Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = NZEB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5257 KB  
Article
User Comfort Evaluation in a Nearly Zero-Energy Housing Complex in Poland: Indoor and Outdoor Analysis
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Beata Sadowska, Michał Ciuła and Tomasz Kapecki
Energies 2025, 18(19), 5209; https://doi.org/10.3390/en18195209 - 30 Sep 2025
Abstract
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem [...] Read more.
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem of ensuring user comfort—both indoors and in the surrounding outdoor areas—under nZEB design constraints. This gap raises two key research objectives: (1) to evaluate whether a well-designed nZEB with extensive glazing maintains acceptable indoor thermal comfort and (2) to assess whether residents experience greater outdoor thermal comfort and satisfaction in small, sun-exposed private gardens or in larger, shaded communal green spaces. To address these objectives, a newly built residential estate near Kraków (Poland) was analyzed. The investigation included simulation-based assessments during the design phase and in situ measurements during building operation, complemented by a user survey on spatial preferences. Indoor comfort was evaluated for rooms with large glazed façades, as well as rooms with standard-sized windows, while outdoor comfort was assessed in both private gardens and a shared green courtyard. Results show that shading the southwest-oriented glazed façade with an overhanging terrace provided slightly lower temperatures in ground-floor rooms compared to rooms with standard unshaded windows. Outdoors, users experienced lower thermal comfort in small, unshaded gardens than in the larger, vegetated communal area (pocket park), which demonstrated greater capacity for temperature moderation and thermal stress reduction. Survey responses further indicate that potential future residents prefer the inclusion of a shared green–blue infrastructure area, even at the expense of building some housing units in semi-detached form, instead of maximizing the number of detached units with unshaded individual gardens. These findings emphasize the importance of addressing both indoor and outdoor comfort in residential nZEB design, showing that technological efficiency must be complemented by user-centered design strategies. This integrated approach can improve the well-being of residents while supporting climate change adaptation in the built environment. Full article
31 pages, 4576 KB  
Article
The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir
by Ahunur Aşıkoğlu Metehan
Sustainability 2025, 17(18), 8399; https://doi.org/10.3390/su17188399 - 19 Sep 2025
Viewed by 341
Abstract
Turkey is in the process of developing national strategies to reach the NZEB standard. There is a gap in the literature regarding the life-cycle costs of the passive and active solutions that increase energy efficiency and have significant potential in the widespread adoption [...] Read more.
Turkey is in the process of developing national strategies to reach the NZEB standard. There is a gap in the literature regarding the life-cycle costs of the passive and active solutions that increase energy efficiency and have significant potential in the widespread adoption of the NZEB standard. Therefore, this study aims to investigate the economic feasibility of improvement alternatives for an existing building in Turkey. In accordance with the objectives involved in achieving NZEBs, national standards (TS 825-2008, TS 825-2024) and passive and active improvement strategies under the EnerPHit framework were identified, and a residential building located in Izmir, which is in a warm climate zone, was modelled using DesignBuilder (version 7.3.1.003) software. A comparison of the current configuration with those predicted by TS 825-2008, TS 825 2024, and EnerPHit indicates energy savings of 29%, 36%, and 54%, respectively. In addition, the benefit–cost ratios, payback periods, and life-cycle costs of the alternatives were determined. The lowest LCC was determined to be the USD 5.424 for the improved EnerPHit-compliant alternative using PV integration. Moreover, it was determined that achieving a plus-energy building is possible even when electric vehicles are charged in the improved building. In Turkey, the retrofitting of buildings similar to that of the case study into plus-energy buildings has been deemed economically viable, provided certain EnerPHit-compliant improvements are implemented. Full article
Show Figures

