Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Nafion 117

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1752 KiB  
Communication
A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane
by Zhutao Zhang, Yiru Dou, Wen Zhang, Li Xu and Yuxin Wang
Membranes 2025, 15(6), 166; https://doi.org/10.3390/membranes15060166 - 2 Jun 2025
Viewed by 137
Abstract
Perfluorosulfonic acid (PFSA) membranes have found broad-ranging applications, owing to their high ionic conductivity and excellent chemical stability. However, membranes with higher mechanical strength, lower area-specific resistance, reduced swelling, less gas crossover and more affordable costs are desirable. Herein, we report on the [...] Read more.
Perfluorosulfonic acid (PFSA) membranes have found broad-ranging applications, owing to their high ionic conductivity and excellent chemical stability. However, membranes with higher mechanical strength, lower area-specific resistance, reduced swelling, less gas crossover and more affordable costs are desirable. Herein, we report on the fabrication of a fiberglass-cloth-reinforced PFSA membrane using a simple solution cast method. The breaking strength of the reinforced membrane has the potential to reach 81 MPa, which is about 6 times and 2.5 times that of its non-reinforced counterpart and the commercial Nafion 117 (N117) membrane, respectively. The area swelling ratio of the reinforced membrane is lowered to merely 3%, which is only about 1/12 that of N117, in water at 100 °C. Despite ionic conduction being hindered by the fiberglass cloth, the reinforced PFSA membrane shows an area-specific resistance of only 0.069 Ω·cm2, which is 58% lower than that of N117, under 80 °C and 100% humidity. This research provides a promising technological pathway for the development of high-performance ionic conductive membranes. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

12 pages, 3077 KiB  
Article
Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime
by Galin Borisov, Nevelin Borisov and Evelina Slavcheva
Hydrogen 2025, 6(1), 14; https://doi.org/10.3390/hydrogen6010014 - 6 Mar 2025
Viewed by 805
Abstract
This study presents the integration and evaluation of commercially available gas diffusion electrodes (GDEs), specifically designed for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) within membrane electrode assemblies (MEA) for electrochemical hydrogen pump/compressor applications (EHP/C). Using Nafion 117 as a solid polymer electrolyte, [...] Read more.
This study presents the integration and evaluation of commercially available gas diffusion electrodes (GDEs), specifically designed for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) within membrane electrode assemblies (MEA) for electrochemical hydrogen pump/compressor applications (EHP/C). Using Nafion 117 as a solid polymer electrolyte, the MEAs were analyzed for cell efficiency, hydrogen evolution, and hydrogen oxidation reactions (HER and HOR) under differential pressure up to 16 bar and a temperature ranging from 20 °C to 60 °C. Key properties of the GDEs, such as electrode thickness and conductivity, were investigated. The catalytic layer was characterized via XRD and EDX analyses to assess its surface and bulk composition. Additionally, the effects of increasing MEA’s geometric size (from 1 cm2 to 5 cm2) and hydrogen crossover phenomena on the efficiency were examined in a single-cell setup. Electrochemical performance tests conducted in a single electrochemical hydrogen pump/compressor cell under hydrogen flow rates from 36.6 Ml·min⁻1·cm⁻2 to 51.3 mL·min⁻1 cm⁻2 at atmospheric pressure provided insights into the optimal operational parameters. For a double-stage application, the MEAs demonstrated enhanced current densities, achieving up to 0.6 A·cm⁻2 at room temperature with further increases to 1 A·cm⁻2 at elevated temperatures. These results corroborated the single-cell data, highlighting potential improvements in system efficiency and a reduction in adverse effects. The work underscores the potential of HT-PEMFC-based GDEs for the integration of MEAs applicable to advanced hydrogen compression technologies. Full article
Show Figures

Figure 1

13 pages, 6895 KiB  
Article
Catalytic Activity of Pt/Pd Mono- and Bimetallic Catalysts in Electrochemical Hydrogen Pump/Compressor
by Nevelin Borisov, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2025, 13(2), 48; https://doi.org/10.3390/inorganics13020048 - 7 Feb 2025
Viewed by 698
Abstract
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the [...] Read more.
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the morphology and surface structure was conducted through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) analyses. The electrochemical performance and catalytic activity against the hydrogen evolution reaction (HER) were assessed in a three-electrode cell for screening purposes, as well as in a prototype cell of an electrochemical hydrogen pump/compressor (EHP/C) where the catalysts served as cathodes, while the anode was Pt/XC72 40% wt. with 0.38 mgPt·cm−2 within a membrane electrode assembly (MEA) with a 180 µm thick Nafion 117 proton-conductive membrane. The results obtained indicated superior catalytic activity of the bimetallic catalysts in comparison to the pure metal samples. Further electrochemical tests in an EHP/C cell at varying differential pressures in the range of 0–3 bar revealed stable behavior and high current density, reaching approximately 0.7 A cm−2 at 60 °C. The accelerated durability tests performed demonstrated excellent stability of the synthesized composite catalysts. These findings underscore the potential of Pt-Pd nanoparticles as efficient catalysts with sustainable performance for electrochemical hydrogen pumping/compressing applications. Full article
Show Figures

