Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = PBS-based biocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3962 KB  
Article
PLA/PBS Biocomposites for 3D FDM Manufacturing: Effect of Hemp Shive Content and Process Parameters on Printing Quality and Performances
by Emilia Garofalo, Luciano Di Maio and Loredana Incarnato
Polymers 2025, 17(17), 2280; https://doi.org/10.3390/polym17172280 - 23 Aug 2025
Viewed by 540
Abstract
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents [...] Read more.
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents a straightforward and encouraging strategy to enhance both the printability and mechanical properties of the individual resins, expanding the range of their potential applications. The addition of hemp shive—a by-product of hemp processing—not only enhances the biodegradability of the composites but also improves their thermo-mechanical performance, as well as aligning with circular economy principles. The rheological characterization, performed on all the systems, evidenced that the PLA/PBS blend possesses viscoelastic properties well suited for FDM, enabling smooth extrusion through the nozzle, good shape stability after deposition, and effective interlayer adhesion. Moreover, the constrain effect of hemp shives within the polymer matrix reduced the extrudate swell, a key factor affecting the dimensional accuracy of the printed parts. Optimal processing conditions were identified at a nozzle temperature of 190 °C and a printing speed of 70 mm/s, providing a favorable compromise between print quality, final performances and production efficiency. From a mechanical perspective, the PLA/PBS blend exhibited an 8.6-fold increase in elongation at break compared to neat PLA, and its corresponding composite showed a ductility nearly three times higher than the PLA-based counterpart’s. In conclusion, the findings of this study provide new insights into the interplay between material formulation, rheological behavior and printing conditions, supporting the development of sustainable, hemp-reinforced biocomposites for additive manufacturing applications. Full article
Show Figures

Figure 1

52 pages, 10078 KB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 456
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

18 pages, 4770 KB  
Article
Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation
by Thritima Sritapunya, Apaipan Rattanapan, Surakit Tuampoemsab and Pornsri Sapsrithong
Polymers 2025, 17(16), 2213; https://doi.org/10.3390/polym17162213 - 13 Aug 2025
Viewed by 448
Abstract
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused [...] Read more.
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused by non-biodegradable plastic waste. The effect of rice flour content on the morphology and properties of PBS and RF biocomposites was comprehensively evaluated. Different amounts of rice flour were considered (0, 10, 20, 30, 40, and 50 phr), and a silane coupling agent and epoxidized natural rubber (ENR-50: 1 phr) were used as interfacial agents to improve compatibility between the matrix (PBS) and filler (RF). The PBS/RF biocomposites were prepared using a two-roll mill and shaped into test specimens and films using a compression molding machine. Batches of the composites containing different amounts of RF were prepared in accordance with the standards, and their morphology and properties, including mechanical properties, density, water absorption, and soil burial degradation, were evaluated. The results revealed that the incorporation of silane-treated RF filler and ENR-50 compatibilizer led to notable improvements in mechanical properties, particularly in tensile modulus, flexural strength, flexural modulus, and hardness. A significant improvement in mechanical performance was observed as the RF content increased, with the highest value recorded at the 50 phr loading. The enhancements observed in the composite properties are due to the inherent rigidity of the RF filler and its improved compatibility with the PBS matrix, which together contribute to a stronger and more efficient material. Additionally, the percentage of water absorption in the PBS/RF biocomposites increased with higher RF content. The results from the soil burial test demonstrated that increasing the RF content positively influenced the biodegradability of the PBS/RF biocomposite materials. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Graphical abstract

