Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = PDMS modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1758 KB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 - 1 Aug 2025
Viewed by 362
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

15 pages, 2902 KB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 599
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

19 pages, 4975 KB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 822
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

24 pages, 5031 KB  
Article
Polydimethylsiloxane as a Modifier of the Processing, Surface and Mechanical Properties of the Linear Low-Density Polyethylene Recyclate
by Arkadiusz Kloziński, Przemysław Postawa, Paulina Jakubowska and Milena Trzaskalska
Materials 2025, 18(11), 2552; https://doi.org/10.3390/ma18112552 - 29 May 2025
Viewed by 560
Abstract
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane [...] Read more.
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane were produced during twin-screw extrusion, followed by cold granulation. The addition of the modifier at the adopted concentration range lowered the water absorption of the recyclate and contributed to a slight increase in processing shrinkage; however, it did not significantly affect its processability (MFR~const). The modification carried out increased the hydrophobic character of the recyclate surface (the wetting angle for water was enhanced) and decreased the value of the dynamic friction coefficient. It also contributed to an improvement in surface gloss. The deterioration of point hardness and scratch hardness of the recyclate was noted with an increase in the PDMS content in the mixture. The addition of polydimethylsiloxane caused changes in the nature of resulting cracks (increased width and reduced longitudinal deformation), which led to surface smoothing and increased the sliding effects. There was no negative effect of PDMS addition on the mechanical properties (static tensile) of the recyclate. The impact strength of rLLDPE deteriorated slightly. The research conducted shows the high application potential of PDMS as a modifier of the surface properties of low-density polyethylene linear recyclate and of selected processing properties, which can contribute to the shortening of the production cycle, thus potentially increasing its attractiveness compared to the original raw materials. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 4639 KB  
Article
Simulation of the Thermodynamic Properties and Hydrophobicity of Polydimethylsiloxane Modified by Grafting Nano-SiO2 with Different Silane Coupling Agents
by Yuzhang Xie, Weiju Dai, Jingyi Yan, Zuhao Wang and Chao Tang
Materials 2025, 18(10), 2323; https://doi.org/10.3390/ma18102323 - 16 May 2025
Cited by 1 | Viewed by 741
Abstract
Polydimethylsiloxane (PDMS) with good hydrophobicity and nano-SiO2 with excellent thermal stability and mechanical properties are used as a composite coating for cellulose insulating paper in oil-immersed transformers, which effectively reduces the moisture generated by the thermal aging process, thus prolonging each transformer’s [...] Read more.
Polydimethylsiloxane (PDMS) with good hydrophobicity and nano-SiO2 with excellent thermal stability and mechanical properties are used as a composite coating for cellulose insulating paper in oil-immersed transformers, which effectively reduces the moisture generated by the thermal aging process, thus prolonging each transformer’s service life. This study employed molecular dynamics simulations to investigate the effects of surface-modified nano-SiO2 with different silane coupling agents (KH570 and KH151) on the thermodynamic properties and hydrophobicity of PDMS. Four groups of anhydrous models were constructed, namely, PDMS, P-SiO2, P-570, and P-151, as well as four corresponding groups of water-containing models: PDMS/H2O, P-SiO2/H2O, P-570/H2O, and P-151/H2O. The results demonstrate that incorporating silane-coupled nano-SiO2 into PDMS enhances mechanical properties, FFV, CED, MSD, diffusion coefficient, interaction energy, and hydrogen bond count, with KH570-grafted composites exhibiting optimal thermomechanical performance and hydrophobicity. At a temperature of 343 K, KH570 modification increased the bulk modulus and CED by 26.5% and 31.0%, respectively, while reducing the water molecular diffusion coefficient by 24.7% compared to that of unmodified PDMS/SiO2 composites. The extended KH570 chains occupy additional free volume, forming a larger steric hindrance layer, restricting molecular chain mobility, suppressing hydrogen bond formation, and establishing a low energy surface. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 4791 KB  
Article
Evaluation of Thermal Stability and Thermal Transitions of Hydroxyl-Terminated Polysiloxane/Montmorillonite Nanocomposites
by Sozon P. Vasilakos and Petroula A. Tarantili
Materials 2025, 18(6), 1226; https://doi.org/10.3390/ma18061226 - 10 Mar 2025
Viewed by 743
Abstract
Condensation-type polysiloxane composites with montmorillonite (MMT) of different organic modifications were prepared in this study. X-ray diffraction (XRD) characterization revealed that the higher degree of organic modification in Cloisite 20A, compared to that in Cloisite 30B, resulted in a larger interlayer spacing between [...] Read more.
Condensation-type polysiloxane composites with montmorillonite (MMT) of different organic modifications were prepared in this study. X-ray diffraction (XRD) characterization revealed that the higher degree of organic modification in Cloisite 20A, compared to that in Cloisite 30B, resulted in a larger interlayer spacing between the clay platelets. This facilitates the insertion of elastomer chains between the layers, enabling easier exfoliation and dispersion in the elastomeric matrix. Differential scanning calorimetry (DSC) showed that the reinforcing agents used reduced the cold crystallization temperature of the condensation-type polysiloxane while leaving the glass transition and melting temperatures nearly unaffected. Additionally, the nanocomposites exhibited slightly lower crystallization and melting enthalpies compared to pure silicone. Thermogravimetric analysis (TGA) showed that incorporating the two organically modified clays (Cloisite 20A and Cloisite 30B) into the condensation-type polysiloxane significantly improved the thermal stability of the resulting nanocomposites. This improvement was reflected in the significant increase in the onset and maximum degradation rate temperatures across all examined reinforcement ratios. It was observed that a higher degree of organic modification in MMT (Cloisite 20A) resulted in a more efficient dispersion in the PDMS matrix and enhanced the thermal stability of the composites. These PDMS nanocomposites could be suitable as protective coatings for devices exposed to elevated temperatures. Full article
Show Figures