Figure 1

17 pages, 1881 KB  
Communication
Techno-Economics of Using Second Life BEV Traction Batteries as BESS in Domestic RES Installations
by Jacek A. Biskupski
Energy Storage Appl. 2025, 2(3), 13; https://doi.org/10.3390/esa2030013 - 18 Sep 2025
Viewed by 221
Abstract
This article analyses the possibility of using Li-ion batteries removed from battery electric vehicles (BEVs) as short-term energy storage devices in a near-zero energy building (nZEB) in conjunction with a rooftop photovoltaic (PV) system. The technical and economic feasibility of this solution was [...] Read more.
This article analyses the possibility of using Li-ion batteries removed from battery electric vehicles (BEVs) as short-term energy storage devices in a near-zero energy building (nZEB) in conjunction with a rooftop photovoltaic (PV) system. The technical and economic feasibility of this solution was compared to that of a standard commercial LIB (Lithium-Ion battery) BESS Battery Energy Storage System). Two generations of the same BEV model battery were tested to analyse their suitability for powering a building. The necessary changes to the setup of such a battery for building power supply purposes were analysed, as well as its suitability. As a result, analyses of profitability over the predicted life span and NPV (net present value) of SLEVBs (second-life BEV batteries) for building power were carried out. The study also conducted preliminary research on the effectiveness of such projects and their pros and cons in terms of security. The author calculates the profitability of a ready-made PV BESS with a set of SLEVBs, estimating the payback periods for such investments relative to electricity prices in Poland. The article concludes on the potential of SLEVBs to support self-consumption in nZEB buildings and its environmental impact on the European circular economy. Full article
Show Figures

Figure 1

22 pages, 3879 KB  
Article
Dynamic Behavior of a Glazing System and Its Impact on Thermal Comfort: Short-Term In Situ Assessment and Machine Learning-Based Predictive Modeling
by Saman Abolghasemi Moghaddam, Nuno Simões, Michael Brett, Manuel Gameiro da Silva and Joana Prata
Energies 2025, 18(17), 4656; https://doi.org/10.3390/en18174656 - 2 Sep 2025
Viewed by 694
Abstract
In the context of retrofitting existing buildings into nearly zero-energy buildings (NZEBs), in situ assessment methods have proven reliable for evaluating the performance of building components, including glazing systems. However, these methods are often time-consuming, intrusive to occupants, and disruptive to building operations. [...] Read more.
In the context of retrofitting existing buildings into nearly zero-energy buildings (NZEBs), in situ assessment methods have proven reliable for evaluating the performance of building components, including glazing systems. However, these methods are often time-consuming, intrusive to occupants, and disruptive to building operations. This study investigates the potential of a machine learning approach—multiple linear regression (MLR)—to predict the dynamic performance of an office building’s glazing system by analyzing surface temperature variations and their impact on nearby thermal comfort. The models were trained using in situ data collected over just two weeks—one in September and one in December—but were applied to predict the glazing performance on multiple other dates with diverse weather conditions. Results show that MLR predictions closely matched nighttime measurements, while some discrepancies occurred during the daytime. Nevertheless, the machine learning model achieved a daytime prediction accuracy of approximately 1.5 °C in terms of root mean square error (RMSE), which is lower than the values reported in previous studies. For thermal comfort evaluation, the MLR model identified the periods with thermal discomfort with an overall accuracy of approximately 92%. However, during periods when the difference between predicted and measured operative temperatures exceeded 1 °C, the thermal comfort predictions showed greater deviation from actual measurements. The study concludes by acknowledging its limitations and recommending a future approach that integrates machine learning with laboratory-based techniques (e.g., hot-box setups and solar simulators) and in situ measurements, together with a broader variety of glazing samples, to more effectively evaluate and enhance prediction accuracy, robustness, and generalizability. Full article
Show Figures