20 pages, 7908 KB  
Article
DFT Study of PVA Biocomposite/Oyster Shell (CaCO3) for the Removal of Heavy Metals from Wastewater
by Jose Alfonso Prieto Palomo, Juan Esteban Herrera Zabala and Joaquín Alejandro Hernández Fernández
J. Compos. Sci. 2025, 9(7), 340; https://doi.org/10.3390/jcs9070340 - 1 Jul 2025
Viewed by 505
Abstract
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which [...] Read more.
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which CaCO3-based biocomposites derived from mollusk shells have shown exceptional performance. In this study, a hybrid biocomposite composed of poly(vinyl alcohol) (PVA) and oyster shell-derived CaCO3 was computationally investigated using Density Functional Theory (DFT) to elucidate the electronic and structural basis for its high metal-removal efficiency. Calculations were performed at the B3LYP/6-311++G(d,p), M05-2X/6-311+G(d,p), and M06-2X/6-311++G(d,p) levels using GAUSSIAN 16. Among them, B3LYP was identified as the most balanced in terms of accuracy and computational cost. The hybridization with CaCO3 reduced the HOMO-LUMO gap by 20% and doubled the dipole moment (7.65 Debye), increasing the composite’s polarity and reactivity. Upon chelation with metal ions, the gap further dropped to as low as 0.029 eV (Cd2+), while the dipole moment rose to 17.06 Debye (Pb2+), signaling enhanced charge separation and stronger electrostatic interactions. Electrostatic potential maps revealed high nucleophilicity at carbonate oxygens and reinforced electrophilic fields around the hydrated metal centers, correlating with the affinity trend Cu2+ > Cd2+ > Pb2+. Fukui function analysis indicated a redistribution of reactive sites, with carbonate oxygens acting as ambiphilic centers suitable for multidentate coordination. Natural Bond Orbital (NBO) analysis confirmed the presence of highly nucleophilic lone pairs and weakened bonding orbitals, enabling flexible adsorption dynamics. Furthermore, NCI/RDG analysis highlighted attractive noncovalent interactions with Cu2+ and Pb2+, while FT-IR simulations demonstrated the formation of hydrogen bonding (O–H···O=C) and Ca2+···O coordination bridges between phases. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

13 pages, 2481 KB  
Article
Highly Stable Lignin-Based Magnetic Composites for Efficient Removal of Pb(II) from Wastewater
by Zhi-Hong Ren, Xiao-Ying Li, Yan-Qing Zhao, Yong-Sheng Li, Qiang Wang, Jie-Ping Jia, Julio Sánchez, Kai-Ruo Zhu, Shangru Zhai, Ling-Ping Xiao and Run-Cang Sun
J. Compos. Sci. 2025, 9(5), 223; https://doi.org/10.3390/jcs9050223 - 30 Apr 2025
Viewed by 600
Abstract
In this study, a novel lignin-based magnetic composite with a shell-and-core structure and high saturated magnetic strength has been developed for the efficient removal of Pb(II) from wastewater. The adsorbent was fabricated through the introduction of silica–amino groups and a cross-linking complex with [...] Read more.
In this study, a novel lignin-based magnetic composite with a shell-and-core structure and high saturated magnetic strength has been developed for the efficient removal of Pb(II) from wastewater. The adsorbent was fabricated through the introduction of silica–amino groups and a cross-linking complex with lignin, utilizing Fe-Fe2O3 as a magnetic source. The paramagnetic characteristics enabled its rapid separation from the aqueous solution within merely 15 s. Batch adsorption experiments demonstrated that the adsorbents could reach equilibrium for Pb(II) adsorption within 30 min. When the concentration of Pb(II) is in the low range of 0 to 200 mg/L, the removal rate of Pb(II) approaches 100%, and the theoretical maximum adsorption capacity is as high as 384.2 mg/g. The mechanism analysis indicated that the adsorption process was primarily characterized as monolayer chemisorption. Notably, the resultant bio-composites demonstrated a high level of stability even after eight consecutive adsorption and desorption cycles, with the removal rate of Pb(II) still reaching 82.3%. This work outlines a novel approach for designing highly efficient lignin-derived adsorbents toward wastewater treatment. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