Figure 1

15 pages, 5039 KB  
Article
Automated Electrical Detection of Proteins for Oral Squamous Cell Carcinoma in an Integrated Microfluidic Chip Using Multi-Frequency Impedance Cytometry and Machine Learning
by Muhammad Tayyab, Zhongtian Lin, Seyed Reza Mahmoodi and Mehdi Javanmard
Sensors 2025, 25(5), 1566; https://doi.org/10.3390/s25051566 - 4 Mar 2025
Cited by 1 | Viewed by 1074
Abstract
Proteins can act as suitable biomarkers for the prognosis and diagnosis of certain conditions and can help us gain an understanding of the fundamental processes that occur inside an organism. In this work, we present a fully automated machine learning-assisted label-free method for [...] Read more.
Proteins can act as suitable biomarkers for the prognosis and diagnosis of certain conditions and can help us gain an understanding of the fundamental processes that occur inside an organism. In this work, we present a fully automated machine learning-assisted label-free method for the electrical detection of proteins in an integrated microfluidic chip using multi-frequency impedance cytometry and off-the-shelf components for realizing an automated and programmable fluid control system. We verify the robustness of our mixing method on our custom microfluidic mixer composed of polydimethylsiloxane (PDMS) serpentine channels optically using a fluorescent sandwich immunoassay and comparing the results with a commercial benchtop mixer. Salivary IL-6 is a biomarker for oral squamous cell carcinoma (OSCC), and we have demonstrated that our system can be used for the detection of quantification of Interleukin-6 (IL-6) levels in a solution using the impedance response of beads conjugated with the protein of interest, which passes through the microfluidic chip with reasonable accuracy (96%). Although we have demonstrated the detection and quantification of IL-6, our system can be adapted to any protein of interest with slight modification in the reagents and bead-binding protocols. Full article
(This article belongs to the Special Issue Advancements in Microfluidic Technologies and BioMEMS)
Show Figures

Figure 1

24 pages, 5992 KB  
Review
The Impact of Polydimethylsiloxane (PDMS) in Engineering: Recent Advances and Applications
by Rui A. Lima
Fluids 2025, 10(2), 41; https://doi.org/10.3390/fluids10020041 - 9 Feb 2025
Cited by 7 | Viewed by 5372
Abstract
Since the introduction of polydimethylsiloxane (PDMS) microfluidic devices at the beginning of the 21st century, this elastomeric polymer has gained significant attention in the engineering community due to its biocompatibility, exceptional mechanical and optical properties, thermal stability, and versatility. PDMS has been widely [...] Read more.
Since the introduction of polydimethylsiloxane (PDMS) microfluidic devices at the beginning of the 21st century, this elastomeric polymer has gained significant attention in the engineering community due to its biocompatibility, exceptional mechanical and optical properties, thermal stability, and versatility. PDMS has been widely used for in vitro experiments ranging from the macro- to nanoscale, enabling advances in blood flow studies, biomodels improvement, and numerical validations. PDMS devices, including microfluidic systems, have been employed to investigate different kinds of fluids and flow phenomena such as in vitro blood flow, blood analogues, the deformation of individual cells and the cell free layer (CFL). The most recent applications of PDMS involve complex hemodynamic studies such as flow in aneurysms and in organ-on-a-chip (OoC) platforms. Furthermore, the distinctive properties of PDMS, including optical transparency, thermal stability, and versality have inspired innovative applications beyond biomedical applications, such as the development of transparent, virus-protective face masks, including those for SARS-CoV-2 and serpentine heat exchangers to enhance heat transfer and energy efficiency in different kinds of thermal systems. This review provides a comprehensive overview of the current research performed with PDMS and outlines some future directions, in particular applications of PDMS in engineering, including biomicrofluidics, in vitro biomodels, heat transfer, and face masks. Additionally, challenges related to PDMS hydrophobicity, molecule absorption, and long-term stability are discussed alongside the solutions proposed in the most recent research studies. Full article
(This article belongs to the Special Issue Physics and Applications of Microfluidics)
Show Figures

Graphical abstract

11 pages, 4383 KB  
Article
Fabrication and Characterization of Biocompatible Multilayered Elastomer Hybrid with Enhanced Water Permeation Resistance for Packaging of Implantable Biomedical Devices
by Dae Hyeok An, Hee Cheol Kang, Jun Woo Lim, Junho Kim, Hojin Lee, Jae Hyun Jeong, Sung-Min Park and Jae Woo Chung
Micromachines 2024, 15(11), 1309; https://doi.org/10.3390/mi15111309 - 28 Oct 2024
Cited by 1 | Viewed by 1387
Abstract
This study presents the synthesis and characterization of hexadecyl-modified SiO2 (HD-SiO2) nanoparticles and their application in the fabrication of a multilayered elastomer hybrid sheet to enhance water resistance in implantable biomedical devices. The surface modification of SiO2 nanoparticles was [...] Read more.
This study presents the synthesis and characterization of hexadecyl-modified SiO2 (HD-SiO2) nanoparticles and their application in the fabrication of a multilayered elastomer hybrid sheet to enhance water resistance in implantable biomedical devices. The surface modification of SiO2 nanoparticles was confirmed via FT-IR and TGA analyses, showing the successful grafting of hydrophobic hexadecyl groups. FE-SEM and DLS analyses revealed spherical HD-SiO2 nanoparticles with an average size of 360 nm. A multilayered elastomer hybrid sheet, consisting of a PDMS-based circuit-protecting body, a water resistance layer of HD-SiO2, a planarization layer, and a biocompatible layer of polydopamine, was fabricated and characterized. The water resistance layer exhibited superhydrophobic properties, with a water contact angle of 154.7° and a 27% reduction in water vapor transmission rate (WVTR) compared to the circuit-protecting body alone. The device packaged with both the circuit-protecting body and water resistance layer demonstrated a tenfold increase in operational lifespan in water medium compared to the device without the water resistance layer. Cytotoxicity and cell proliferation tests on human dermal fibroblast cells (HDFn) confirmed the biocompatibility of the multilayered sheet, with no significant cytotoxicity observed over 48 h. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Graphical abstract

10 pages, 3898 KB  
Article
Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems
by Feng Wu, Jing Xu, Yuanyuan Liu, Hua Sun, Lishang Zhang, Yixuan Liu, Weiwei Wang, Fali Chong, Dan Zou and Shuli Wang
Micromachines 2024, 15(10), 1241; https://doi.org/10.3390/mi15101241 - 9 Oct 2024
Cited by 2 | Viewed by 1600
Abstract
Liquid-like surfaces have demonstrated immense potential in their ability to resist cell adhesion, a critical requirement for numerous applications across various domains. However, the conventional methodologies for preparing liquid-like surfaces often entail a complex multi-step polymer brush modification process, which is not only [...] Read more.
Liquid-like surfaces have demonstrated immense potential in their ability to resist cell adhesion, a critical requirement for numerous applications across various domains. However, the conventional methodologies for preparing liquid-like surfaces often entail a complex multi-step polymer brush modification process, which is not only time-consuming but also presents significant challenges. In this work, we developed a single-cycle polymer brush modification strategy to build liquid-like surfaces by leveraging high-molecular-weight bis(3-aminopropyl)-terminated polydimethylsiloxane, which significantly simplifies the preparation process. The resultant liquid-like surface is endowed with exceptional slipperiness, effectively inhibiting bacterial colonization and diminishing the adherence of platelets. Moreover, it offers promising implications for reducing the dependency on anticoagulants in microfluidic systems constructed from PDMS, all while sustaining its antithrombotic attributes. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Bioengineering)
Show Figures

Figure 1

16 pages, 10031 KB  
Article
Blocking of Gas–Liquid Coalescing Filters with Accumulated Oil during the On–Off Operation of a Filtration System
by Andrzej Krasiński, Szymon Kamocki and Michał Stor
Appl. Sci. 2024, 14(19), 9006; https://doi.org/10.3390/app14199006 - 6 Oct 2024
Viewed by 1820
Abstract
The study aims to eliminate the effect of coalescing filter blocking due to on–off operation by changing the wetting properties of the non-woven fiberglass filter media through their chemical modification with the use of a polydimethylsiloxane (PDMS) solution in hexane and a few [...] Read more.
The study aims to eliminate the effect of coalescing filter blocking due to on–off operation by changing the wetting properties of the non-woven fiberglass filter media through their chemical modification with the use of a polydimethylsiloxane (PDMS) solution in hexane and a few commercial products that give the surface oleophobic properties. The best results—high separation efficiency, no redispersion of droplets at the outlet, and low flow resistance—were obtained for materials coated by immersion in a 0.2% PDMS solution, for which a reduction in oleophilicity was found, but the material was not oleophobic and still moderately wetted with the test liquid. The corresponding static contact angle with the VG-46 rotary compressor oil measured on the flat borosilicate glass wafer made of the same material as the fiberglass media was equal to 54° for the PDMS dip-coated surface. Moreover, the good stability of the applied polymer on the material surface was confirmed by the SEM imaging, the FTIR analysis, and maintaining a high performance in multiple tests run for a single coalescing element. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 9081 KB  
Article
The Influence of Mixing Speed on the Physicomechanical Parameters of Polyaddition Poly(dimethylsiloxanes) with Fillers
by Ewelina Chmielnicka, Małgorzata Szymiczek and Błażej Chmielnicki
Polymers 2024, 16(17), 2527; https://doi.org/10.3390/polym16172527 - 6 Sep 2024
Viewed by 1134
Abstract
In this article, we present an analysis of the properties of polyaddition poly(dimethylsiloxanes) (PDMS) and their potential applications after modification. The focus is on understanding how different fillers and mixing speeds affect the mechanical and electrical properties of PDMS, as well as the [...] Read more.
In this article, we present an analysis of the properties of polyaddition poly(dimethylsiloxanes) (PDMS) and their potential applications after modification. The focus is on understanding how different fillers and mixing speeds affect the mechanical and electrical properties of PDMS, as well as the benefits and challenges associated with these modifications. Additionally, the prospects for future development of PDMS-based technologies, which could bring significant innovations in various industrial fields, are discussed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 11350 KB  
Article
Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors
by Shunqi Mei, Bin Xu, Jitao Wan and Jia Chen
Sensors 2024, 24(12), 4026; https://doi.org/10.3390/s24124026 - 20 Jun 2024
Cited by 10 | Viewed by 2605
Abstract
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their [...] Read more.
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

21 pages, 9604 KB  
Article
Experimental Investigation on Hydrophobic Alteration of Mining Solid Waste Backfill Material
by Zhiyang Zhao, Liqiang Ma, Ichhuy Ngo, Kunpeng Yu, Yujun Xu, Jiangtao Zhai, Qiangqiang Gao, Chengkun Peng, Dangliang Wang, Saad S. Alarifi and Mahabub Hasan Sajib
Minerals 2024, 14(6), 580; https://doi.org/10.3390/min14060580 - 30 May 2024
Cited by 3 | Viewed by 1387
Abstract
To address the issues of corrosion weakening of solid-waste-based backfill material caused by mine water, a novel hydrophobic solid waste backfill (HSBF) material was developed using polydimethylsiloxane (PDMS) and a silane coupling agent (SCA) as hydrophobic modification additives, and NaOH (SH) and sodium [...] Read more.
To address the issues of corrosion weakening of solid-waste-based backfill material caused by mine water, a novel hydrophobic solid waste backfill (HSBF) material was developed using polydimethylsiloxane (PDMS) and a silane coupling agent (SCA) as hydrophobic modification additives, and NaOH (SH) and sodium silicate (SS) as alkali activators. Fly ash and slag were chosen as the primary raw solid waste materials. The rheological properties of the hydrophobic-treated backfill slurries were measured, and the resulting physicochemical properties were compared with the unmodified reference group. This study reveals that the fresh HSBF slurry follows a Modified Bingham (M-B) model with shear-thinning characteristics. The addition of PDMS causes an increase in the water contact angle of the hardened HSBF material with F8S2 to up to 134.9°, indicating high hydrophobicity. Morphological observations indicated that PDMS mainly attaches to the inorganic particles’ surface through the bridging action of SCA for the hydrophobic modification of the backfill material. The overall strength of the HSBF materials was further ensured via fly ash–slag ratio optimization, and was found to be enhanced up to 98% by increasing slag content from 20% to 50%. This is mainly attributed to the hydration of slag, forming C-S(A)-H gel, which contributes to the increased strength. The novel HSBF material enables the elimination of cement in mine backfilling applications, demonstrating good economic benefits. Its excellent mechanical and hydrophobic properties can not only prevent overburden displacement in goaf areas, but can also mitigate water resource loss from overlying strata and simultaneously reduce the safety risks associated with long-term mine water deterioration. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

29 pages, 3147 KB  
Review
A Review of Methods to Modify the PDMS Surface Wettability and Their Applications
by Lucas B. Neves, Inês S. Afonso, Glauco Nobrega, Luiz G. Barbosa, Rui A. Lima and João E. Ribeiro
Micromachines 2024, 15(6), 670; https://doi.org/10.3390/mi15060670 - 21 May 2024
Cited by 28 | Viewed by 8400
Abstract
Polydimethylsiloxane (PDMS) has attracted great attention in various fields due to its excellent properties, but its inherent hydrophobicity presents challenges in many applications that require controlled wettability. The purpose of this review is to provide a comprehensive overview of some key strategies for [...] Read more.
Polydimethylsiloxane (PDMS) has attracted great attention in various fields due to its excellent properties, but its inherent hydrophobicity presents challenges in many applications that require controlled wettability. The purpose of this review is to provide a comprehensive overview of some key strategies for modifying the wettability of PDMS surfaces by providing the main traditional methods for this modification and the results of altering the contact angle and other characteristics associated with this property. Four main technologies are discussed, namely, oxygen plasma treatment, surfactant addition, UV-ozone treatment, and the incorporation of nanomaterials, as these traditional methods are commonly selected due to the greater availability of information, their lower complexity compared to the new techniques, and the lower cost associated with them. Oxygen plasma treatment is a widely used method for improving the hydrophilicity of PDMS surfaces by introducing polar functional groups through oxidation reactions. The addition of surfactants provides a versatile method for altering the wettability of PDMS, where the selection and concentration of the surfactant play an important role in achieving the desired surface properties. UV-ozone treatment is an effective method for increasing the surface energy of PDMS, inducing oxidation, and generating hydrophilic functional groups. Furthermore, the incorporation of nanomaterials into PDMS matrices represents a promising route for modifying wettability, providing adjustable surface properties through controlled dispersion and interfacial interactions. The synergistic effect of nanomaterials, such as nanoparticles and nanotubes, helps to improve wetting behaviour and surface energy. The present review discusses recent advances of each technique and highlights their underlying mechanisms, advantages, and limitations. Additionally, promising trends and future prospects for surface modification of PDMS are discussed, and the importance of tailoring wettability for applications ranging from microfluidics to biomedical devices is highlighted. Traditional methods are often chosen to modify the wettability of the PDMS surface because they have more information available in the literature, are less complex than new techniques, and are also less expensive. Full article
Show Figures

Figure 1

Back to TopTop