Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = PLAXIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3542 KB  
Article
Design and Numerical Analysis of a Combined Pile–Raft Foundation for a High-Rise in a Sensitive Urban Environment
by Steffen Leppla, Arnoldas Norkus, Martynas Karbočius and Viktor Gribniak
Buildings 2025, 15(16), 2933; https://doi.org/10.3390/buildings15162933 - 19 Aug 2025
Viewed by 289
Abstract
Designing deep foundations in densely urbanized areas presents significant challenges due to complex soil conditions, high groundwater levels, and the proximity of sensitive infrastructure. This study addresses these challenges through the development and numerical analysis of a combined pile–raft foundation (CPRF) system for [...] Read more.
Designing deep foundations in densely urbanized areas presents significant challenges due to complex soil conditions, high groundwater levels, and the proximity of sensitive infrastructure. This study addresses these challenges through the development and numerical analysis of a combined pile–raft foundation (CPRF) system for a 75 m tall hotel tower in Frankfurt am Main, Germany. The construction site is characterized by heterogeneous soil layers and is located adjacent to a historic quay wall and bridge abutments, necessitating strict deformation control and robust structural performance. A comprehensive three-dimensional finite element model was developed using PLAXIS 3D to simulate staged construction and soil–structure interaction (SSI). The CPRF system comprises a 2 m thick triangular raft and 34 large-diameter bored piles (1.5 m in diameter, 40–45 m in length), designed to achieve a load-sharing ratio of 0.89. The raft contributes significantly to the overall bearing capacity, reducing bending moments and settlement. The predicted settlement of the high-rise structure remains within 45 mm, while displacement of adjacent heritage structures does not exceed critical thresholds (≤30 mm), ensuring compliance with serviceability criteria. The study provides validated stiffness parameters for superstructure design and demonstrates the effectiveness of CPRF systems in mitigating geotechnical risks in historically sensitive urban environments. By integrating advanced numerical modeling with staged construction simulation and heritage preservation criteria, the research contributes to the evolving practice of performance-based foundation design. The findings support the broader applicability of CPRFs in infrastructure-dense settings and offer a methodological framework for future projects involving complex SSI and cultural heritage constraints. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 5185 KB  
Article
Comparative Analysis of the NorSand and HS Small Constitutive Models for Evaluating Static Liquefaction in a Silt Derived from Mine Tailings
by Matias Muñoz-Gaete, Ricardo Gallardo, Edison Atencio, Ricardo Moffat, Pablo F. Parra, Carlos Cacciuttolo and William Araujo
Appl. Sci. 2025, 15(15), 8726; https://doi.org/10.3390/app15158726 - 7 Aug 2025
Viewed by 480
Abstract
The representation and assessment of static liquefaction in mine tailings is a significant challenge due to the severe environmental and social damage it can cause. This phenomenon, known for its catastrophic nature, is triggered when the undrained shear strength is exceeded by a [...] Read more.
The representation and assessment of static liquefaction in mine tailings is a significant challenge due to the severe environmental and social damage it can cause. This phenomenon, known for its catastrophic nature, is triggered when the undrained shear strength is exceeded by a static loading stress. In this study, the constitutive models HSS and NS were evaluated to calibrate the experimental curves from an isotropically consolidated undrained (CIU) triaxial test on a low-plasticity silt derived from mine tailings. An axisymmetric model was developed in Plaxis 2D for calibration, followed by a sensitivity analysis of the parameters of both constitutive models, using the RMSE to validate their accuracy. The results indicate that the proposed methodology adequately simulates the experimental curves, achieving an RMSE of 8%. After calibration, a numerical model was implemented to evaluate the propagation of the PFS of a mine tailings storage facility using both models, in terms of excess pore pressures, shear strains, and p’-q diagrams at three control points. The results show that both models are capable of representing the PFS; however, the HSS model reproduces the experimental curves more accurately, establishing itself as an ideal tool for simulating undrained behavior and, consequently, the phenomenon of static liquefaction in mine tailings. Full article
(This article belongs to the Special Issue Mining Engineering: Present and Future Prospectives)
Show Figures

Figure 1

17 pages, 5201 KB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Viewed by 301
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 7618 KB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 391
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 15284 KB  
Article
Two-Dimensional Flood Modeling of a Piping-Induced Dam Failure Triggered by Seismic Deformation: A Case Study of the Doğantepe Dam
by Fatma Demir, Suleyman Sarayli, Osman Sonmez, Melisa Ergun, Abdulkadir Baycan and Gamze Tuncer Evcil
Water 2025, 17(15), 2207; https://doi.org/10.3390/w17152207 - 24 Jul 2025
Viewed by 672
Abstract
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North [...] Read more.
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North Anatolian Fault. Critical deformation zones were previously identified through PLAXIS 2D seismic analyses, which served as the physical basis for a dam break scenario. This scenario was modeled using the HEC-RAS 2D platform, incorporating high-resolution topographic data, reservoir capacity, and spatially varying Manning’s roughness coefficients. The simulation results show that the flood wave reaches downstream settlements within the first 30 min, with water depths exceeding 3.0 m in low-lying areas and flow velocities surpassing 6.0 m/s, reaching up to 7.0 m/s in narrow sections. Inundation extents and hydraulic parameters such as water depth and duration were spatially mapped to assess flood hazards. The study demonstrates that integrating physically based seismic deformation data with hydrodynamic modeling provides a realistic and applicable framework for evaluating flood risks and informing emergency response planning. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
Show Figures

Figure 1

25 pages, 10843 KB  
Article
Experimental and Numerical Study of a Cone-Top Pile Foundation for Challenging Geotechnical Conditions
by Askar Zhussupbekov, Assel Sarsembayeva, Baurzhan Bazarov and Abdulla Omarov
Appl. Sci. 2025, 15(14), 7893; https://doi.org/10.3390/app15147893 - 15 Jul 2025
Viewed by 328
Abstract
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads [...] Read more.
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads and horizontal soil deformations. To address these limitations, a hybrid foundation was developed that integrates an inverted conical base with a central pile shaft and a rolling joint interface between the foundation and the superstructure. Laboratory model tests, full-scale field loading experiments, and axisymmetric numerical simulations using Plaxis 2D (Version 8.2) were conducted to evaluate the foundation’s bearing capacity, settlement behavior, and load transfer mechanisms. Results showed that the cone-top pile foundation exhibited lower settlements and higher load resistance than columnar foundations under similar loading conditions, particularly in the presence of horizontal tensile strains. The load was effectively distributed through the conical base and transferred into deeper soil layers via the pile shaft, while the rolling joint reduced stress transmission to the structure. The findings support the use of cone-top pile foundations in soft soils, seismic areas and areas affected by underground mining, where conventional designs may be inadequate. This study provides a validated and practical design alternative for challenging geotechnical environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 3766 KB  
Article
Comprehensive Evaluation of Sliding and Overturning Failure in Mechanically Stabilized Earth (MSE) Retaining Walls Considering the Effect of Hydrostatic Pressure
by Arash K. Pour, Amir Shirkhani and Ehsan Noroozinejad Farsangi
GeoHazards 2025, 6(3), 35; https://doi.org/10.3390/geohazards6030035 - 10 Jul 2025
Viewed by 528
Abstract
Mechanically stabilized earth (MSE) retaining walls have become a favored substitute for traditional poured concrete walls due to their affordability, minimal site preparation needs, and practical construction advantages. However, using backfill material with too many small particles and poor drainage qualities may cause [...] Read more.
Mechanically stabilized earth (MSE) retaining walls have become a favored substitute for traditional poured concrete walls due to their affordability, minimal site preparation needs, and practical construction advantages. However, using backfill material with too many small particles and poor drainage qualities may cause the wall to rotate and shift a lot or collapse completely, especially when water pressure is present. This study examines an MSE wall considering different variables, such as water pressure, the type of soil materials in the backfill materials, external load, and the type of analysis. To this aim, both PLAXIS V20 and SLOPE/W (GeoStudio 2019 Suite) software were employed, and after the verification, further investigations were carried out. These numerical analyses aligned with the real-world failure reported by previous researchers, departments, and companies. The findings suggest that the elevated presence of fine particles likely contributed to the wall’s excessive shift. Also, hydrostatic pressure behind a wall, especially in the rainy season, plays a crucial role in the factor of safety reduction by 45% and wall failure, which leads us to consider it an appropriate factor of safety for the MSE wall. Full article
Show Figures

Figure 1

24 pages, 5988 KB  
Article
Research on Construction Sequencing and Deformation Control for Foundation Pit Groups
by Ziwei Yin, Ruizhe Jin, Shouye Guan, Zhiwei Chen, Guoliang Dai and Wenbo Zhu
Appl. Sci. 2025, 15(14), 7719; https://doi.org/10.3390/app15147719 - 9 Jul 2025
Cited by 1 | Viewed by 414
Abstract
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is [...] Read more.
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is lacking in systematic analysis of construction sequencing and the interaction mechanisms between foundation pit groups. This results in gaps in comprehending stress redistribution and optimal excavation strategies for such configurations. To address these gaps, this study integrates physical model tests and PLAXIS 3D numerical simulations to explore the Nanjing Jiangbei New District Phase II pit groups. It concentrates on deformations in segmented and adjacent configurations under varying excavation sequences and spacing conditions. Key findings reveal that simultaneous excavation in segmented pit groups optimizes deformation control through symmetrical stress relief via bilateral unloading, reducing shared diaphragm wall displacement by 18–25% compared to sequential methods. Sequential excavations induce complex soil stress redistribution from asymmetric unloading, with deep-to-shallow sequencing minimizing exterior wall deformation (≤0.12%He). For adjacent foundation pit groups, simultaneous excavation achieves minimum displacement interference, while phased construction requires prioritizing large-section excavation first to mitigate cumulative deformations through optimized stress transfer. When the spacing-to-depth ratio (B/He) is below 1, horizontal displacements of retaining structures increase by 43% due to spacing effects. This study quantifies the effects of excavation sequences and spacing configurations on pit group deformation, establishing a theoretical framework for optimizing construction strategies and enhancing retaining structure stability. The findings are highly significant for underground engineering design and construction in complex urban geological settings, especially in high-density areas with spatial and geotechnical constraints. Full article
Show Figures

Figure 1

25 pages, 3458 KB  
Article
Comparative Analysis and Performance Evaluation of SSC, n-SAC, and Creep-SCLAY1S Soil Creep Models in Predicting Soil Settlement
by Tulasi Ram Bhattarai, Netra Prakash Bhandary and Gustav Grimstad
Geotechnics 2025, 5(3), 47; https://doi.org/10.3390/geotechnics5030047 - 9 Jul 2025
Viewed by 333
Abstract
The precise prediction of soil settlement under applied loads is of paramount importance in the field of geotechnical engineering. Conventional analytical approaches often lack the capacity to accurately represent the rate-dependent deformations exhibited by soft soils. Creep affects the integrity of geotechnical structures [...] Read more.
The precise prediction of soil settlement under applied loads is of paramount importance in the field of geotechnical engineering. Conventional analytical approaches often lack the capacity to accurately represent the rate-dependent deformations exhibited by soft soils. Creep affects the integrity of geotechnical structures and can lead to loss of serviceability or even system failure. Over time, they deform, the soil structure can be weakened, and consequently, the risk of collapse increases. Despite extensive research, regarding the creep characteristics of soft soils, the prediction of creep deformation remains a substantial challenge. This study explores soil consolidation settlement by employing three different material models: the Soft Soil Creep (SSC) model implemented in PLAXIS 2D, alongside two user-defined elasto-viscoplastic models, specifically Creep-SCLAY1S and the non-associated creep model for Structured Anisotropic Clay (n-SAC). Through the simulation of laboratory experiments and the Lilla Mellösa test embankment situated in Sweden, the investigation evaluates the strengths and weaknesses of these models. The results demonstrate that the predictions produced by the SSC, n-SAC, and Creep-SCLAY1S models are in close correspondence with the field observations, in contrast to the more simplistic elastoplastic model. The n-SAC and Creep-SCLAY1S models adeptly represent the stress–strain response in CRS test simulations; however, they tend to over-predict horizontal deformations in field assessments. Further investigation is advisable to enhance the ease of use and relevance of these sophisticated models. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

23 pages, 4982 KB  
Article
Analysis of Influence of Cut-and-Cover Method on Retaining Structures and Differential Settlement in Subway Foundation Pit Construction
by Yi Liu, Lei Huang, Xiaolin Tang, Yanbin Xue, Wenbin Ke, Yang Luo and Lingxiao Guan
Appl. Sci. 2025, 15(13), 7520; https://doi.org/10.3390/app15137520 - 4 Jul 2025
Viewed by 348
Abstract
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between [...] Read more.
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between the diaphragm wall and the lattice columns across various construction stages. A comparison with the cut-and-cover method prompted the adoption of a strategy that integrates segmental pouring of the main structure and the installation of internal supports to optimize the original scheme. The results indicated that as the foundation pit was excavated, both the horizontal displacement of diaphragm wall and the ground surface settlement gradually increased, while the differential settlement between the diaphragm wall and the lattice columns shows exhibited an initial decrease followed by an increase. In comparison to the cut-and-cover method, the cover-and-cut method demonstrated greater efficacy in controlling foundation pit deformation and minimizing disturbances to surrounding environment. As the number of segmental pouring layers and support levels increased, the overall deformation of the foundation pit showed a gradual decreasing trend, and the differential settlement between the diaphragm wall and the lattice columns continued to fluctuate. When each floor slab was poured in three layers with two supports placed in the middle, the maximum horizontal displacement of the diaphragm wall could be reduced by 22.47%, and the maximum ground surface settlement could be decreased by 19.01%. The findings in this research can provide valuable basis and reference for the design and construction of similar projects. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

40 pages, 5775 KB  
Article
Parametric Evaluation of Soil Nail Configurations for Sustainable Excavation Stability Using Finite Element Analysis
by Omid Bahramipour, Reza Moezzi, Farhad Mahmoudi Jalali, Reza Yeganeh Khaksar and Mohammad Gheibi
Inventions 2025, 10(4), 45; https://doi.org/10.3390/inventions10040045 - 24 Jun 2025
Cited by 1 | Viewed by 668
Abstract
The advancement of sustainable infrastructure relies on innovative design and computational modeling techniques to optimize excavation stability. This study introduces a novel approach to soil nail configuration optimization using finite element analysis (FEA) with Plaxis software (V22). Various soil nail parameters—including length, angle, [...] Read more.
The advancement of sustainable infrastructure relies on innovative design and computational modeling techniques to optimize excavation stability. This study introduces a novel approach to soil nail configuration optimization using finite element analysis (FEA) with Plaxis software (V22). Various soil nail parameters—including length, angle, and spacing—were analyzed to achieve the most efficient stabilization while minimizing costs. Results indicate that a 10-degree nail inclination from the horizontal provides an optimal balance between tensile and shear forces, reducing deformation (18.12 mm at 1 m spacing) and enhancing the safety factor (1.52). Increasing nail length significantly improves stability, but with diminishing returns beyond a threshold, while nail diameter shows minimal impact. Soil type also plays a crucial role, with coarse-grained soils (friction angle 35°) demonstrating superior performance compared to fine-grained soils (friction angle 23°). This research contributes to the field of computational modeling and intelligent design by integrating advanced simulation techniques for geotechnical stability analysis, providing an innovative and data-driven framework for parametric evaluation of soil nail configurations. Full article
Show Figures

Figure 1

24 pages, 5864 KB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 545
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

18 pages, 2361 KB  
Article
Sensitivity Analysis of the Influence of Heavy-Intensity Rain Duration on the Stability of Granular Soil Slopes Under Unsaturated Conditions
by Javier Bustamante, Ricardo Gallardo-Sepúlveda, Edison Atencio and Pablo F. Parra
Appl. Sci. 2025, 15(11), 6074; https://doi.org/10.3390/app15116074 - 28 May 2025
Viewed by 545
Abstract
This study investigates slope stability under rainfall infiltration using numerical modeling in Plaxis 2D, comparing poorly graded sand (6.5% fines) and well-graded sand (11.9% fines) under high-intensity rainfall of 30 mm/h for durations of 8, 12, 18, and 24 h. The results indicate [...] Read more.
This study investigates slope stability under rainfall infiltration using numerical modeling in Plaxis 2D, comparing poorly graded sand (6.5% fines) and well-graded sand (11.9% fines) under high-intensity rainfall of 30 mm/h for durations of 8, 12, 18, and 24 h. The results indicate that, as rainfall duration increases, soil saturation rises, leading to reduced suction, lower shear strength, and decreased safety factors (S.F.s). Poorly graded sand shows minimal sensitivity to infiltration, with the S.F. dropping by only 4.3% after 24 h, maintaining values close to the initial 1.126. Conversely, well-graded sand demonstrates significant sensitivity, with its S.F. decreasing by 25.4% after 8 h and 73.7% after 24 h, due to higher water retention capacity and suction. This highlights the significant contrast in stability behavior between the two soil types. The findings emphasize the critical role of soil hydro-mechanical properties in assessing slope stability, especially in regions with intense rainfall. This study establishes a methodology for correlating safety factor variations with rainfall duration and soil type, offering valuable insights for modeling and mitigating landslide risks in rainy climates, considering the hydraulic and mechanical parameters of the soil. Full article
Show Figures

Figure 1

23 pages, 4661 KB  
Article
Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas
by Anil Kumar Misra, Amit Srivastava, Kuldeep Dutta, Soumya Shukla, Rakesh Kumar Ranjan and Nishchal Wanjari
Appl. Sci. 2025, 15(11), 5892; https://doi.org/10.3390/app15115892 - 23 May 2025
Viewed by 734
Abstract
This study assesses the risks of glacial lake outburst floods (GLOFs) from moraine sediment dams around Gurudongmar Lake in the Northern Sikkim Himalayas at an elevation of 17,800 feet. It focuses on three moraine sediment dams, analysing the implications of slope failure on [...] Read more.
This study assesses the risks of glacial lake outburst floods (GLOFs) from moraine sediment dams around Gurudongmar Lake in the Northern Sikkim Himalayas at an elevation of 17,800 feet. It focuses on three moraine sediment dams, analysing the implications of slope failure on the upstream side and the downstream stability under steady seepage conditions, as well as the risks posed by permafrost thawing. Using a comprehensive methodology that includes geotechnical evaluations, remote sensing, and digital elevation models (DEMs), the research employs finite element analysis via PLAXIS2D for the stability assessment. The main findings indicate a stratification of sediment types: the upper layers are loose silty sand, while the lower layers are dense silty sand, with significant variations in shear strength, permeability, and other geotechnical properties. Observations of solifluctions suggest that current permafrost conditions enhance the dams’ stability and reduce seepage. However, temperature trends show a warming climate, with the average days below 0 °C decreasing from 314 (2004–2013) to 305 (2014–2023), indicating potential permafrost thawing. This thawing could increase seepage and destabilise the dams, raising the risk of GLOFs. Numerical simulations reveal that scenarios involving water level rises of 5 and 10 m could lead to significant deformation and reduced safety factors on both the upstream lateral dams and downstream front dams. The study emphasises the urgent need for ongoing monitoring and risk assessment to address the potential hazards associated with GLOFs. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

33 pages, 8892 KB  
Article
Performance Analysis of Hybrid Steel–Concrete and Timber–Concrete Composite Pile Systems in Variable Density Sandy Soils Using Experimental and Numerical Insights
by Ibrahim Haruna Umar, Müge Elif Fırat, Hang Lin, Hamza Tijjani Shehu and Rihong Cao
Appl. Sci. 2025, 15(11), 5868; https://doi.org/10.3390/app15115868 - 23 May 2025
Viewed by 542
Abstract
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance [...] Read more.
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance foundation systems that are adaptable to diverse geotechnical conditions. The research evaluates the mechanical behavior of steel–concrete and timber–concrete hybrid piles, quantifying skin friction dynamics, combining eight (8) classical ultimate bearing capacity (UBC) methods (Vesic, Hansen, Coyle and Castello, etc.) with numerical simulations, and assessing load distribution across sand relative densities (10%, 35%, 50%, 75%, 95%). Laboratory investigations included the geotechnical characterization of Wudil River well-graded sand (SW), direct shear tests, and interface shear tests on composite materials. Relative densities were calibrated using electro-pneumatic compaction. Increasing Dr from 10% to 95% reduced void ratios (0.886–0.476) and permeability (0.01–0.0001 cm/s) while elevating dry unit weight (14.1–18.0 kN/m3). Skin friction angles rose from 12.8° (steel–concrete) to 37.4° (timber–concrete) at Dr = 95%, with timber interfaces outperforming steel by 7.4° at Dr = 10%. UBC for steel–concrete piles spanned from 353.1 kN (Vesic, Dr = 10%) to 14,379 kN (Vesic, Dr = 95%), while timber–concrete systems achieved 9537.5 kN (Hansen, Dr = 95%). PLAXIS simulations aligned closely with Vesic’s predictions (14,202 vs. 14,379 kN). The study underscores the significance of soil density, material interfaces, and method selection in foundation design. Full article
(This article belongs to the Special Issue Advances and Application of Construction Materials)
Show Figures

Graphical abstract

Back to TopTop