16 pages, 4501 KB  
Article
Mathematical Modelling of Tensile Mechanical Behavior of a Bio-Composite Based on Polybutylene-Succinate and Brewer Spent Grains
by Annamaria Visco, Cristina Scolaro, Francesco Oliveri and Aldo Jesus Ruta
Polymers 2024, 16(21), 2966; https://doi.org/10.3390/polym16212966 - 23 Oct 2024
Cited by 3 | Viewed by 1401
Abstract
A model based on the fitting of stress–strain data by tensile tests of bio-composites made of a bioplastic (polybutylene succinate (PBS)) and brewer spent grain filler (BSGF) is developed. Experimental tests were performed for various concentrations of BSGF in the range from 2% [...] Read more.
A model based on the fitting of stress–strain data by tensile tests of bio-composites made of a bioplastic (polybutylene succinate (PBS)) and brewer spent grain filler (BSGF) is developed. Experimental tests were performed for various concentrations of BSGF in the range from 2% to 30%. The model is suitable for describing the elastic–plastic behavior of these materials in terms of two mechanical parameters, tensile stress and tensile stiffness (or Young’s modulus), depending on the filler concentration. The mechanical characteristics, derived from the fit parameters, show good agreement with the experimental data. The mathematical model used here could be an important aid for the experimentation and manufacturing process as it allows the prediction of the mechanical tensile parameters of a mixture with different filler concentrations, avoiding the long and complex preparation cycle of bio-composites, as well as the specific mechanical tests. The physical properties required by the objects created with the PBS–BSGF bio-composite by the partners/stakeholders of the research project co-financing this research can be quite different; therefore, a mathematical model that predicts some of the mechanical properties in terms of the mixture composition may be useful to speed up the selection of the required amount of BSGF in the mixture. Full article
Show Figures

Graphical abstract

17 pages, 3526 KB  
Article
Valorization of Winery By-Products as Bio-Fillers for Biopolymer-Based Composites
by Filippo Biagi, Alberto Giubilini, Paolo Veronesi, Giovanni Nigro and Massimo Messori
Polymers 2024, 16(10), 1344; https://doi.org/10.3390/polym16101344 - 9 May 2024
Cited by 10 | Viewed by 1958
Abstract
Grape seeds (GS), wine lees (WL), and grape pomace (GP) are common winery by-products, used as bio-fillers in this research with two distinct biopolymer matrices—poly(butylene adipate-co-terephthalate) (PBAT) and polybutylene succinate (PBS)—to create fully bio-based composite materials. Each composite included at least [...] Read more.
Grape seeds (GS), wine lees (WL), and grape pomace (GP) are common winery by-products, used as bio-fillers in this research with two distinct biopolymer matrices—poly(butylene adipate-co-terephthalate) (PBAT) and polybutylene succinate (PBS)—to create fully bio-based composite materials. Each composite included at least 30 v% bio-filler, with a sample reaching 40 v%, as we sought to determine a composition that could be economically and environmentally effective as a substitute for a pure biopolymer matrix. The compounding process employed a twin-screw extruder followed by an injection molding procedure to fabricate the specimens. An acetylation treatment assessed the specimen’s efficacy in enhancing matrix–bio-filler affinity, particularly for WL and GS. The fabricated bio-composites underwent an accurate characterization, revealing no alteration in thermal properties after compounding with bio-fillers. Moreover, hygroscopic measurements indicated increased water-affinity in bio-composites compared to neat biopolymer, most significantly with GP, which exhibited a 7-fold increase. Both tensile and dynamic mechanical tests demonstrated that bio-fillers not only preserved, but significantly enhanced, the stiffness of the neat biopolymer across all samples. In this regard, the most promising results were achieved with the PBAT and acetylated GS sample, showing a 162% relative increase in Young’s modulus, and the PBS and WL sample, which exhibited the highest absolute values of Young’s modulus and storage modulus, even at high temperatures. These findings underscore the scientific importance of exploring the interaction between bio-fillers derived from winery by-products and three different biopolymer matrices, showcasing their potential for sustainable material development, and advancing polymer science and bio-sourced material processing. From a practical standpoint, the study highlighted the tangible benefits of using by-product bio-fillers, including cost savings, waste reduction, and environmental advantages, thus paving the way for greener and more economically viable material production practices. Full article
(This article belongs to the Special Issue Polymer Composites in Waste Recycling)
Show Figures