Figure 1

25 pages, 4102 KB  
Article
Theoretical and Simulation-Based Approach to BIPV Systems Integrated with Modular Building
by Julia Brenk, Barbara Ksit and Bożena Orlik-Kożdoń
Energies 2025, 18(16), 4457; https://doi.org/10.3390/en18164457 - 21 Aug 2025
Viewed by 700
Abstract
This study presents a simulation-based analysis of a steel modular building that integrates technologies that support the energy transition in the built environment. The focus is placed on the implementation of building-integrated photovoltaics (BIPVs), with photovoltaic modules incorporated into the façade and balcony [...] Read more.
This study presents a simulation-based analysis of a steel modular building that integrates technologies that support the energy transition in the built environment. The focus is placed on the implementation of building-integrated photovoltaics (BIPVs), with photovoltaic modules incorporated into the façade and balcony railings. Several modern photovoltaic façade systems were examined. In addition, the study considers the application of photovoltaic glazing enhanced with active quantum coatings. Seven distinct BIPV modules were analysed, each characterised by unique features, with particular emphasis on the influence of colour in tinted variants. A performance degradation analysis was conducted for railing-mounted modules with varying glass tints. The simulation results were correlated with the building’s electricity demand. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

15 pages, 2065 KB  
Article
Potential Use of Brewer’s Spent Grain By-Product as a Component for Sustainable Thermal Mortars
by Maria Manso, Joaquim Silva, Vítor Antunes, Isabel Ivo, João Canto and Cristina Guerra
Sustainability 2025, 17(16), 7557; https://doi.org/10.3390/su17167557 - 21 Aug 2025
Viewed by 618
Abstract
Buildings represent approximately 40% of the total energy consumption. Net-zero energy buildings (NZEBs) have lower energy demands than conventional buildings due to improved thermal insulation combined with other passive design strategies. Thermal mortars, used in insulating plasters, help improve buildings’ energy efficiency in [...] Read more.
Buildings represent approximately 40% of the total energy consumption. Net-zero energy buildings (NZEBs) have lower energy demands than conventional buildings due to improved thermal insulation combined with other passive design strategies. Thermal mortars, used in insulating plasters, help improve buildings’ energy efficiency in a cost-effective manner, with minimal added thickness, even on irregular surfaces. Brewer’s spent grain (BSG) accounts for 85% of the total by-products of the brewing industry. It is a cellulosic wood material, with a composition rich in protein (20%) and fiber (70%). Considering these properties, it has potential for use as a natural aggregate in mortars and as a sustainable material for buildings aligned with circular economy principles. This work aims to characterize BSG as a natural by-product for use in thermal mortars and identify different incorporation percentages. First, BSG was characterized in terms of its water content, particle size and volume mass. Then, mortars with BSG and fine sand, with different water contents, were produced and compared to a reference mortar and two commercially available thermal mortars. The performance of the mixtures was evaluated in terms of water absorption, mechanical behavior (namely, compressive and flexural strength) and thermal behavior. BSG mortars with a 0.25 w/c ratio presented a water absorption coefficient similar to that of the reference mortar. Overall, BSG mortars presented a mechanical strength profile similar to that of conventional thermal mortars. In the thermal test, the best BSG mortar (BSG75-w/c-0.25) achieved a stationary temperature difference between surfaces that was 8% lower than that of a commercial thermal mortar and 110% higher than that of the reference mortar. In sum, the best BSG mortars had a lower w/c ratio. Full article
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Sustainable Investments in Construction: Cost–Benefit Analysis Between Rehabilitation and New Building in Romania
by Tudor Panfil Toader, Marta-Ioana Moldoveanu, Daniela-Mihaiela Boca, Raluca Iștoan, Lidia Maria Lupan, Aurelia Bradu, Andreea Hegyi and Ana Boga
Buildings 2025, 15(15), 2770; https://doi.org/10.3390/buildings15152770 - 6 Aug 2025
Viewed by 670
Abstract
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show [...] Read more.
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show that both scenarios generate negative Net Present Values (NPVs) due to the social nature of the project, but the new NZEB building presents superior performance (NPV: USD –2.61 million vs. USD –3.05 million for rehabilitation) and lower operational costs (USD 1.49 million vs. USD 1.92 million over 30 years). Key financial indicators (IRR, CBR), sensitivity analysis, and discount rate variation support the conclusion that the NZEB scenario ensures greater economic resilience. This study highlights the relevance of extended LCCBA in guiding sustainable investment decisions in social infrastructure. Full article
Show Figures

Figure 1

35 pages, 3995 KB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Cited by 1 | Viewed by 1295
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

24 pages, 3365 KB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Cited by 2 | Viewed by 866
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

26 pages, 312 KB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Viewed by 391
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
19 pages, 3080 KB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Cited by 2 | Viewed by 630
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

25 pages, 1759 KB  
Article
A Comparative Evaluation of the Thermal Performance of Passive Facades with Variable Cavity Widths for Near-Zero Energy Buildings (nZEB): A Modeling Study
by Eugen Iavorschi, Laurențiu Dan Milici, Constantin Ungureanu and Ciprian Bejenar
Appl. Sci. 2025, 15(13), 7019; https://doi.org/10.3390/app15137019 - 22 Jun 2025
Cited by 1 | Viewed by 935
Abstract
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced [...] Read more.
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced thermal comfort, and improved indoor air quality. Achieving such performance requires the integration of advanced technological solutions, including passive façades with ventilated cavities. The primary objective of this study is to investigate the influence of cavity geometry on the thermal behavior of a passive façade, through numerical simulations conducted in ANSYS Fluent 17. The study focuses on comparing five distinct configurations with varying cavity widths, aiming to identify the optimal solution in terms of heat transfer efficiency. The main contribution lies in the analysis and correlation of air temperature and velocity distributions with the cavity’s geometric parameters, highlighting the impact of channel width on thermal performance. The configuration with a 12 cm wide air channel recorded the highest heat flux at the outlet, approximately 44 times greater than the façade with a 4 cm wide channel, making it the most efficient solution. The results indicate significantly higher thermal efficiency for the configuration with a larger cavity width, contrary to initial intuitive assumptions. These insights provide a valuable framework for the optimal design of passive façades in nZEB applications and highlight the need for further research, combining numerical and experimental approaches, to develop sustainable and energy-efficient building envelope solutions. Full article
(This article belongs to the Special Issue Advancements in HVAC Technologies and Zero-Emission Buildings)
Show Figures

Figure 1

28 pages, 3433 KB  
Review
Nearly Zero-Energy Buildings (NZEBs): A Systematic Review of the Current Status of Single-Family Houses in the EU
by Marek Borowski, Charith Madhuwantha Rathnayake and Klaudia Zwolińska-Glądys
Energies 2025, 18(12), 3215; https://doi.org/10.3390/en18123215 - 19 Jun 2025
Cited by 1 | Viewed by 1780
Abstract
The building sector, responsible for approximately 40% of global energy consumption, is increasingly embracing nearly zero-energy buildings (NZEBs) to promote environmental sustainability. Focusing specifically on single-family houses, this review systematically examines current NZEB practices across Europe, aiming to identify regional adaptation strategies and [...] Read more.
The building sector, responsible for approximately 40% of global energy consumption, is increasingly embracing nearly zero-energy buildings (NZEBs) to promote environmental sustainability. Focusing specifically on single-family houses, this review systematically examines current NZEB practices across Europe, aiming to identify regional adaptation strategies and highlight performance disparities. The primary research question explored is as follows: how do design strategies, renewable energy integration, and climate adaptation measures for single-family NZEBs vary across Northern, Eastern, Southern, and Western European countries? A key gap in the literature is the lack of cross-comparative analysis of regional NZEB approaches for single-family houses, despite their significant share in Europe’s housing sector. Effective NZEB implementation depends on interdisciplinary collaboration among architects, engineers, and energy experts to optimize building design elements, including orientation, envelope insulation, and HVAC systems, tailored to regional climatic conditions. A systematic analysis of case studies was conducted, synthesizing data on primary energy consumption, CO2 emissions, and building envelope performance. The findings reveal regional differences: Northern Europe exhibits primary energy consumption at 27–68 kWh/(m2·y) (mean: 48.2), Eastern Europe at 29–68 (mean: 42.5), Southern Europe at 35–42 (mean: 39.1), and Western Europe at 27–85 (mean: 51.5), with higher emissions in Eastern Europe compared to Denmark, for instance. These patterns underscore the role of climatic conditions and regulatory frameworks of the regions in shaping NZEB strategies. Despite shared goals of decarbonization and occupant comfort, significant knowledge gaps remain, particularly regarding long-term operational performance and regional comparison of other building types. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

29 pages, 3251 KB  
Article
Optimizing Energy Forecasting Using ANN and RF Models for HVAC and Heating Predictions
by Khaled M. Salem, Javier M. Rey-Hernández, A. O. Elgharib and Francisco J. Rey-Martínez
Appl. Sci. 2025, 15(12), 6806; https://doi.org/10.3390/app15126806 - 17 Jun 2025
Cited by 3 | Viewed by 814
Abstract
Industry 5.0 is transforming energy demand by integrating sustainability into energy planning, ensuring market stability while minimizing environmental impact for future generations. There are several patterns for calculating energy consumption depending on whether it is measured daily, monthly, or annually through the integration [...] Read more.
Industry 5.0 is transforming energy demand by integrating sustainability into energy planning, ensuring market stability while minimizing environmental impact for future generations. There are several patterns for calculating energy consumption depending on whether it is measured daily, monthly, or annually through the integration of artificial intelligence approaches, particularly Artificial Neural Networks (ANNs) and Random Forests (RFs), and within the framework of Industry 5.0. This study employs machine learning techniques to analyze energy consumption data from two distinct buildings in Spain: the LUCIA facility in Valladolid and the FUHEM Building in Madrid. The implementation was conducted using custom MATLAB code developed in-house. Our approach systematically evaluates and compares the predictive performance of Artificial Neural Networks (ANNs) and Random Forests (RFs) for energy demand forecasting, leveraging each algorithm’s unique characteristics to assess their suitability for this application. The performances of both models are calculated using the Root Mean Square Percentage Error (RMSPE), Root Mean Square Relative Percentage Error (RMSRPE), Mean Absolute Percentage Error (MAPE), Mean Absolute Relative Percentage Error (MARPE), Kling–Gupta Efficiency (KGE), and also the coefficient of determination, R2. Training times are validated using ANN and RF models. Lucia RF took 2.8 s, while Lucia ANN took 40 s; FUHEM RF took 0.3 s, compared to FUHEM ANN, which took 1.1 s. The performances of the two models are described in detail to show the effectiveness of each of them. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

29 pages, 1728 KB  
Article
Who Can Afford to Decarbonize? Early Insights from a Socioeconomic Model for Energy Retrofit Decision-Making
by Daniela Tavano, Francesca Salvo, Marilena De Simone, Antonio Bilotta and Francesco Paolo Del Giudice
Real Estate 2025, 2(2), 6; https://doi.org/10.3390/realestate2020006 - 11 Jun 2025
Cited by 1 | Viewed by 590
Abstract
The real estate sector is steadily moving towards zero-emission buildings, driven by EU policies to achieve near-zero energy (NZEB) buildings by 2050. In Italy, more than 70% of residential buildings fall into the lower energy classes, and this mainly affects low-income households. As [...] Read more.
The real estate sector is steadily moving towards zero-emission buildings, driven by EU policies to achieve near-zero energy (NZEB) buildings by 2050. In Italy, more than 70% of residential buildings fall into the lower energy classes, and this mainly affects low-income households. As a result, the decarbonisation of the real estate sector presents both technical and socio-economic obstacles. Building on these premises, this study introduces the Retrofit Optimization Problem (ROP), a methodological framework adapted from the Multidimensional Knapsack Problem (MdKP). This method is used in this study to conduct a qualitative analysis of accessibility to retrofit between different socio-economic groups, integrating constraints to simulate restructuring capacity based on different incomes. The results show significant disparities: although many retrofit strategies can meet regulatory energy performance targets, only a small number are financially sustainable for low-income households. In addition, interventions with the greatest environmental impact remain inaccessible to vulnerable groups. These preliminary results highlight important equity issues in the energy transition, indicating the need for specific and income-sensitive policies to prevent decarbonisation efforts from exacerbating social inequalities or increasing the risk of assets being stranded in the housing market. Full article
Show Figures

Figure 1

Back to TopTop