyloglucan isolated from the seed kernel of Tamarindus indica with average molecular weight (Mw) 600–800 kDa. The high viscosity of TSP slows solubilisation, and the absence of charged substituent hinders the formation of electrostatic interactions [...] Read more.
Tamarind seed polysaccharide (TSP) is a neutral water-soluble galactoxyloglucan isolated from the seed kernel of Tamarindus indica with average molecular weight (Mw) 600–800 kDa. The high viscosity of TSP slows solubilisation, and the absence of charged substituent hinders the formation of electrostatic interactions with biomolecules. TSP was sulphated in a one-step process using dimethylformamide as a solvent, and sulphur trioxide-pyridine complex as a sulphating reagent. Studies of chemical structure, molecular weight distribution and viscosity were conducted to characterise the synthesised products. The sulphation degree was established by conductimetric titration; the sulphate group distribution was studied by NMR spectroscopy and liquid chromatography-mass spectrometry, and sulphated TSP oligomers were obtained by enzymatic degradation with cellulase and/or xyloglucanase. Sulphated products showed higher solubility than TSP, Mws in the range of 700–1000 kDa, a sulphation degree of two to four per subunit and pseudoplastic behaviour. A preliminary study of mucoadhesion revealed the unexpected interaction of S-TSP with mucin, providing a route by which sulphated TSP interactions with biomolecules may be influenced. Full article
Show Figures

Graphical abstract

Back to TopTop