Figure 1

20 pages, 5915 KB  
Article
Preparation and Spectroscopic, Thermal, and Mechanical Characterization of Biocomposites of Poly(butylene succinate) and Onion Peels or Durum Wheat Bran
by Emil Sasimowski, Marta Grochowicz and Łukasz Szajnecki
Materials 2023, 16(20), 6799; https://doi.org/10.3390/ma16206799 - 21 Oct 2023
Cited by 6 | Viewed by 2050
Abstract
The utilization of plant based fillers: onion peels (OP) and durum wheat bran (WB) to obtain sustainable biocomposite materials with poly(butylene succinate) (PBS) is presented in this paper. The biocomposites were first obtained in pellet form by extrusion method and then injection moldings [...] Read more.
The utilization of plant based fillers: onion peels (OP) and durum wheat bran (WB) to obtain sustainable biocomposite materials with poly(butylene succinate) (PBS) is presented in this paper. The biocomposites were first obtained in pellet form by extrusion method and then injection moldings were made from the pellets. Two kinds of biocomposites were fabricated containing 15% and 30% wt. of OP or WB. Additionally, pure PBS moldings were prepared for comparative purposes. The effect of the filler type and its amount on the chemical structure, density, thermal, and thermo-mechanical properties of the fabricated composite samples was studied. Fourier-transform infrared spectroscopy results showed that the composite preparation method had no effect on the chemical structure of composite components, but weak interactions such as hydrogen bonding between OP or WB and PBS was observed. The addition of OP or WB to the composite with PBS reduced its thermal stability in comparison with pure PBS, all studied composites start to degrade below 290 °C. Additionally, the mechanical properties of the composites are worse than PBS, as the impact strength dropped by about 70%. The deterioration of tensile strength was in the range 20–47%, and the elongation at maximum load of the composites was in the range 9.22–3.42%, whereas for pure PBS it was 16.75%. On the other hand, the crystallinity degree increased from 63% for pure PBS to 79% for composite with 30% wt. of WB. The Young’s modulus increased to 160% for composition with 30% wt. of OP. Additionally, the hardness of the composites was slightly higher than PBS and was in the range 38.2–48.7 MPa. Despite the reduction in thermal stability and some mechanical properties, the studied composites show promise for everyday object production. Full article
(This article belongs to the Special Issue Modification and Processing of Biodegradable Polymers (Volume II))
Show Figures

Graphical abstract

13 pages, 7341 KB  
Article
Effects of Bio-Based Polyelectrolyte Complex on Thermal Stability, Flammability, and Mechanical Properties Performance Utilization in PLA/PBS Composites
by Yeng-Fong Shih, Ching-Wei Lin, Yu-Liang Cai, Kousar Jahan and Ying-Hsiao Chen
Buildings 2023, 13(1), 154; https://doi.org/10.3390/buildings13010154 - 7 Jan 2023
Cited by 5 | Viewed by 3058
Abstract
In this study, the two eco-friendly flame retardants of the polymeric type (PA-PEI) and monomeric type (PA-Arg) phytate amine complexes were prepared via the ionic reaction of polyethylenimine (PEI) or arginine (Arg), respectively, with phytic acid in an aqueous solution. The chemical structure [...] Read more.
In this study, the two eco-friendly flame retardants of the polymeric type (PA-PEI) and monomeric type (PA-Arg) phytate amine complexes were prepared via the ionic reaction of polyethylenimine (PEI) or arginine (Arg), respectively, with phytic acid in an aqueous solution. The chemical structure and thermal stability of PA-PEI and PA-Arg were characterized by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). In order to improve the flame retardancy of the polylactic acid (PLA)/polybutylene succinate (PBS) biocomposites (P/15B-based biocomposites), the flame retardants PA-PEI and PA-Arg were embedded into P/15B by thermal blending procedures, respectively, to obtain P/15B/PA-PEI series and P/15B/PA-Arg series biocomposites. The TGA analyses demonstrated that incorporating PA-PEI or PA-Arg into the P/15B polymer enhances the char residues in these P/15B biocomposites. The XRD and SEM analyses of the P/15B/PA-PEI series and P/15B/PA-Arg series suggested the PA-PEI and PA-Arg were embedded into the P/15B polymer matrixes, respectively. The mechanical results showed that P/15B/PA-Arg series exhibited higher values than the P/15B/PA-PEI series biocomposite, which were associated with less roughness of P/15B/PA-Arg than that of the P/15B/PA-PEI series. The flammability results of the P/15B/PA-PEI series and P/15B/PA-Arg series biocomposites exhibited a V-2 level in UL94 vertical test. Further, the fire resistance performance of P/15B-based biocomposites was enhanced by incorporating PA-PEI or PA-Arg into the P/15B matrix through the analyses of the Cone calorimeter test (CCT), as a comparison with neat P/15B. The peak heat release rate (pHRR), the total heat release rate (THR), and char residues of P/15B/15PA-Arg biocomposite were significantly improved to 280.26 kW/m2, 107.89 MJ/m2, and 10.4%, respectively. The enhancement of the P/15B-based composites’ fire resistance is attributed to the interplay effect on the catalytic and condensed effect on the thermal decomposition of PA-PEI or PA-Arg in P/15B biocomposites. The resultant eco-friendly flame-retardant P/15B biocomposites reported in this study can be widely applied in various fields, including construction, electronic appliances, and other fields. Full article
Show Figures

Figure 1

15 pages, 4087 KB  
Article
Micromechanical Deformation Processes and Failure of PBS Based Composites Containing Ultra-Short Cellulosic Fibers for Injection Molding Applications
by Laura Aliotta, Mattia Gasenge, Vito Gigante and Andrea Lazzeri
Polymers 2022, 14(21), 4499; https://doi.org/10.3390/polym14214499 - 24 Oct 2022
Cited by 5 | Viewed by 2491
Abstract
The use of biobased thermoplastic polymers has gained great attention in the last years as a potential alternative to fossil-based thermoplastic polymers. Biobased polymers in fact offer advantages not only in terms of reduced dependence on fossil resources but they also lower the [...] Read more.
The use of biobased thermoplastic polymers has gained great attention in the last years as a potential alternative to fossil-based thermoplastic polymers. Biobased polymers in fact offer advantages not only in terms of reduced dependence on fossil resources but they also lower the CO2 footprint in accordance with sustainability and climate protection goals. To improve the properties of these materials, reinforcement with biobased fibers is a promising solution; however, it must be kept in mind that the fibers aspect ratio and the interfacial adhesion between the reinforcement and the matrix plays an important role influencing both physical and mechanical properties of the biocomposites. In this paper, the possibility of producing composites by injection molding, based on polybutylene succinate and ultra-short cellulosic fibers has been explored as a potential biobased solution. Thermo-mechanical properties of the composites were investigated, paying particular attention to the local micromechanical deformation processes, investigated by dilatometric tests, and failure mechanisms. Analytical models were also applied to predict the elastic and flexural modulus and the interfacial properties of the biocomposites. Good results were achieved, demonstrating the that this class of biocomposite can be exploited. Compared to pure PBS, the composites with 30 wt.% of cellulose fibers increased the Young’s modulus by 154%, the flexural modulus by 130% and the heat deflection temperature by 9%. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites)
Show Figures

Graphical abstract

8 pages, 1385 KB  
Communication
A Potential of New Untreated Bio-Reinforcement from Caesalpinia sappan L. Wood Fiber for Polybutylene Succinate Composite Film
by Ekkachai Martwong, Yvette Tran, Nattawadee Natsrita, Chaithip Kaewpang, Kittisak Kongsuk, Yeampon Nakaramontri and Nathapong Sukhawipat
Polymers 2022, 14(3), 499; https://doi.org/10.3390/polym14030499 - 26 Jan 2022
Cited by 4 | Viewed by 2829
Abstract
Natural cellulose-based Caesalpinia sappan L. wood fiber (CSWF) has been demonstrated to have significant promise as a new untreated bio-reinforcement of the polybutylene succinate (PBS) composite film. The morphology, mechanical characteristics, and biodegradation were investigated. The morphology, the fiber distribution, and the fiber [...] Read more.
Natural cellulose-based Caesalpinia sappan L. wood fiber (CSWF) has been demonstrated to have significant promise as a new untreated bio-reinforcement of the polybutylene succinate (PBS) composite film. The morphology, mechanical characteristics, and biodegradation were investigated. The morphology, the fiber distribution, and the fiber aggregation has been discussed. The properties of the composite have been improved by the addition of CSWF from 5 phr to 10 phr, while with the addition of 15 phr, the properties were dropped. The result showed that CSWF could be used as a new reinforcement without any treatment, and 10 phr of CSWF was the best formulation of a new biocomposite film. The PBS/CSWF10 composite film had the highest mechanical strength, with a tensile strength of 12.21 N/mm2 and an elongation at break of 21.01%, respectively. It was completely degraded by soil bury in three months. Therefore, the PBS/CSWF10 composite film has the potential to be a green with a promising short-term degradation. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites)
Show Figures

Graphical abstract

31 pages, 12383 KB  
Article
Analysis of Selected Properties of Injection Moulded Sustainable Biocomposites from Poly(butylene succinate) and Wheat Bran
by Emil Sasimowski, Łukasz Majewski and Marta Grochowicz
Materials 2021, 14(22), 7049; https://doi.org/10.3390/ma14227049 - 20 Nov 2021
Cited by 15 | Viewed by 2438
Abstract
The paper presents a procedure of the manufacturing and complex analysis of the properties of injection mouldings made of polymeric composites based on the poly(butylene succinate) (PBS) matrix with the addition of a natural filler in the form of wheat bran (WB). The [...] Read more.
The paper presents a procedure of the manufacturing and complex analysis of the properties of injection mouldings made of polymeric composites based on the poly(butylene succinate) (PBS) matrix with the addition of a natural filler in the form of wheat bran (WB). The scope of the research included measurements of processing shrinkage and density, analysis of the chemical structure, measurements of the thermal and thermo-mechanical properties (Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TG), Heat Deflection Temperature (HDT), and Vicat Softening Temperature (VST)), and measurements of the mechanical properties (hardness, impact strength, and static tensile test). The measurements were performed using design of experiment (DOE) methods, which made it possible to determine the investigated relationships in the form of polynomials and response surfaces. The mass content of the filler and the extruder screw speed during the production of the biocomposite granulate, which was used for the injection moulding of the test samples, constituted the variable factors adopted in the DOE. The study showed significant differences in the processing, thermal, and mechanical properties studied for individual systems of the DOE. Full article
(This article belongs to the Special Issue Modification and Processing of Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 5223 KB  
Article
Preparation of Porous Hydroxyapatite Using Cetyl Trimethyl Ammonium Bromide as Surfactant for the Removal of Lead Ions from Aquatic Solutions
by Silviu-Adrian Predoi, Carmen Steluta Ciobanu, Mikael Motelica-Heino, Mariana Carmen Chifiriuc, Monica Luminita Badea and Simona Liliana Iconaru
Polymers 2021, 13(10), 1617; https://doi.org/10.3390/polym13101617 - 17 May 2021
Cited by 30 | Viewed by 3660
Abstract
In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), [...] Read more.
In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer, and N2 adsorption/desorption analysis. The capacity of HAp-CTAB nanocomposites to remove the lead ions from aqueous solutions was studied by adsorption batch experiments and proved by Langmuir and Freundlich models. The Pb2+ removal efficiency of HAp-CTAB biocomposite was also confirmed by non-destructive ultrasound studies. The cytotoxicity assays showed that the HAp-CTAB nanocomposites did not induce any significant morphological changes of HeLa cells after 24 h of incubation or other toxic effects. Taken together, our results suggests that the obtained porous HAp-CTAB powder could be used for the decontamination of water polluted with heavy metals, such as Pb2+. Full article
Show Figures

Graphical abstract

38 pages, 93098 KB  
Review
A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS)
by Mokgaotsa J. Mochane, Sifiso I. Magagula, Jeremia S. Sefadi and Teboho C. Mokhena
Polymers 2021, 13(8), 1200; https://doi.org/10.3390/polym13081200 - 8 Apr 2021
Cited by 101 | Viewed by 11907
Abstract
The need for utilization of environmentally friendly materials has emerged due to environmental pollution that is caused by non-biodegradable materials. The usage of non-biodegradable plastics has increased in the past decades in many industries, and, as a result, the generation of non-biodegradable plastic [...] Read more.
The need for utilization of environmentally friendly materials has emerged due to environmental pollution that is caused by non-biodegradable materials. The usage of non-biodegradable plastics has increased in the past decades in many industries, and, as a result, the generation of non-biodegradable plastic wastes has also increased. To solve the problem of non-biodegradable plastic wastes, there is need for fabrication of bio-based polymers to replace petroleum-based polymers and provide strategic plans to reduce the production cost of bioplastics. One of the emerging bioplastics in the market is poly (butylene succinate) (PBS) and it has been the biopolymer of choice due to its biodegradability and environmental friendliness. However, there are some disadvantages associated with PBS such as high cost, low gas barrier properties, and softness. To lower the cost of PBS and enhance its properties, natural lignocellulosic fibers are incorporated into the PBS matrix, to form environmentally friendly composites. Natural fiber-based biocomposites have emerged as materials of interest in important industries such as packaging, automobile, and construction. The bonding between the PBS and natural fibers is weak, which is a major problem for advanced applications of this system. As a result, this review paper discusses various methods that are employed for surface modification of the Fibers The paper provides an in-depth discussion on the preparation, modification, and morphology of the natural fiber-reinforced polybutylene succinate biocomposites. Furthermore, because the preparation as well as the modification of the fiber-reinforced biocomposites have an influence on the mechanical properties of the biocomposites, mechanical properties of the biocomposites are also discussed. The applications of the natural fiber/PBS biocomposites for different systems are also reported. Full article
Show Figures

Graphical abstract

14 pages, 1310 KB  
Article
Color Fixation Strategies on Sustainable Poly-Butylene Succinate Using Biobased Itaconic Acid
by Lidia G. Quiles, Julio Vidal, Francesca Luzi, Franco Dominici, Ángel Fernández Cuello and Pere Castell
Polymers 2021, 13(1), 79; https://doi.org/10.3390/polym13010079 - 28 Dec 2020
Cited by 4 | Viewed by 2827
Abstract
Biopo-lybutylene succinate (bioPBS) is gaining attention in the biodegradable polymer market due to its promising properties, such as high biodegradability and processing versatility, representing a potential sustainable replacement for fossil-based commodities. However, there is still a need to enhance its properties for certain [...] Read more.
Biopo-lybutylene succinate (bioPBS) is gaining attention in the biodegradable polymer market due to its promising properties, such as high biodegradability and processing versatility, representing a potential sustainable replacement for fossil-based commodities. However, there is still a need to enhance its properties for certain applications, with aesthetical and mechanical properties being a challenge. The aim of the present work is to improve these properties by adding selected additives that will confer bioPBS with comparable properties to that of current counterparts such as polypropylene (PP) for specific applications in the automotive and household appliances sectors. A total of thirteen materials have been studied and compared, being twelve biocomposites containing combinations of three different additives: a commercial red colorant, itaconic acid (IA) to enhance color fixation and zirconia (ZrO2) nanoparticles to maintain at least native PBS mechanical properties. The results show that the combination of IA and the coloring agent tends to slightly yellowish the blend due to the absorbance spectra of IA and also to modify the gloss due to the formation of IA nanocrystals that affects light scattering. In addition, for low amounts of IA (4 wt %), Young’s Modulus seems to be kept while elongation at break is even raised. Unexpectedly, a strong aging affect was found after four weeks. IA increases the hydrophilic behavior of the samples and thus seems to accelerate the hydrolization of the matrix, which is accompanied by an accused disaggregation of phases and an overall softening and rigidization effect. The addition of low amounts of ZrO2 (2 wt %) seems to provide the desired effect for hardening the surface while almost not affecting the other properties; however, higher amounts tends to form aggregates saturating the compounds. As a conclusion, IA might be a good candidate for color fixing in biobased polymers. Full article
(This article belongs to the Special Issue Sustainable Bio-Based Polymers: Towards a Circular Bioeconomy)
Show Figures

Graphical abstract

Back to TopTop