Figure 1

23 pages, 5879 KiB  
Article
The Development and Analysis of a Preliminary Electrodialysis Process for the Purification of Complex Lithium Solutions for the Production of Li2CO3 and LiOH
by Alonso González, Geovanna Choque, Mario Grágeda and Svetlana Ushak
Membranes 2025, 15(2), 50; https://doi.org/10.3390/membranes15020050 - 5 Feb 2025
Viewed by 1609
Abstract
Direct lithium extraction (DLE) is emerging as a promising alternative to brine extraction although it requires further processing to obtain high-quality products suitable for various applications. This study focused on developing a process to concentrate and purify complex LiCl solutions obtained through direct [...] Read more.
Direct lithium extraction (DLE) is emerging as a promising alternative to brine extraction although it requires further processing to obtain high-quality products suitable for various applications. This study focused on developing a process to concentrate and purify complex LiCl solutions obtained through direct lithium extraction (DLE). Two different chemical compositions of complex LiCl solutions were used, dividing the study into three stages. In the first part, lithium was concentrated to 1% by mass by evaporation. In the second, electrodialysis was used to alkalinize the LiCl solution and remove magnesium and calcium impurities under different current densities. The best results obtained were magnesium and calcium removals of 99.8% and 98.0%, respectively, and lithium recoveries of 99% and 96%. In the third stage, the selectivity of two different commercial cationic membranes (Nafion 117 and Neosepta CMS) was evaluated to separate Li+, K+, and Na+ cations under different current densities and volumetric flow rates. The Neosepta CMS membrane demonstrated higher lithium recovery. This study evaluated the quality of the purified lithium-rich solution and its potential use both in the production of Li2CO3 as well as in the electrochemical production of LiOH. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

21 pages, 6239 KiB  
Article
Electrochemical Sensor for Hydrogen Leakage Detection at Room Temperature
by Gimi Aurelian Rîmbu, Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Carmen Alina Ștefănescu, Mihai Iordoc, Aristofan Alexandru Teișanu and Gabriela Telipan
Sensors 2025, 25(1), 264; https://doi.org/10.3390/s25010264 - 5 Jan 2025
Cited by 1 | Viewed by 1785
Abstract
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate [...] Read more.
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H2. The sensing material consists of a catalyst type Vulcan XC72 40% Pt, from FuelCellStore, (Bryan, TX, USA). The sensing element is based on a membrane electrode assembly (MEA) system that includes a cathode electrode, an ion-conducting membrane type Nafion 117, from FuelCellStore, (Bryan, TX, USA). and an anode electrode mounted in a coin cell type CR2016, from Xiamen Tob New Energy Technology Co., Ltd, (Xiamen City, Fujian Province, China). The electronic block for electrical signal conditioning, which is delivered by the sensing element, uses an INA111, from Burr-Brown by Texas Instruments Corporation, (Dallas, TX, USA). instrumentation operational amplifier. The main characteristics of the electrochemical sensor for hydrogen leakage detection are operation at room temperature so it does not require a heater, maximum amperometric response time of 1 s, fast recovery time of maximum 1 s, and extended range of hydrogen concentrations detection in a range of up to 20%. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

15 pages, 5568 KiB  
Article
A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design
by Liying Ma, Hongxia Song, Xiaofei Gong, Lu Chen, Jiangning Gong, Zhijiao Chen, Jing Shen and Manqi Gu
Polymers 2024, 16(17), 2480; https://doi.org/10.3390/polym16172480 - 30 Aug 2024
Viewed by 1144
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with [...] Read more.
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10−7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton’s reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 2761 KiB  
Article
CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries
by Yi-Sin Chou, Nitika Devi, Yan-Ting Lin, Amornchai Arpornwichanop and Yong-Song Chen
Materials 2024, 17(13), 3232; https://doi.org/10.3390/ma17133232 - 1 Jul 2024
Viewed by 1382
Abstract
Vanadium redox flow batteries (VRFBs) are of considerable importance in large-scale energy storage systems due to their high efficiency, long cycle life and easy scalability. In this work, chemical vapor deposition (CVD) grown carbon nanotubes (CNTs)-modified electrodes and Nafion 117 membrane are utilised [...] Read more.
Vanadium redox flow batteries (VRFBs) are of considerable importance in large-scale energy storage systems due to their high efficiency, long cycle life and easy scalability. In this work, chemical vapor deposition (CVD) grown carbon nanotubes (CNTs)-modified electrodes and Nafion 117 membrane are utilised for formulating a vanadium redox flow battery (VRFB). In a CVD chamber, the growth of CNTs is carried out on an acid-treated graphite felt surface. Cyclic voltammetry of CNT-modified electrode and acid-treated electrode revealed that CNTs presence improve the reaction kinetics of V3+/V2+ and VO2+/VO2+ redox pairs. Battery performance is recorded for analysing, the effect of modified electrodes, varying electrolyte flow rates, varying current densities and effect of removing the current collector plates. CNTs presence enhance the battery performance and offered 96.30% of Coulombic efficiency, 79.33% of voltage efficiency and 76.39% of energy efficiency. In comparison with pristine electrodes, a battery consisting CNTs grown electrodes shows a 14% and 15% increase in voltage efficiency and energy efficiency, respectively. Battery configured without current collector plates performs better as compared to with current collector plates which is possibly due to decrease in battery resistance. Full article
Show Figures

Figure 1

17 pages, 6335 KiB  
Article
Overcoming the Trade-Off between Methanol Rejection and Proton Conductivity via Facile Synthesis of Crosslinked Sulfonated PEEK Proton Exchange Membranes
by Stef Depuydt, Lucy Traub, Gilles Van Eygen, Santosh Kumar, Georg Held and Bart Van der Bruggen
Appl. Sci. 2024, 14(7), 3089; https://doi.org/10.3390/app14073089 - 7 Apr 2024
Cited by 3 | Viewed by 1906
Abstract
In this work, homogeneous, thin-film proton exchange membranes (PEMs) with superior proton conductivities and high methanol rejection were fabricated via a facile synthesis procedure. Sulfonated polyether ether ketone (sPEEK) was crosslinked via a Friedel–Crafts reaction by α,α′-dichloro-p-xylene, a non-hazardous and hydrophobic compound. PEMs [...] Read more.
In this work, homogeneous, thin-film proton exchange membranes (PEMs) with superior proton conductivities and high methanol rejection were fabricated via a facile synthesis procedure. Sulfonated polyether ether ketone (sPEEK) was crosslinked via a Friedel–Crafts reaction by α,α′-dichloro-p-xylene, a non-hazardous and hydrophobic compound. PEMs with varying crosslinking and sulfonation degrees were fabricated to overcome the traditional trade-off between methanol rejection and proton conductivity. The sulfonation of PEEK at 60 °C for 24 h resulted in a sulfonation degree of 56%. Those highly sulfonated backbones, in combination with a low membrane thickness (ca. 20 µm), resulted in proton conductivities superior to Nafion 117. Furthermore, X-ray photoelectron spectroscopy proved it was possible to control the crosslinking degree via the crosslinking time and temperature. The PEMs with the highest crosslinking degree showed better methanol rejection compared to the commercial benchmark. The introduction of the crosslinker created hydrophobic membrane sections, which reduced the water and methanol uptake. Subsequently, the membrane became denser due to the crosslinking, hindering the solute permeation. Those two effects led to lower methanol crossovers. This study proved the successful fabrication of PEMs overcoming the trade-off between proton conductivity and methanol rejection, following a facile procedure using low-cost and non-hazardous materials. Full article
(This article belongs to the Special Issue Advances in Fuel Cell Renewable Hybrid Power Systems)
Show Figures

Figure 1

18 pages, 5864 KiB  
Article
Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation
by Rudzani Sigwadi and Fulufhelo Nemavhola
Membranes 2023, 13(12), 887; https://doi.org/10.3390/membranes13120887 - 23 Nov 2023
Cited by 2 | Viewed by 2660
Abstract
PVA (polyvinyl alcohol)-ZrP (PVA/ZrP) and Nafion®/PVA-ZrP nanocomposite membranes were synthesised using the recasting method with glutaraldehyde (GA) as a crosslinking agent. The resulting nanocomposite membranes were characterised using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and [...] Read more.
PVA (polyvinyl alcohol)-ZrP (PVA/ZrP) and Nafion®/PVA-ZrP nanocomposite membranes were synthesised using the recasting method with glutaraldehyde (GA) as a crosslinking agent. The resulting nanocomposite membranes were characterised using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results of SEM revealed well-distributed zirconia phosphate (ZrP) within the membrane matrix, and the SEM images showed a uniform and dense membrane structure. Because ZrP nanoparticles are hydrophilic, the Nafion®/PVA-ZrP nanocomposite membrane had a higher water uptake of 53% at 80 °C and higher 0.19 S/cm proton conductivity at room temperature than the commercial Nafion® 117 membrane, which had only 34% and 0.113 S/cm, respectively. In comparison to commercial Nafion® 117 membranes, PVA-ZrP and Nafion®/PVA-ZrP nanocomposite membranes had a higher thermal stability and mechanical strength and lower methanol crossover due to the hydrophilic effect of PVA crosslinked with GA, which can make strong hydrogen bonds and cause an intense intramolecular interaction. Full article
Show Figures

Figure 1

20 pages, 6456 KiB  
Article
Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications
by Wu Hao, Sang-Hun Lee and Shaik Gouse Peera
Nanomaterials 2023, 13(22), 2949; https://doi.org/10.3390/nano13222949 - 15 Nov 2023
Cited by 5 | Viewed by 1876
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are [...] Read more.
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation. Full article
Show Figures

Figure 1

16 pages, 9115 KiB  
Article
Assessment of Graphite, Graphene, and Hydrophilic-Treated Graphene Electrodes to Improve Power Generation and Wastewater Treatment in Microbial Fuel Cells
by Fátima Borja-Maldonado and Miguel Ángel López Zavala
Bioengineering 2023, 10(3), 378; https://doi.org/10.3390/bioengineering10030378 - 19 Mar 2023
Cited by 5 | Viewed by 2659
Abstract
In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to [...] Read more.
In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to deionized water in the cathodic chamber. Domestic wastewater was used as a substrate, and a DuPontTM Nafion 117 membrane was used as a proton exchange membrane. The maximum power density of 32.07 mW·m2 was obtained using hydrophilic-treated graphene electrodes and hydrochloric acid as catholyte. This power density was 1.4-fold and 32-fold greater than that of graphene (22.15 mW·m2) and graphite (1.02 mW·m2), respectively, under the same operational conditions. In addition, the maximum organic matter removal efficiencies of 69.8% and 75.5% were obtained using hydrophilic-treated graphene electrodes, for hydrochloric acid catholyte and deionized water, respectively. Therefore, the results suggest that the use of hydrophilic-treated graphene functioning as electrodes in DC-MFCs, and hydrochloric acid as a catholyte, favored power density when domestic wastewater is degraded. This opens up new possibilities for improving DC-MFC performance through the selection of suitable new electrode materials and catholytes. Full article
Show Figures

Graphical abstract

12 pages, 2781 KiB  
Article
Electrochemical Conversion of CO2 to CO Utilizing Quaternized Polybenzimidazole Anion Exchange Membrane
by Jingfeng Li, Zeyu Cao, Bo Zhang, Xinai Zhang, Jinchao Li, Yaping Zhang and Hao Duan
Membranes 2023, 13(2), 166; https://doi.org/10.3390/membranes13020166 - 29 Jan 2023
Cited by 4 | Viewed by 2542
Abstract
CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with [...] Read more.
CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with different quaternization degrees are prepared for application in ECR. Among all QAPBI membranes, the QAPBI-2 membrane exhibits optimized physico-chemical properties. In addition, the QAPBI-2 membrane shows higher a Faraday efficiency and CO partial current density compared with commercial Nafion 117 and FAA-3-PK-130 membranes, at −1.5 V (vs. RHE) in an H-type cell. Additionally, the QAPBI-2 membrane also has a higher Faraday efficiency and CO partial current density compared with Nafion 117 and FAA-3-PK-130 membranes, at −3.0 V in a membrane electrode assembly reactor. It is worth noting that the QAPBI-2 membrane also has excellent ECR stability, over 320 h in an H-type cell. This work illustrates a promising pathway to obtaining cost-effective membranes through a molecular structure regulation strategy for ECR application. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
Show Figures

