ijms-logo

Journal Browser

Journal Browser

Gut Microbiome Stability in Health and Disease

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 2983

Special Issue Editors


E-Mail Website
Guest Editor
Department of Molecular Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
Interests: gut microbiome

E-Mail Website1 Website2
Guest Editor
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
Interests: gut microbiota; metagenomic; metabolomic; gut microbiomes

Special Issue Information

Dear Colleagues,

Omics analysis, represented by metagenomics or metabolomics in the gut microbiome, has been accumulating evidence for its close association with human health. Gut microbial instability affects intestinal permeability and the immune response, predisposing hosts to certain types of disease, such as obesity and inflammatory bowel diseases. Along with the pathological changes in gut microbiome composition, defined as dysbiosis, being extensively studied, the molecular basis that establishes gut microbiome stability at various stages of human life (infant to elderly) is a future avenue for addressing how host–microbe and microbe–microbe interactions keep the homeostasis of the gut. Novel insights into the molecular mechanisms causing gut microbiome stability provide valuable information with which to develop new strategies for preventing the diseases induced by gut microbiome dysbiosis.

This Special Issue will highlight recent advances in the research on the molecular mechanisms establishing gut microbiome stability. We welcome original research papers, reviews, short communications, and discussion papers that address the molecular mechanisms of gut microbiome stability from unique approaches and various points of view.

Prof. Dr. Tomomi Kuwahara
Dr. Yoshitohi Ogura
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gut microbiome stability
  • immune system
  • epithelial cell
  • mucous layer
  • antibiotics
  • diet
  • inflammatory bowel disease
  • gut microbial metabolites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3434 KB  
Article
Reactivity of Autologous Serum IgG to Gut Microbes in Pediatric Ulcerative Colitis
by Nafisa Tabassum, Haruyuki Nakayama-Imaohji, Emmanuel Munyeshyaka, Ayano Tada, Takeo Kondo, Sonoko Kondo, Takashi Kusaka and Tomomi Kuwahara
Int. J. Mol. Sci. 2025, 26(17), 8196; https://doi.org/10.3390/ijms26178196 - 23 Aug 2025
Viewed by 717
Abstract
Ulcerative colitis (UC) is caused by an excessive immune response to gut microbiota. A recent study reported that the population of IgG-coated gut microbes increases with disease severity in patients with UC, but the role of these IgG-coated microbes in UC pathology is [...] Read more.
Ulcerative colitis (UC) is caused by an excessive immune response to gut microbiota. A recent study reported that the population of IgG-coated gut microbes increases with disease severity in patients with UC, but the role of these IgG-coated microbes in UC pathology is unclear. Serum, feces and colonoscopic lavage fluids (CLFs) were collected from pediatric UC (n = 13) and non-inflammatory bowel disease (IBD) patients (n = 15). Gut microbes were isolated from feces. Serum IgG reactivity to microbial cells and CLF-derived proteins was evaluated by Western blotting. Complement activation by the bacteria–IgG complexes was also assessed. Serum IgG reactivity to gut microbial extracts was highly variable in patients with active UC and increased with mucosal inflammation. IgG reactivity and clinical condition were inversely associated depending on disease activity. Non-IBD patients showed a similar degree of serum IgG response as that seen for patients whose UC was in remission. Lactobacillaceae bound higher amounts of IgG than other gut microbes tested and absorbed IgG to other bacteria. Lacticaseibacillus paracasei suppressed complement activation by Escherichia coli—IgG immune complexes. Appropriate IgG responses to luminal microbes might play a key role in gut microbiota stability by reducing excessive mucosal inflammation. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
Show Figures

Figure 1

24 pages, 8766 KB  
Article
Perilla frutescens Seed Residue Extract Restores Gut Microbial Balance and Enhances Insulin Function in High-Fat Diet and Streptozotocin-Induced Diabetic Rats
by Pattharaphong Deethai, Chatsiri Siriwathanakul, Pornsiri Pitchakarn, Arisa Imsumran, Ariyaphong Wongnoppavich, Sivamoke Dissook and Teera Chewonarin
Int. J. Mol. Sci. 2025, 26(17), 8176; https://doi.org/10.3390/ijms26178176 - 22 Aug 2025
Viewed by 938
Abstract
The seed residue of Perilla frutescens possesses diverse biological properties and is rich in bioactive phytochemicals, including luteolin, rosmarinic acid, and apigenin. The aim of this study was to investigate the anti-diabetic effects of perilla seed residue crude extract (PCE) and its impact [...] Read more.
The seed residue of Perilla frutescens possesses diverse biological properties and is rich in bioactive phytochemicals, including luteolin, rosmarinic acid, and apigenin. The aim of this study was to investigate the anti-diabetic effects of perilla seed residue crude extract (PCE) and its impact on the composition of the gut microbiome in rats with diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). Forty male Wistar rats were fed on an HFD for six weeks before receiving an injection of STZ injection to induce diabetes. These rats were then treated for four weeks with metformin (100 mg/kg bw) or PCE (100 and 1000 mg/kg bw) alongside a control group maintained on a normal diet. The results showed that PCE treatment improved metabolic parameters in diabetic rats, as evidenced by reduced water and food intake, increased body weight gain, lower blood glucose levels, and enhanced insulin secretion effects, especially at the 100 mg/kg bw dosage. PCE also promoted the regeneration of pancreatic β-cells and improved utilization of glucose. PCE also suppressed inflammation and oxidative stress, enhanced antioxidant capacity, and reduced circulating triglyceride levels. Most notably, PCE administration increased gut microbial diversity and shifted the microbiome closer to that of healthy controls, demonstrating its prebiotic effect. It promoted the abundance of beneficial bacteria that are linked to improved glucose metabolism and reduced inflammation—specifically, Bacteroides fragilis, Lactobacillus, Clostridium, and Akkermansia. Harmful bacteria associated with inflammation and poor glycemic control were reduced. Collectively, these results suggest that PCE not only helps restore a balanced gut microbiome but also offers metabolic benefits that could improve diabetic outcomes. These findings position PCE as a promising supplement for the management of diabetes and encourage further exploration of the mechanisms associated with its actions. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
Show Figures

Figure 1

12 pages, 272 KB  
Article
Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis
by Mitsuhiro Hishida, Kosuke Nomoto, Kengo Hashimoto, Sei Ueda and Shuji Nomoto
Int. J. Mol. Sci. 2025, 26(16), 8104; https://doi.org/10.3390/ijms26168104 - 21 Aug 2025
Viewed by 779
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy with a poor prognosis, and early diagnosis is essential for improving patient survival and quality of life. This study aimed to develop a non-invasive screening method based on salivary gene expression and microbiome analysis. Unstimulated [...] Read more.
Oral squamous cell carcinoma (OSCC) is a malignancy with a poor prognosis, and early diagnosis is essential for improving patient survival and quality of life. This study aimed to develop a non-invasive screening method based on salivary gene expression and microbiome analysis. Unstimulated saliva samples were collected from patients with OSCC, patients with oral potentially malignant disorders, and healthy controls. Microbiome profiling was performed using 16S ribosomal RNA gene sequencing. The OSCC group showed a significant increase in Fusobacterium and Bacteroidetes and a decrease in Streptococcus. LEfSe analysis indicated microbial changes associated with disease progression. Receiver operating characteristic analysis demonstrated high diagnostic accuracy when multiple bacterial species were combined. An increase in Fusobacteria was also associated with a higher risk of recurrence. Gene expression analysis revealed that NUS1, RCN1, CPLANE1, and CCL20 were significantly upregulated in OSCC, as confirmed by qRT-PCR and tissue expression data. Notably, CCL20 expression positively correlated with Fusobacterium abundance. These findings suggest that integrated analysis of the salivary microbiome and gene expression may offer a useful non-invasive approach for early OSCC detection and disease monitoring. Furthermore, we integrated current evidence from the literature to provide a comprehensive overview. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
Back to TopTop