Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Oncomelania hupensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1490 KB  
Article
Development of a SYBR Green-Based Real-Time PCR Assay to Detect Oncomelania hupensis quadrasi DNA in Environmental Water Samples
by Daria L. Manalo, Jude Karlo G. Bolivar, Karl Ian T. Ermino, Jeromir G. Bondoc, Mark Joseph M. Espino, Efraim P. Panganiban, Kathyleen S. Nogrado, Raffy Jay C. Fornillos, Mario A. Jiz, Lydia R. Leonardo and Ian Kendrich C. Fontanilla
Trop. Med. Infect. Dis. 2025, 10(5), 140; https://doi.org/10.3390/tropicalmed10050140 - 20 May 2025
Viewed by 734
Abstract
Oncomelania hupensis quadrasi is the intermediate host of S. japonicum, the causative species of schistosomiasis in the Philippines. Conventionally, risk areas are identified by procedures requiring highly skilled personnel and constant surveillance efforts. Recent developments in disease diagnostics explore the utilization of [...] Read more.
Oncomelania hupensis quadrasi is the intermediate host of S. japonicum, the causative species of schistosomiasis in the Philippines. Conventionally, risk areas are identified by procedures requiring highly skilled personnel and constant surveillance efforts. Recent developments in disease diagnostics explore the utilization of environmental DNA as targets for polymerase chain reactions in disease surveillance. In this study, a low-cost, specific, and efficient SYBR Green-based real-time PCR assay to detect O. h. quadrasi DNA from water samples was developed, optimized, and validated. Primers were designed based on the A18 microsatellite region of O. h. quadrasi. The assay exhibited a detection limit of one copy number per microliter at 99.4% efficiency and R2 = 0.999, which specifically amplified O. h. quadrasi DNA only. Validation of this assay in environmental water samples demonstrated 100% PPV and NPV values, suggesting its potential as a tool for identifying risk areas, pathogen-directed surveillance, policy making, and disease control. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

18 pages, 4931 KB  
Article
Predicting Climate Change Impact on the Habitat Suitability of the Schistosoma Intermediate Host Oncomelania hupensis in the Yangtze River Economic Belt of China
by Yimiao Li, Mingjia Guo, Jie Jiang, Renlong Dai, Ansa Rebi, Zixuan Shi, Aoping Mao, Jingming Zheng and Jinxing Zhou
Biology 2024, 13(7), 480; https://doi.org/10.3390/biology13070480 - 27 Jun 2024
Cited by 2 | Viewed by 1760
Abstract
Oncomelania hupensis is the exclusive intermediary host of Schistosoma japonicum in China. The alteration of O. hupensis habitat and population distribution directly affects the safety of millions of individuals residing in the Yangtze River Economic Belt (YREB) and the ecological stability of Yangtze [...] Read more.
Oncomelania hupensis is the exclusive intermediary host of Schistosoma japonicum in China. The alteration of O. hupensis habitat and population distribution directly affects the safety of millions of individuals residing in the Yangtze River Economic Belt (YREB) and the ecological stability of Yangtze River Basin. Therefore, it is crucial to analyze the influence of climate change on the distribution of O. hupensis in order to achieve accurate control over its population. This study utilized the MaxEnt model to forecast possible snail habitats by utilizing snail distribution data obtained from historical literature. The following outcomes were achieved: The primary ecological factors influencing the distribution of O. hupensis are elevation, minimum temperature of the coldest month, and precipitation of wettest month. Furthermore, future climate scenarios indicate a decrease in the distribution area and a northward shift of the distribution center for O. hupensis; specifically, those in the upstream will move northeast, while those in the midstream and downstream will move northwest. These changes in suitable habitat area, the average migration distance of distribution centers across different climate scenarios, time periods, and sub-basins within the YREB, result in uncertainty. This study offers theoretical justification for the prevention and control of O. hupensis along the YREB. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