Figure 1

13 pages, 1162 KiB  
Article
Tailoring the Performance of a Nafion 117 Humidity Chipless RFID Sensor: The Choice of the Substrate
by Giada Marchi, Viviana Mulloni, Fabio Acerbi, Massimo Donelli and Leandro Lorenzelli
Sensors 2023, 23(3), 1430; https://doi.org/10.3390/s23031430 - 27 Jan 2023
Cited by 13 | Viewed by 2292
Abstract
Chipless radio-frequency identification (RFID) sensors are not yet widespread in practical applications because of their limited sensitivity and selectivity when compared to more mature sensing technologies. The search for a suitable material to perform the sensing function has often been focused on the [...] Read more.
Chipless radio-frequency identification (RFID) sensors are not yet widespread in practical applications because of their limited sensitivity and selectivity when compared to more mature sensing technologies. The search for a suitable material to perform the sensing function has often been focused on the most common materials used in electrochemical sensing approaches, but little work has been done to directly relate the performances of chipless or microwave sensors to the characteristics of the materials used to fabricate them. In this work we are simulating the impact of the substrate material on the performances of a chipless RFID sensor for humidity detection. The dielectric parameters of the substrate material turn out to be very important to maximize the sensor performances, in relation to the operative range of the sensor (based on the desired application) and to the effective dielectric properties of the sensitive material used, we verify the simulated results with measurements of real chipless humidity cells with Nafion 117 sensitive material. We show which types of substrate are preferable for low-humidity detection and which substrates’ features are instead fundamental to operate in a wider humidity range. Full article
Show Figures

Figure 1

12 pages, 2760 KiB  
Article
Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid
by Eduardo Gaya, Nieves Menendez, Eva Mazario and Pilar Herrasti
Chemosensors 2023, 11(2), 79; https://doi.org/10.3390/chemosensors11020079 - 20 Jan 2023
Cited by 19 | Viewed by 3068
Abstract
A simple electrochemical sensor based on electrochemically synthesized Fe3O4 nanoparticles was constructed by an ink with the nanoparticles, isopropanol, NAFION and carbon Vulcan to detect dopamine, uric acid and ascorbic acid. The electrocatalytic activity of the nanoparticles for the oxidation [...] Read more.
A simple electrochemical sensor based on electrochemically synthesized Fe3O4 nanoparticles was constructed by an ink with the nanoparticles, isopropanol, NAFION and carbon Vulcan to detect dopamine, uric acid and ascorbic acid. The electrocatalytic activity of the nanoparticles for the oxidation of the analyte molecules was examined by means of cyclic voltammetry and square wave voltammetry. The parameters controlling the performance of the sensor were optimized, such as the amount of Fe3O4 nanoparticles (1, 2, 3, 5, 8, 10 mg), amount of binder (5, 10, 15 µL) and carbon Vulcan in the ink (4, 6, 8 mg). The temperature was maintained at 25 °C and the pH was 7.5 with buffer phosphate. The optimal sensor conditions were 8 mg magnetite, 4 mg carbon Vulcan and 5 µL of NAFION@ 117. The calibration curves for the three analytes were determined separately, obtaining linear ranges of 10–100, 20–160 and 1050–2300 µM and limits of detection of 4.5, 14 and 95 µM for dopamine, uric acid and ascorbic acid, respectively. This electrochemical sensor has also shown significant sensitivity and selectivity without interference from the three analyte molecules presented simultaneously in solution. This sensor was applied for the detection of these molecules in real samples. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors with Nanocomponents)
Show Figures

Figure 1

20 pages, 5406 KiB  
Article
Performance Analysis and Monitoring of Vanadium Redox Flow Battery via Polarization curves
by Kannika Onyu, Rungsima Yeetsorn, Jeff Gostick and Saksitt Chitvuttichot
Appl. Sci. 2022, 12(22), 11702; https://doi.org/10.3390/app122211702 - 17 Nov 2022
Cited by 6 | Viewed by 4534
Abstract
This article proposes the demonstration and deployment of a hand-tailored vanadium redox flow battery test station to investigate the effect of applied voltages on charging performance for electrolyte preparation and the effect of reactant flow rates on the balance of system capacity. Herein, [...] Read more.
This article proposes the demonstration and deployment of a hand-tailored vanadium redox flow battery test station to investigate the effect of applied voltages on charging performance for electrolyte preparation and the effect of reactant flow rates on the balance of system capacity. Herein, the two different specifications of membranes and a number of electrode layers playing pivotal roles in the discharging characteristics of the VRFB were observed as well. Results indicated that 1.70 V of the charging voltage was suitable, when optimized voltage was considered from charging time, current, and the mole of electrons. The optimized flow rate (10 mL/min) must be controlled since it corresponds to mass transfer and electrolyte diffusion, resulting in reaction ability on electrode surfaces. The number of layers influenced active areas and the diffusion of electrolytes. Nafion 212 provided superior performance to Nafion 117, because it possessed lower ohmic resistance and allowed for easier proton transfer. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop