Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,121)

Search Parameters:
Keywords = PCEs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1536 KB  
Article
Multi-Step Spin-Coating with In Situ Crystallization for Growing 2D/3D Perovskite Films
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Longlong Zhang, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 774; https://doi.org/10.3390/cryst15090774 (registering DOI) - 29 Aug 2025
Abstract
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration [...] Read more.
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration 3-pyridine methylamine iodine solutions onto 3D perovskite films. This approach enables controlled Ostwald ripening and forms graded 2D/3D heterointerfaces rather than insulating capping layers, yielding a champion device with a PCE of 22.7%, significantly outperforming conventional 2D/3D planar counterparts. The optimized structure exhibits enhanced carrier extraction, suppressed recombination, and exceptional humidity stability; the hydrophobic structure further enabled >85% initial efficiency retention after 800 h at 45% relative humidity (RH) for target devices. This study establishes a novel research paradigm for developing high-performance and stable 2D/3D perovskite solar cells through gradient dimensionality engineering. Full article
(This article belongs to the Section Materials for Energy Applications)
13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 25
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

17 pages, 5230 KB  
Article
Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China
by Zeqiang Zhan, Zifeng Mai and Mengjun Hu
Foods 2025, 14(17), 3025; https://doi.org/10.3390/foods14173025 - 28 Aug 2025
Viewed by 149
Abstract
The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only [...] Read more.
The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10−6. Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and blaCTX-M-55. Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. Full article
Show Figures

Figure 1

15 pages, 2954 KB  
Article
Development of Low-Viscosity UHPC Using Fly Ash Microbeads and Modified Polycarboxylic Acid Superplasticizer
by Ling Li, Yang Ming, Zhaolin Ma, Xinming Qu, Feixiang Chen, Yang Sun, Guozhi Zhang and Hang Li
Buildings 2025, 15(17), 3081; https://doi.org/10.3390/buildings15173081 - 28 Aug 2025
Viewed by 160
Abstract
Rheological properties are essential to ultra-high performance concrete (UHPC), and it is necessary to guarantee a relatively lower viscosity to avoid fiber segregation and mechanical degradation. In this study, an innovative physical-chemical integrated approach, namely the simultaneous use of fly ash microbeads and [...] Read more.
Rheological properties are essential to ultra-high performance concrete (UHPC), and it is necessary to guarantee a relatively lower viscosity to avoid fiber segregation and mechanical degradation. In this study, an innovative physical-chemical integrated approach, namely the simultaneous use of fly ash microbeads and a modified low-viscosity polycarboxylic acid superplasticizer (JN-PCE), was proposed to regulate the rheological performance of UHPC containing industrial by-products. The effect of varying microbead dosage, different superplasticizers, and their combined influence on the rheological parameters, mechanical characteristics, and microstructure evolution were systematically explored in this study. The results demonstrated that the addition of 1.5% JN-PCE led to significant improvements in the UHPC properties including a flow expansion of 775 mm, a static yield stress of 376.9 Pa, a dynamic yield stress of 188.01 Pa, a plastic viscosity of 160.87 Pa·s, and a 28-day compressive strength of 136.6 MPa. Moreover, when a combination of 10% microbeads and 1.5% JN-PCE was used, the UHPC exhibited a flow expansion of 730 mm, a static yield stress of 693.5 Pa, a dynamic yield stress of 542.90 Pa, a plastic viscosity of 202.40 Pa·s, and a 28-day compressive strength of 142.1 MPa. This study thus offers valuable insights into optimizing low-viscosity UHPC formulations using eco-friendly additives for construction applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 2301 KB  
Article
Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI
by Nihad Kharrat Helu, Habib Al Ashkar, Nora Kovacs, Roza Adany and Peter Piko
Nutrients 2025, 17(17), 2741; https://doi.org/10.3390/nu17172741 - 24 Aug 2025
Viewed by 517
Abstract
Background/Objectives: As part of the human adaptation to dairy consumption, the presence of the rs4988235-T variant in the MCM6 gene primarily determines lactase persistence in adult European populations, increasing the expression of the lactase-encoding LCT gene. Carriers of the C/C variant are [...] Read more.
Background/Objectives: As part of the human adaptation to dairy consumption, the presence of the rs4988235-T variant in the MCM6 gene primarily determines lactase persistence in adult European populations, increasing the expression of the lactase-encoding LCT gene. Carriers of the C/C variant are lactose intolerant, while carriers of the T/T or T/C variant have persistent lactase enzyme activity and are able to digest lactose in adulthood. While the association between lactose intolerance and increased cardiovascular risk (CVR) is well-known, the underlying causes have only been partly explored. The present study aimed to investigate the association of rs4988235 polymorphism with significant lipids affecting cardiovascular health and estimated CVR. Methods: The rs4988235 polymorphism was genotyped in 397 subjects from the general Hungarian population and 368 individuals from the Roma population. To characterize the overall lipid profile, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), apolipoprotein AI (ApoAI), and apolipoprotein B100 (ApoB100) levels were measured, and their ratios (TG/HDL-C, LDL-C/HDL-C, and ApoB100/ApoAI) were calculated. Cardiovascular risk was estimated using the Framingham Risk Score (FRS), Pooled Cohort Equations (PCE), Revised Pooled Cohort Equations (RPCE), and the Systematic Coronary Risk Evaluations (SCORE and SCORE2) algorithms. Adjusted linear and logistic regression analyses were performed, with p < 0.05 considered significant. Results: The Roma population had a significantly higher prevalence of the C/C genotype than the general population (65.5% vs. 40.3%, respectively). The results of the adjusted linear regression analysis showed a significant association between the C/C genotype and higher LDL-C level (B = 0.126, p = 0.047) and ApoB100 level (B = 0.046, p = 0.013), as well as a higher LDL-C/HDL-C ratio (B = 0.174, p = 0.021) and a higher ApoB100/ApoAI ratio (B = 0.045, p = 0.002), as well as a lower HDL-C level (B = −0.041, p = 0.049). The C/C genotype was also significantly associated with an increased cardiovascular risk (CVR) as estimated by the SCORE (B = 0.235, p = 0.034), SCORE2 (B = 0.414, p = 0.009), PCE (B = 0.536, p = 0.008), and RPCE (B = 0.289, p = 0.045) but not the FRS. After adjusting the statistical model further for ApoAI and ApoB100 levels, the significant correlation with the risk estimation algorithms disappeared (SCORE: p = 0.099; SCORE2: p = 0.283; PCE: p = 0.255; and RPCE: p = 0.370). Conclusions: Our results suggest that the C/C genotype of rs4988235 is associated with significantly higher ApoB100 and lower ApoAI levels and consequently higher ApoB100/ApoAI ratios, potentially contributing to an increased risk of cardiovascular disease. The results of the statistical analyses suggest that the association between lactose intolerant genotype and cardiovascular risk may be mediated indirectly via modification of the apolipoprotein profile. Full article
(This article belongs to the Special Issue Lipids and Lipoproteins in Cardiovascular Diseases)
Show Figures

Figure 1

24 pages, 8766 KB  
Article
Perilla frutescens Seed Residue Extract Restores Gut Microbial Balance and Enhances Insulin Function in High-Fat Diet and Streptozotocin-Induced Diabetic Rats
by Pattharaphong Deethai, Chatsiri Siriwathanakul, Pornsiri Pitchakarn, Arisa Imsumran, Ariyaphong Wongnoppavich, Sivamoke Dissook and Teera Chewonarin
Int. J. Mol. Sci. 2025, 26(17), 8176; https://doi.org/10.3390/ijms26178176 - 22 Aug 2025
Viewed by 387
Abstract
The seed residue of Perilla frutescens possesses diverse biological properties and is rich in bioactive phytochemicals, including luteolin, rosmarinic acid, and apigenin. The aim of this study was to investigate the anti-diabetic effects of perilla seed residue crude extract (PCE) and its impact [...] Read more.
The seed residue of Perilla frutescens possesses diverse biological properties and is rich in bioactive phytochemicals, including luteolin, rosmarinic acid, and apigenin. The aim of this study was to investigate the anti-diabetic effects of perilla seed residue crude extract (PCE) and its impact on the composition of the gut microbiome in rats with diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). Forty male Wistar rats were fed on an HFD for six weeks before receiving an injection of STZ injection to induce diabetes. These rats were then treated for four weeks with metformin (100 mg/kg bw) or PCE (100 and 1000 mg/kg bw) alongside a control group maintained on a normal diet. The results showed that PCE treatment improved metabolic parameters in diabetic rats, as evidenced by reduced water and food intake, increased body weight gain, lower blood glucose levels, and enhanced insulin secretion effects, especially at the 100 mg/kg bw dosage. PCE also promoted the regeneration of pancreatic β-cells and improved utilization of glucose. PCE also suppressed inflammation and oxidative stress, enhanced antioxidant capacity, and reduced circulating triglyceride levels. Most notably, PCE administration increased gut microbial diversity and shifted the microbiome closer to that of healthy controls, demonstrating its prebiotic effect. It promoted the abundance of beneficial bacteria that are linked to improved glucose metabolism and reduced inflammation—specifically, Bacteroides fragilis, Lactobacillus, Clostridium, and Akkermansia. Harmful bacteria associated with inflammation and poor glycemic control were reduced. Collectively, these results suggest that PCE not only helps restore a balanced gut microbiome but also offers metabolic benefits that could improve diabetic outcomes. These findings position PCE as a promising supplement for the management of diabetes and encourage further exploration of the mechanisms associated with its actions. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
Show Figures

Figure 1

19 pages, 4767 KB  
Article
Efficacy of Phlomis crinita Extract-Loaded Nanostructured Formulation in Accelerating Wound Healing
by Tahsine Kosksi, Paola Bustos-Salgado, Arem Selmi, Marwa Rejeb, Nawres Debbabi, Lupe Carolina Espinoza, Lilian Sosa, Joaquim Suñer-Carbó, Mohamed Ali Lassoued, Leila Chekir-Ghedira and Ana Cristina Calpena
Pharmaceutics 2025, 17(9), 1093; https://doi.org/10.3390/pharmaceutics17091093 - 22 Aug 2025
Viewed by 381
Abstract
Background/Objectives: Recent advancements in innovative drug delivery nanosystems have significantly impacted wound healing, particularly through the incorporation of natural products. This study aimed to develop and characterize a Phlomis crinita extract-loaded nanostructured formulation (PCE-NF) as a topical therapy for skin wounds. Methods [...] Read more.
Background/Objectives: Recent advancements in innovative drug delivery nanosystems have significantly impacted wound healing, particularly through the incorporation of natural products. This study aimed to develop and characterize a Phlomis crinita extract-loaded nanostructured formulation (PCE-NF) as a topical therapy for skin wounds. Methods: This study involved the incorporation of P. crinita extract in a nanoemulsion by the high-energy emulsification method. This formulation was subjected to physicochemical and biopharmaceutical characterization, and a physical stability study over 30 days. Biocompatibility, tolerability, and irritant effects were assessed, while the wound healing potential was evaluated using in vitro skin models of fibroblasts and keratinocytes. Results: PCE-NF showed a homogeneous appearance with nanometric-sized spherical droplets of 212.27 nm and Newtonian behavior. This formulation showed a sustained release of its majority component (luteonin 7-(6″-acetylglucoside)), which followed a hyperbolic kinetic while showing high permeation, through healthy human skin, with 22.01 µg after 27 h. There were no cytotoxic effects of PCE-NF with improvements in skin barrier function and hydration levels. The wound healing potential of PCE-NF at 3.125 µg/mL was evidenced by enhanced cell migration and accelerated wound closure in 3T3-L1 and HaCaT cells, with values of 94.24 and 92.41%, respectively. Conclusions: These results suggest that this formulation could be used as an effective wound healing treatment. Full article
Show Figures

Figure 1

20 pages, 4109 KB  
Article
Rheological Optimization of 3D-Printed Cementitious Materials Using Response Surface Methodology
by Chenfei Wang, Junyin Lian, Yunhui Fang, Guangming Fan, Yixin Yang, Wenkai Huang and Shuqin Shi
Materials 2025, 18(17), 3933; https://doi.org/10.3390/ma18173933 - 22 Aug 2025
Viewed by 405
Abstract
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects [...] Read more.
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects on flowability and dynamic yield stress. A Box–Behnken central composite design was used to establish a mathematical model, followed by the RSM-driven optimization of mix proportions. The optimized formulation (0.32% accelerator, 0.24% HPMC, and 0.23% PCE) achieved a flowability of 147.5 mm and a dynamic yield stress of 711 Pa, which closely matched the predicted values and fulfilled the printability requirements, thus establishing RSM as an effective approach for designing printable cementitious composites. This approach established an RSM-based optimization framework for mix proportion design. These findings offer a mechanistic framework for rational 3DPC mixture design, combining theoretical insights and practical implementation in additive construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 10577 KB  
Article
Optimizing Inorganic Cs4CuSb2Cl12/Cs2TiI6 Dual-Absorber Solar Cells: SCAPS-1D Simulations and Machine Learning
by Xiangde Li, Yuming Fang and Jiang Zhao
Nanomaterials 2025, 15(16), 1245; https://doi.org/10.3390/nano15161245 - 14 Aug 2025
Viewed by 485
Abstract
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a [...] Read more.
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a dual-absorber structure comprising Cs4CuSb2Cl12 (CCSC) and Cs2TiI6 (CTI)—lead-free perovskite derivatives valued for environmental benignity and intrinsic stability. Comprehensive theoretical screening of 26 electron/hole transport layer (ETL/HTL) candidates identified SrTiO3 (STO) and CuSCN as optimal charge transport materials, producing an initial simulated PCE of 16.27%. Subsequent theoretical optimization of key parameters—including bulk and interface defect densities, band gap, layer thickness, and electrode materials—culminated in a simulated PCE of 30.86%. Incorporating quantifiable practical constraints, including radiative recombination, resistance, and FTO reflection, revised simulated efficiency to 26.60%, while qualitative analysis of additional factors follows later. Furthermore, comparing multiple algorithms within this theoretical framework demonstrated eXtreme Gradient Boosting (XGBoost) possesses superior predictive capability, identifying CTI defect density as the dominant impact on PCE—thereby underscoring its critical role in analogous architectures and offering optimization guidance for experimental studies. Collectively, this theoretical research delineates a viable pathway toward developing stable, environmentally sustainable PSCs with high properties. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

13 pages, 1891 KB  
Article
Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
by Zhichun Yang, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao and Suotang Jia
Nanomaterials 2025, 15(16), 1229; https://doi.org/10.3390/nano15161229 - 12 Aug 2025
Viewed by 566
Abstract
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose [...] Read more.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium–cesium lead halide (FA0.85Cs0.15Pb(I0.95Br0.05)3, FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb2+ ions, while the chlorine atom forms Pb–Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiOx/PTAA/Al2O3/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N2 environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

11 pages, 2523 KB  
Article
A New Methodology for Film Preparation: Comparison Between Doctor Blading and Airbrushing Methods on Scaffold Materials
by Hagata Emmanuely Slusarski Fonseca, Gideã Taques Tractz, Ana Paula Peron, Wesley Kordiak, Maria Vitória França Corrêa, Maico Taras da Cunha and Everson do Prado Banczek
Processes 2025, 13(8), 2537; https://doi.org/10.3390/pr13082537 - 12 Aug 2025
Viewed by 319
Abstract
This paper explores the potential of the airbrushing method as a novel and cost-effective method for producing uniform titanium dioxide (TiO2) films, crucial for enhancing the efficiency of dye-sensitized solar cells. The techniques performed were SEM and EDS images, OCP curves, [...] Read more.
This paper explores the potential of the airbrushing method as a novel and cost-effective method for producing uniform titanium dioxide (TiO2) films, crucial for enhancing the efficiency of dye-sensitized solar cells. The techniques performed were SEM and EDS images, OCP curves, photochronoamperometry, j-V curves, and impedance spectroscopy. Comparative analysis with the doctor blade methodology has noted a higher uniformity compared to the AB method, with the ability to improve the charge transportation and PCE (1.987%) and reduce the recombination process in the TiO2/electrolyte interface (ԏe = 0.012 s). Insights from EIS spectroscopy and intensity-modulated spectroscopy offer mechanistic elucidations of the enhanced performance. Overall, this study highlights airbrushing as a promising approach for advancing the development of high-performance solar energy systems. Full article
(This article belongs to the Special Issue Design and Optimisation of Solar Energy Systems)
Show Figures

Figure 1

17 pages, 2652 KB  
Article
First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications
by Wen-Jie Hu, Xin-Yu Zhang, Xiao-Tong Zhu, Yan-Li Hu, Hua-Kai Xu, Xiang-Fu Xu, You-Da Che, Xing-Yuan Chen, Li-Ting Niu and Bing Dai
Photonics 2025, 12(8), 803; https://doi.org/10.3390/photonics12080803 - 11 Aug 2025
Viewed by 303
Abstract
Ferroelectric semiconductors, with their inherent spontaneous polarization, present a promising approach for efficient charge separation, making them attractive for photovoltaic applications. The potential of β-AgGaO2, a polar ternary oxide with an orthorhombic Pna21 structure, as a light-absorbing material is evaluated. [...] Read more.
Ferroelectric semiconductors, with their inherent spontaneous polarization, present a promising approach for efficient charge separation, making them attractive for photovoltaic applications. The potential of β-AgGaO2, a polar ternary oxide with an orthorhombic Pna21 structure, as a light-absorbing material is evaluated. First-principles computational analysis reveals that β-AgGaO2 possesses an indirect bandgap of 2.1 eV and exhibits pronounced absorption within the visible spectral range. Optical simulations suggest that a 300 nm thick absorber layer could theoretically achieve a power conversion efficiency (PCE) of 20%. Device-level simulations using SCAPS-1D evaluate the influence of hole and electron transport layers on solar cell performance. Among the tested hole transport materials, Cu2FeSnS4 (CFTS) achieves the highest PCE of 14%, attributed to its optimized valence band alignment and reduced recombination losses. In contrast, no significant improvements were observed with the electron transport layers tested. These findings indicate the potential of β-AgGaO2 as a ferroelectric photovoltaic absorber and emphasize the importance of band alignment and interface engineering for optimizing device performance. Full article
Show Figures

Figure 1

35 pages, 3601 KB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Viewed by 444
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

22 pages, 2934 KB  
Article
Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects
by Xinfei Zhao, Kangning Kong, Run Wang, Jiachen Liu, Yongpeng Deng, Le Yin and Baolei Zhang
Sustainability 2025, 17(15), 7015; https://doi.org/10.3390/su17157015 - 1 Aug 2025
Viewed by 732
Abstract
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, [...] Read more.
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, previous research has primarily focused on the maximum cooling impact, often overlooking the accumulative effects arising from spatial continuity. The present study fills this gap by investigating 74 urban parks located in the central area of Jinan and constructing a comprehensive cooling evaluation framework through two dimensions: maximum impact (Park Cooling Area, PCA; Park Cooling Efficiency, PCE) and cumulative impact (Park Cooling Intensity, PCI; Park Cooling Gradient, PCG). We further systematically examined the influence of park attributes and the surrounding urban structures on these metrics. The findings indicate that urban parks, as a whole, significantly contribute to lowering the ambient temperatures in their vicinity: 62.3% are located in surface temperature cold spots, reducing ambient temperatures by up to 7.77 °C. However, cooling intensity, range, and efficiency vary significantly across parks, with an average PCI of 0.0280, PCG of 0.99 °C, PCA of 46.00 ha, and PCE of 5.34. For maximum impact, PCA is jointly determined by park area, boundary length, and shape complexity, while smaller parks generally exhibit higher PCE—reflecting diminished cooling efficiency at excessive scales. For cumulative impact, building density and spatial enclosure degree surrounding parks critically regulate PCI and PCG by influencing cool-air aggregation and diffusion. Based on these findings, this study classified urban parks according to their cooling characteristics, clarified the functional differences among different park types, and proposed targeted recommendations. Full article
Show Figures

Figure 1

19 pages, 2104 KB  
Article
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents
by Fadime Kara Murdoch, Yanchen Sun, Mark E. Fuller, Larry Mullins, Amy Hill, Jacob Lilly, John Wilson, Frank E. Löffler and Katarzyna H. Kucharzyk
Toxics 2025, 13(8), 656; https://doi.org/10.3390/toxics13080656 - 31 Jul 2025
Viewed by 406
Abstract
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy. This study examined how polystyrene (PS) and polyamide 6 (PA6) MPs and NPs influence CVOC and RDX biodegradation. PS particles did not inhibit the CVOC-degrading community SDC-9, but PA6 MPs impaired the reductive dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE), causing a “cis-DCE stall” with no further conversion to vinyl chloride (VC) or ethene. Only 45% of TCE was dechlorinated to cis-DCE, and Dehalococcoides mccartyi abundance dropped 1000-fold in 35 days with PA6 MPs. In contrast, neither PA6 nor PS MPs and NPs affected RDX biotransformation. These results highlight the significant impact of PA6 MPs on CVOC biodegradation and the need to consider plastic pollution in environmental management. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Graphical abstract

Back to TopTop