12 pages, 2315 KB  
Article
From Perpetual Wetness to Soil Chemistry: Enumerating Environmental and Physicochemical Factors Favoring Oncomelania hupensis quadrasi Snail Presence in the Municipality of Gonzaga, Cagayan, Philippines
by Daria L. Manalo, Jude Karlo G. Bolivar, Paul Raymund Yap, Ma. Ricci R. Gomez, Zaldy P. Saldo, Mark Joseph M. Espino, Joselito E. Dilig, Raffy Jay C. Fornillos, Shirlyn A. Perez, Regie A. Baga, Louie S. Sunico, Ian Kendrich C. Fontanilla and Lydia R. Leonardo
Trop. Med. Infect. Dis. 2024, 9(1), 9; https://doi.org/10.3390/tropicalmed9010009 - 29 Dec 2023
Cited by 5 | Viewed by 4105
Abstract
Snail control to complement mass drug administration is being promoted by the World Health Organization for schistosomiasis control. Oncomelania hupensis quadrasi, the snail intermediate host of Schistosoma japonicum in the Philippines, has a very focal distribution; thus, scrutinizing baseline data and parameters [...] Read more.
Snail control to complement mass drug administration is being promoted by the World Health Organization for schistosomiasis control. Oncomelania hupensis quadrasi, the snail intermediate host of Schistosoma japonicum in the Philippines, has a very focal distribution; thus, scrutinizing baseline data and parameters affecting this distribution is very crucial. In this study in Gonzaga, Cagayan, Philippines, snail habitats were surveyed, and the various factors affecting the existence of the snails were determined. Malacological surveys and the mapping of sites of perpetual wetness in five endemic and five neighboring non-endemic barangays were conducted. Environmental and physicochemical factors were also examined. Maps of both snail and non-snail sites were generated. Of the fifty sites surveyed, O. h. quadrasi were found in twelve sites, and two sites yielded snails that were infected with S. japonicum cercariae. Factors such as silty loam soil, proximity to a snail site, water ammonia, and soil attributes (organic matter, iron, and pH) are all significantly associated with the presence of snails. In contrast, types of habitats, temperatures, and soil aggregation have no established association with the existence of snails. Mapping snail sites and determining factors favoring snail presence are vital to eliminating snails. These approaches will significantly maximize control impact and minimize wasted efforts and resources, especially in resource-limited schistosomiasis endemic areas. Full article
(This article belongs to the Special Issue Status and Perspective of Asian Schistosomiasis)
Show Figures

Figure 1

10 pages, 2516 KB  
Article
Oncomelania hupensis Distribution and Schistosomiasis Transmission Risk in Different Environments under Field Conditions
by Yinlong Li, Suying Guo, Hui Dang, Lijuan Zhang, Jing Xu and Shizhu Li
Trop. Med. Infect. Dis. 2023, 8(5), 242; https://doi.org/10.3390/tropicalmed8050242 - 23 Apr 2023
Cited by 4 | Viewed by 2460
Abstract
The goal of schistosomiasis prevention and control in China is shifting from transmission interruption to elimination. However, the area inhabited by the intermediate host, the snail Oncomelania hupensis, has not changed much in recent years. Different environmental types have different impacts on [...] Read more.
The goal of schistosomiasis prevention and control in China is shifting from transmission interruption to elimination. However, the area inhabited by the intermediate host, the snail Oncomelania hupensis, has not changed much in recent years. Different environmental types have different impacts on snail breeding, and understanding these differences is conducive to improving the efficiency of snail monitoring and control and to saving resources. Based on previous epidemiological data, we selected 199 villages in 2020 and 269 villages in 2021 from transmission control, transmission interruption, and elimination areas of snail breeding. Snail surveys were conducted in selected villages using systematic sampling and/or environmental sampling methods in six types of snail-breeding environments (canals, ponds, paddy fields, dry lands, bottomlands, and undefined environments). All live snails collected from the field were evaluated for Schistosoma japonicum infection using the microscopic dissection method, and a subsample of snails was subjected to loop-mediated isothermal amplification (LAMP) to assess the presence of S. japonicum infection. Snail distribution data and infection rate and nucleic acid positive rate of schistosomes in snails were calculated and analyzed. The 2-year survey covered 29,493 ha of the environment, in which 12,313 ha of snail habitats were detected. In total, 51.16 ha of new snail habitats and 107.76 ha of re-emergent snail habitats were identified during the survey. The occurrence rate of snails in canals (10.04%, 95% CI: 9.88–10.20%) and undefined environments (20.66%, 95% CI: 19.64–21.67%) was relatively high in 2020, and the density of snails in bottomlands (0.39, 95% CI: 0.28–0.50) and undefined environments (0.43, 95% CI: 0.14–1.60) was relatively high in 2021. Of the 227,355 live snails collected in this study, none were S. japonicum-positive as determined by microscopy. Of the 20,131 pooled samples, however, 5 were S. japonicum-positive based on LAMP analysis, and they were distributed in three environmental types: 3 in bottomland, 1 in dry land, and 1 in a canal. The bottomland environment has a high risk of schistosomiasis transmission because it contains a large area of newly emerging and re-emerging snail habitats, and it also had the most breeding snails infected with S. japonicum. Thus, this habitat type should be the key target for snail monitoring and early warning and for the prevention and control of schistosomiasis. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

12 pages, 856 KB  
Article
Impact of the National Wetland Park in the Poyang Lake Area on Oncomelania hupensis, the Intermediate Host of Schistoma japonicum
by Zhaojun Li, Yusong Wen, Dandan Lin, Fei Hu, Qin Wang, Yinlong Li, Jing Zhang, Kexing Liu and Shizhu Li
Trop. Med. Infect. Dis. 2023, 8(4), 194; https://doi.org/10.3390/tropicalmed8040194 - 27 Mar 2023
Cited by 3 | Viewed by 1727
Abstract
In this study, we aimed to understand the influence of ecotourism on the distribution of Oncomelania hupensis and to provide a scientific basis for formulating effective snail control methods in tourism development areas. Poyang Lake National Wetland Park was selected as the pilot [...] Read more.
In this study, we aimed to understand the influence of ecotourism on the distribution of Oncomelania hupensis and to provide a scientific basis for formulating effective snail control methods in tourism development areas. Poyang Lake National Wetland Park was selected as the pilot area, and sampling surveys were conducted based on comprehensive and detailed investigations of all historical and suspected snail environments according to map data to determine the snail distribution and analyze the impact of tourism development. The results showed that from 2011 to 2021, the positive rates of blood tests and fecal tests tended to decrease among residents of the Poyang Lake area. The positive rates of blood tests and fecal tests in livestock also tended to decrease. The average density of O. hupensis snails decreased, and no schistosomes were detected during infection monitoring in Poyang Lake. The local economy rapidly grew after the development of tourism. The development of ecotourism projects in Poyang Lake National Wetland Park increased the transfer frequency of boats, recreational equipment, and people, but it did not increase the risk of schistosomiasis transmission or the spread of O. hupensis snails. Prevention and monitoring only need to be strengthened in low-endemic schistosomiasis areas to effectively promote economic development due to tourism activities without affecting the health of residents. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

13 pages, 3283 KB  
Article
The Current Distribution of Oncomelania hupensis Snails in the People’s Republic of China Based on a Nationwide Survey
by Chao Lv, Yin-Long Li, Wang-Ping Deng, Zi-Ping Bao, Jing Xu, Shan Lv, Shi-Zhu Li and Xiao-Nong Zhou
Trop. Med. Infect. Dis. 2023, 8(2), 120; https://doi.org/10.3390/tropicalmed8020120 - 14 Feb 2023
Cited by 13 | Viewed by 2580
Abstract
Schistosomiasis is a helminth infection caused by the genus Schistosoma, which is still a threat in tropical and sub-tropical areas. In the China, schistosomiasis caused by Schistosoma japonicum is mainly endemic to the Yangtze River valley. The amphibious snail Oncomelania hupensis ( [...] Read more.
Schistosomiasis is a helminth infection caused by the genus Schistosoma, which is still a threat in tropical and sub-tropical areas. In the China, schistosomiasis caused by Schistosoma japonicum is mainly endemic to the Yangtze River valley. The amphibious snail Oncomelania hupensis (O. hupensis) is the unique intermediate host of S. japonicum; hence, snail control is a crucial approach in the process of schistosomiasis transmission control and elimination. In 2016, a nationwide snail survey was conducted involving all snail habitats recorded since 1950 in all endemic counties of 12 provinces. A total of 53,254 existing snail habitats (ESHs) were identified, presenting three clusters in Sichuan Basin, Dongting Lake, and Poyang Lake. The overall habitat area was 5.24 billion m2, of which 3.58 billion m2 were inhabited by O. hupensis. The area inhabited by snails (AIS) in Dongting and Poyang Lakes accounted for 76.53% of the population in the country. Three typical landscape types (marshland and lakes, mountains and hills, and plain water networks) existed in endemic areas, and marshland and lakes had a predominant share (3.38 billion m2) of the AIS. Among the 12 endemic provinces, Hunan had a share of nearly 50% of AIS, whereas Guangdong had no ESH. Ditches, dryland, paddy fields, marshland, and ponds are common habitat types of the ESH. Although the AIS of the marshland type accounted for 87.22% of the population in the whole country, ditches were the most common type (35,025 or 65.77%) of habitat. Six categories of vegetation for ESHs were identified. A total of 39,139 habitats were covered with weeds, accounting for 55.26% of the coverage of the area. Multiple vegetation types of snail habitats appeared in the 11 provinces, but one or two of these were mainly dominant. Systematic sampling showed that the presence of living snails was 17.88% among the 13.5 million sampling frames. The occurrence varied significantly by landscape, environment, and vegetation type. The median density of living snails in habitats was 0.50 per frame (0.33 m × 0.33 m), and the highest density was 40.01 per frame. Furthermore, two main clusters with high snail densities and spatial correlations indicated by hotspot analysis were identified: one in Hunan and Hubei, the other in Sichuan. This national survey is the first full-scale census on the distribution of O. hupensis, which is significant, as transmission interruption and elimination are truly becoming the immediate goal of schistosomiasis control in China. The study discerns the detailed geographic distribution of O. hupensis with the hotspots of snail density in China. It is beneficial to understand the status of the snail population in order to finally formulate further national control planning. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

13 pages, 3926 KB  
Article
Unraveling the Variation Pattern of Oncomelania hupensis in the Yangtze River Economic Belt Based on Spatiotemporal Analysis
by Lu Li, Lijuan Zhang, Yinlong Li, Zhong Hong, Qiang Wang, Wangping Deng, Shizhu Li and Jing Xu
Trop. Med. Infect. Dis. 2023, 8(2), 71; https://doi.org/10.3390/tropicalmed8020071 - 18 Jan 2023
Viewed by 2746
Abstract
The construction of the Yangtze River Economic Belt (YEB) is a great national economic development strategy in China. As the YEB covers most endemic provinces of schistosomiasis japonica featured by low endemicity, this study aimed to investigate the spatiotemporal distribution pattern of Oncomelania [...] Read more.
The construction of the Yangtze River Economic Belt (YEB) is a great national economic development strategy in China. As the YEB covers most endemic provinces of schistosomiasis japonica featured by low endemicity, this study aimed to investigate the spatiotemporal distribution pattern of Oncomelania hupensis (O. hupensis), which serves as the only intermediate host of Schistosoma japonicum in the YEB. Annual data reflecting the distribution of O. hupensis from 2015 to 2021 were collected from the National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention. Spatial autocorrelation analysis, hotspot analysis and space–time scan analysis were performed to explore the aggregation features and spatiotemporal dynamics of the snail distribution. The distribution of both total snail habitats (during 2015–2021) and emerging snail habitats (in 2016, 2018 and 2020) showed spatial autocorrelation (Z = 15.8~16.1, p < 0.05; Z = 2.3~7.5, p < 0.05). Hotspot (high-value areas in space) counties were mainly clustered in the alluvial plain of the middle and lower reaches of the YEB. Eight spatial and temporal clusters of snail habitats were scanned and were mainly concentrated in the counties of Anhui, Jiangxi, Hubei, Hunan and Jiangsu provinces along the Yangtze River. The YEB carries a tremendous burden of O. hupensis. Surveillance and risk identification based on the snail presence should be strengthened to provide reference for protecting humans and public health security in the YEB. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

12 pages, 2768 KB  
Article
Population Genetics of Oncomelania hupensis Snails from New-Emerging Snail Habitats in a Currently Schistosoma japonicum Non-Endemic Area
by Yu-Heng Cheng, Meng-Tao Sun, Ning Wang, Chang-Zhe Gao, Han-Qi Peng, Jie-Ying Zhang, Man-Man Gu and Da-Bing Lu
Trop. Med. Infect. Dis. 2023, 8(1), 42; https://doi.org/10.3390/tropicalmed8010042 - 5 Jan 2023
Cited by 5 | Viewed by 2713
Abstract
Schistosomiasis is still one of the most significant neglected tropical diseases worldwide, and China is endemic for Schistosoma japonicum. With its great achievement in schistosomiasis control, the government of China has set the goal to eliminate the parasitic disease at the country [...] Read more.
Schistosomiasis is still one of the most significant neglected tropical diseases worldwide, and China is endemic for Schistosoma japonicum. With its great achievement in schistosomiasis control, the government of China has set the goal to eliminate the parasitic disease at the country level by 2030. However, one major challenge is the remaining huge areas of habitats for the intermediate host Oncomelania hupensis. This is further exacerbated by an increasing number of new emerging snail habitats reported each year. Therefore, population genetics on snails in such areas will be useful in evaluation of snail control effect and/or dispersal. We then sampled snails from new emerging habitats in Taicang of Jiangsu, China, a currently S. japonicum non-endemic area from 2014 to 2017, and performed population genetic analyses based on nine microsatellites. Results showed that all snail populations had low genetic diversity, and most genetic variations originated from within snail populations. The estimated effective population size for the 2015 population was infinitive. All snails could be separated into two clusters, and further DIYABC analysis revealed that both the 2016 and the 2017 populations may derive from the 2015, indicating that the 2017 population must have been missed in the field survey performed in 2016. These findings may have implications in development of more practical guidelines for snail monitoring and control. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

13 pages, 2235 KB  
Article
Transmission Risk Predicting for Schistosomiasis in Mainland China by Exploring Ensemble Ecological Niche Modeling
by Jingbo Xue, Xiaokang Hu, Yuwan Hao, Yanfeng Gong, Xinyi Wang, Liangyu Huang, Shan Lv, Jing Xu, Shizhu Li and Shang Xia
Trop. Med. Infect. Dis. 2023, 8(1), 24; https://doi.org/10.3390/tropicalmed8010024 - 28 Dec 2022
Cited by 10 | Viewed by 2921
Abstract
Schistosomiasis caused by Schistosoma japonicum is one of the major neglected tropical diseases worldwide. The snail Oncomelania hupensis is the only intermediate host of S. japonicum, which is recognized as an indicator of the schistosomias occurrence. In order to evaluate the risk of [...] Read more.
Schistosomiasis caused by Schistosoma japonicum is one of the major neglected tropical diseases worldwide. The snail Oncomelania hupensis is the only intermediate host of S. japonicum, which is recognized as an indicator of the schistosomias occurrence. In order to evaluate the risk of schistosomiasis in China, this work investigate the potential geographical distribution of host snail habitus by developing an ensemble ecological niche model with reference to the suitable environmental factors. The historical records of snail habitus were collected form the national schistosomiasis surveillance program from the year of 2005 to 2014. A total of 25 environmental factors in terms of the climate, geographic, and socioeconomic determinants of snail habitats were collected and geographically coded with reference to the snail data. Based on the correlations among snail habitats and the geographically associated environmental factors, an ensemble ecological niche model was developed by integrating ten standard models, aiming for improving the predictive accuracy. Three indexes are used for model performance evaluation, including receiver operating characteristic curves, kappa statistics, and true skill statistics. The model was used for mapping the risk of schistosomiasis in the middle and lower reaches of the Yangtze River. The results have shown that the predicted risk areas were classified into low risk (4.55%), medium risk (2.01%), and high risk areas (4.40%), accounting for 10.96% of the land area of China. This study demonstrated that the developed ensemble ecological niche models was an effective tool for evaluating the risk of schistosomiasis, particularly for the endemic regions, which were not covered by the national schistosomiasis control program. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

10 pages, 1366 KB  
Article
The Biosafety Evaluation for Crustaceans: A Novel Molluscicide PBQ Using against Oncomelania hupensis, the Intermediate Host of Schistosoma japonica
by Qianwen Shi, Liping Duan, Zhiqiang Qin, Weisi Wang, Lu Shen, Xuetao Hua, Ling’e Shen, Jiaqian Cao, Fukang Zhu, Jingzhi Wu and Shizhu Li
Trop. Med. Infect. Dis. 2022, 7(10), 294; https://doi.org/10.3390/tropicalmed7100294 - 11 Oct 2022
Cited by 8 | Viewed by 2078
Abstract
A new formulation (suspension concentrate, SC) of PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl) urea] was used in water network schistosomiasis-endemic areas to test its molluscicidal efficacy and the acute toxicity to crustaceans. PBQ (20% SC), 26% metaldehyde, and niclosamide suspension concentrate [MNSC (26% SC)] were used both [...] Read more.
A new formulation (suspension concentrate, SC) of PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl) urea] was used in water network schistosomiasis-endemic areas to test its molluscicidal efficacy and the acute toxicity to crustaceans. PBQ (20% SC), 26% metaldehyde, and niclosamide suspension concentrate [MNSC (26% SC)] were used both in ditch and field experiments for the molluscicidal efficacy comparison. Acute toxicity tests of two molluscicides were conducted using Neocaridina denticulate and Eriocheir sinensis. Both in the field and ditch experiments, PBQ exhibited comparable molluscicidal efficacy with MNSC. At doses of 0.50 g/m3 and 0.50 g/m2, the snail mortalities were more than 90% three days after PBQ (20% SC) application. Compared with previous tests, PBQ (20% SC) exhibited higher molluscicidal activity than PBQ (25% wettable powder, 25% WP) used in Jiangling and showed similar mollucicidal activity to PBQ (25% WP) used in Dali and Poyang Lake. The 96 h LC50 value of MNSC against Eriocheir sinensis was 283.84 mg a.i./L. At the concentration of PBQ (20% SC) 1000 mg a.i./L, all Eriocheir sinensis were alive. The 96 h LC50 values of PBQ and MNSC against Neocaridina denticulate were 17.67 and 14.05 mg a.i./L, respectively. In conclusion, PBQ (20% SC) had a comparable molluscicidal efficacy with MNSC (26% SC) and PBQ (25% WP). Furthermore, it showed lower toxicity to the crustacean species, better solubility, no floating dust, and convenience for carriage. PBQ (20% SC) was suitable for controlling snails in the water network schistosomiasis-endemic areas. Full article
(This article belongs to the Special Issue Control of Schistosome Intermediate Hosts)
Show Figures

Figure 1

18 pages, 8178 KB  
Article
Identifying the Determinants of Distribution of Oncomelania hupensis Based on Geographically and Temporally Weighted Regression Model along the Yangtze River in China
by Zhe Wang, Lu Liu, Liang Shi, Xinyao Wang, Jianfeng Zhang, Wei Li and Kun Yang
Pathogens 2022, 11(9), 970; https://doi.org/10.3390/pathogens11090970 - 25 Aug 2022
Cited by 9 | Viewed by 4195
Abstract
Background: As the unique intermediate host of Schistosoma japonicum, the geographical distribution of Oncomelania hupensis (O. hupensis) is an important index in the schistosomiasis surveillance system. This study comprehensively analyzed the pattern of snail distribution along the Yangtze River in Jiangsu [...] Read more.
Background: As the unique intermediate host of Schistosoma japonicum, the geographical distribution of Oncomelania hupensis (O. hupensis) is an important index in the schistosomiasis surveillance system. This study comprehensively analyzed the pattern of snail distribution along the Yangtze River in Jiangsu Province and identified the dynamic determinants of the distribution of O. hupensis. Methods: Snail data from 2017 to 2021 in three cities (Nanjing, Zhenjiang, and Yangzhou) along the Yangtze River were obtained from the annual cross-sectional survey produced by the Jiangsu Institute of Parasitic Diseases. Spatial autocorrelation and hot-spot analysis were implemented to detect the spatio–temporal dynamics of O. hupensis distribution. Furthermore, 12 factors were used as independent variables to construct an ordinary least squares (OLS) model, a geographically weighted regression (GWR) model, and a geographically and temporally weighted regression (GTWR) model to identify the determinants of the distribution of O. hupensis. The adjusted coefficients of determination (adjusted R2, AICc, RSS) were used to evaluate the performance of the models. Results: In general, the distribution of O. hupensis had significant spatial aggregation in the past five years, and the density of O. hupensis increased eastwards in the Jiangsu section of the lower reaches of the Yangtze River. Relatively speaking, the distribution of O. hupensis wase spatially clustered from 2017 to 2021, that is, it was found that the border between Yangzhou and Zhenjiang was the high density agglomeration area of O. hupensis snails. According to the GTWR model, the density of O. hupensis was related to the normalized difference vegetation index, wetness, dryness, land surface temperature, elevation, slope, and distance to nearest river, which had a good explanatory power for the snail data in Yangzhou City (adjusted R2 = 0.7039, AICc = 29.10, RSS = 6.81). Conclusions: The distribution of O. hupensis and the environmental factors in the Jiangsu section of the lower reaches of the Yangtze River had significant spatial aggregation. In different areas, the determinants affecting the distribution of O. hupensis were different, which could provide a scientific basis for precise prevention and control of O. hupensis. A GTWR model was prepared and used to identify the dynamic determinants for the distribution of O. hupensis and contribute to the national programs of control of schistosomiasis and other snail-borne diseases. Full article
(This article belongs to the Special Issue State-of-Art and Perspectives of Parasites in China)
Show Figures

Figure 1

11 pages, 1441 KB  
Article
Laboratory Evaluation of a Basic Recombinase Polymerase Amplification (RPA) Assay for Early Detection of Schistosoma japonicum
by Wangping Deng, Shenglin Wang, Liping Wang, Chao Lv, Yinlong Li, Ting Feng, Zhiqiang Qin and Jing Xu
Pathogens 2022, 11(3), 319; https://doi.org/10.3390/pathogens11030319 - 4 Mar 2022
Cited by 10 | Viewed by 4568
Abstract
Early detection of Schistosoma japonicum (S. japonicum) within its intermediate and definitive hosts is crucial for case finding and disease surveillance, especially in low-endemic areas. Recombinase polymerase amplification (RPA) has many advantages over traditional methods of DNA-amplification, such as polymerase chain [...] Read more.
Early detection of Schistosoma japonicum (S. japonicum) within its intermediate and definitive hosts is crucial for case finding and disease surveillance, especially in low-endemic areas. Recombinase polymerase amplification (RPA) has many advantages over traditional methods of DNA-amplification, such as polymerase chain reaction (PCR), including high sensitivity and specificity whilst being deployable in resource-poor schistosomiasis-endemic areas. Here, we evaluated the performance of a basic RPA assay targeting the 28srDNA gene fragment of S. japonicum (Sj28srDNA) using schistosome-infected Oncomelania hupensis (O. hupensis) and mouse models, compared to the traditional pathological method and a PCR assay. Overall S. japonicum infection prevalence within O. hupensis hosts by microscopic dissection, PCR and RPA was 9.29% (13/140), 32.14% (45/140) and 51.43% (72/140), respectively, presenting significant differences statistically (χ2 = 58.31, p < 0.001). It was noteworthy that infection prevalence by PCR and RPA performed was 34.44% (31/90) and 53.33% (48/90) in snails within 6 weeks post-infection, while the dissection method detected all samples as negatives. In addition, the basic RPA assay presented positive results from the fourth week post-infection and third day post-infection when detecting fecal DNA and serum DNA, respectively, which were extracted from a pooled sample from mice infected with 20 S. japonicum cercariae. This study suggests that the RPA assay has high potential for early detection of S. japonicum infection within its intermediate and definitive hosts. Full article
(This article belongs to the Special Issue Schistosomiasis: Host-Pathogen Biology)
Show Figures

Figure 1

20 pages, 3962 KB  
Article
Comprehensive Risk Assessment of Schistosomiasis Epidemic Based on Precise Identification of Oncomelania hupensis Breeding Grounds—A Case Study of Dongting Lake Area
by Jun Xu, Xiao Ouyang, Qingyun He and Guoen Wei
Int. J. Environ. Res. Public Health 2021, 18(4), 1950; https://doi.org/10.3390/ijerph18041950 - 17 Feb 2021
Cited by 4 | Viewed by 2593
Abstract
Spatio-temporal epidemic simulation, assessment, and risk monitoring serve as the core to establishing and improving the national public health emergency management system. In this study, we investigated Oncomelania hupensis breeding grounds and analyzed the locational and environmental preferences of snail breeding in Dongting [...] Read more.
Spatio-temporal epidemic simulation, assessment, and risk monitoring serve as the core to establishing and improving the national public health emergency management system. In this study, we investigated Oncomelania hupensis breeding grounds and analyzed the locational and environmental preferences of snail breeding in Dongting Lake (DTL), Hunan, China. Using geographic information systems and remote sensing technology, we identified schistosomiasis risk areas and explored the factors affecting the occurrence and transmission of the disease. Several key conclusions were drawn. (1) From 2006 to 2016, the spatial change of potential O. hupensis breeding risk showed a diminishing trend from the eastern and northern regions to southwest DTL. Environmental changes in the eastern DTL region resulted in the lakeside and hydrophilic agglomerations of the O. hupensis populations. The shift in snail breeding grounds from a fragmented to centralized distribution indicates the weakening mobility of the O. hupensis population, the increasing independence of solitary groups, and the growing dependence of the snail population to the local environment. (2) The spatial risk distribution showed a descending gradient from west Dongting area to the east and an overall pattern of high in the periphery of large lakes and low in other areas. The cold-spot areas had their cores in Huarong County and Anxiang County and were scattered throughout the peripheral areas. The hot-spot areas had their center at Jinshi City, Nanxian County, and the southern part of Huarong County. The areas with increased comprehensive risks changed from centralized and large-scale development to fragmented shrinkage with increased partialization in the core area. The risk distribution’s center shifted to the northwest. The spatial risk distribution exhibited enhanced concentricity along the major axis and increased dispersion along the minor axis. Full article
(This article belongs to the Special Issue Geospatial Information in Public Health)
Show Figures

Figure 1

24 pages, 5112 KB  
Article
Analysis of Environmental DNA and Edaphic Factors for the Detection of the Snail Intermediate Host Oncomelania hupensis quadrasi
by Fritz Ivy C. Calata, Camille Z. Caranguian, Jillian Ela M. Mendoza, Raffy Jay C. Fornillos, Ian Kim B. Tabios, Ian Kendrich C. Fontanilla, Lydia R. Leonardo, Louie S. Sunico, Satoru Kawai, Yuichi Chigusa, Mihoko Kikuchi, Megumi Sato, Toshifumi Minamoto, Zenaida G. Baoanan and Marcello Otake Sato
Pathogens 2019, 8(4), 160; https://doi.org/10.3390/pathogens8040160 - 23 Sep 2019
Cited by 22 | Viewed by 8990
Abstract
Background: The perpetuation of schistosomiasis japonica in the Philippines depends to a major extent on the persistence of its intermediate host Oncomelania hupensis quadrasi, an amphibious snail. While the malacological survey remains the method of choice in determining the contamination of the environment [...] Read more.
Background: The perpetuation of schistosomiasis japonica in the Philippines depends to a major extent on the persistence of its intermediate host Oncomelania hupensis quadrasi, an amphibious snail. While the malacological survey remains the method of choice in determining the contamination of the environment as evidenced by snails infected with schistosome larval stages, an emerging technology known as environmental DNA (eDNA) detection provides an alternative method. Previous reports showed that O. hupensis quadrasi eDNA could be detected in water, but no reports have been made on its detection in soil. Methods: This study, thus focused on the detection of O. hupensis quadrasi eDNA from soil samples collected from two selected schistosomiasis-endemic barangays in Gonzaga, Cagayan Valley using conventional and TaqMan-quantitative (qPCR) PCRs. Results: The results show that qPCR could better detect O. hupensis quadrasi eDNA in soil than the conventional method. In determining the possible distribution range of the snail, basic edaphic factors were measured and correlated with the presence of eDNA. The eDNA detection probability increases as the pH, phosphorous, zinc, copper, and potassium content increases, possibly indicating the conditions in the environment that favor the presence of the snails. A map was generated to show the probable extent of the distribution of the snails away from the body of the freshwater. Conclusion: The information generated from this study could be used to determine snail habitats that could be possible hotspots of transmission and should, therefore, be targeted for snail control or be fenced off from human and animal contact or from the contamination of feces by being a dumping site for domestic wastes. Full article
(This article belongs to the Special Issue Zoonotic Diseases and One Health)
Show Figures

Figure 1

17 pages, 5186 KB  
Article
Identifying and Predicting the Geographical Distribution Patterns of Oncomelania hupensis
by Yingnan Niu, Rendong Li, Juan Qiu, Xingjian Xu, Duan Huang, Qihui Shao and Ying Cui
Int. J. Environ. Res. Public Health 2019, 16(12), 2206; https://doi.org/10.3390/ijerph16122206 - 21 Jun 2019
Cited by 21 | Viewed by 3671
Abstract
Schistosomiasis is a snail-borne parasitic disease endemic to the tropics and subtropics, whose distribution depends on snail prevalence as determined by climatic and environmental factors. Here, dynamic spatial and temporal patterns of Oncomelania hupensis distributions were quantified using general statistics, global Moran’s I, [...] Read more.
Schistosomiasis is a snail-borne parasitic disease endemic to the tropics and subtropics, whose distribution depends on snail prevalence as determined by climatic and environmental factors. Here, dynamic spatial and temporal patterns of Oncomelania hupensis distributions were quantified using general statistics, global Moran’s I, and standard deviation ellipses, with Maxent modeling used to predict the distribution of habitat areas suitable for this snail in Gong’an County, a severely affected region of Jianghan Plain, China, based on annual average temperature, humidity of the climate, soil type, normalized difference vegetation index, land use, ditch density, land surface temperature, and digital elevation model variables; each variable’s contribution was tested using the jackknife method. Several key results emerged. First, coverage area of O. hupensis had changed little from 2007 to 2012, with some cities, counties, and districts alternately increasing and decreasing, with ditch and bottomland being the main habitat types. Second, although it showed a weak spatial autocorrelation, changing negligibly, there was a significant east–west gradient in the O. hupensis habitat area. Third, 21.9% of Gong’an County’s area was at high risk of snail presence; and ditch density, temperature, elevation, and wetting index contributed most to their occurrence. Our findings and methods provide valuable and timely insight for the control, monitoring, and management of schistosomiasis in China. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop