Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,162)

Search Parameters:
Keywords = Poisson

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2533 KB  
Article
Enzymatic Analysis of Chitin Deacetylases on Crystalline Chitin with Varied Molecular Weights: Insights from Active Pocket Characteristic Analysis
by Kaige Chen, Shengyu Yang and Jun Cai
Appl. Sci. 2025, 15(19), 10721; https://doi.org/10.3390/app151910721 (registering DOI) - 5 Oct 2025
Abstract
Chitin deacetylases (CDAs), which catalyze the deacetylation of chitin to produce chitosan, have garnered significant interest due to their environmental compatibility and ability to control product quality. However, the low conversion efficiency resulting from chitin’s high molecular weight and crystallinity, as well as [...] Read more.
Chitin deacetylases (CDAs), which catalyze the deacetylation of chitin to produce chitosan, have garnered significant interest due to their environmental compatibility and ability to control product quality. However, the low conversion efficiency resulting from chitin’s high molecular weight and crystallinity, as well as structural limitations of CDAs, has impeded their industrial application. In this study, we present the integrated approach combining bioinformatics and computational tools (adaptive Poisson–Boltzmann solver, Fpocket, and ProteinPlus) to systematically analyze sequence features and variations in active pocket properties among CDAs from diverse origins. Experimental evaluation of the deacetylation activity of AnCDA, AsCDA, BaCDA, and ScCDA, each with distinct pocket characteristics, on chitin substrates with varying molecular parameters revealed that CDAs with high hydrophobicity scores and low surface-to-volume ratios exhibited superior efficiency in converting high-molecular-weight chitin. These findings guide the rational selection and engineering of CDAs for industrial biocatalysis. Full article
32 pages, 4520 KB  
Article
Beyond the Gold Standard: Linear Regression and Poisson GLM Yield Identical Mortality Trends and Deaths Counts for COVID-19 in Italy: 2021–2025
by Marco Roccetti and Giuseppe Cacciapuoti
Computation 2025, 13(10), 233; https://doi.org/10.3390/computation13100233 - 3 Oct 2025
Abstract
While it is undisputed that Poisson GLMs represent the gold standard for counting COVID-19 deaths, recent studies have analyzed the seasonal growth and decline trends of these deaths in Italy using a simple segmented linear regression. They found that, despite an overall decreasing [...] Read more.
While it is undisputed that Poisson GLMs represent the gold standard for counting COVID-19 deaths, recent studies have analyzed the seasonal growth and decline trends of these deaths in Italy using a simple segmented linear regression. They found that, despite an overall decreasing trend throughout the entire period analyzed (2021–2025), rising mortality trends from COVID-19 emerged in all summers and winters of the period, though they were more pronounced in winter. The technical reasons for the general unsuitability of using linear regression for the precise counting of deaths are well-known. Nevertheless, the question remains whether, under certain circumstances, the use of linear regression can provide a valid and useful tool in a specific context, for example, to highlight the slopes of seasonal growth/decline in deaths more quickly and clearly. Given this background, this paper presents a comparison between the use of linear regression and a Poisson GLM with the aforementioned death data, leading to the following conclusions. Appropriate statistical hypothesis testing procedures have demonstrated that the conditions of a normal distribution of residuals, their homoscedasticity, and the lack of autocorrelation were essentially guaranteed in this particular Italian case (weekly COVID-19 deaths in Italy, from 2021 to 2025) with very rare exceptions, thus ensuring the acceptable performance of linear regression. Furthermore, the development of a Poisson GLM definitively confirmed a strong agreement between the two models in identifying COVID-19 mortality trends. This was supported by a Kolmogorov–Smirnov test, which found no statistically significant difference between the slopes calculated by the two models. Both the Poisson and the linear model also demonstrated a comparably high accuracy in counting COVID-19 deaths, with MAE values of 62.76 and a comparable 88.60, respectively. Based on an average of approximately 6300 deaths per period, this translated to a percentage error of just 1.15% for the Poisson and only a slightly higher 1.48% for the linear model. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

17 pages, 668 KB  
Article
Triglycerides, Cholesterol, and Depressive Symptoms Among Undergraduate Medical Students: A Cross-Sectional Study
by Maximiliano Olguín-Montiel, Alejandro Álvarez-Flores, Dulce Milagros Razo-Blanco-Hernández, María Alicia Mejía-Blanquel, Verónica Fernández-Sánchez, Gledy Manuela Olmos-Rivera, Ana Cristina Castañeda-Márquez, Edith Araceli Cano-Estrada, Mónica Alethia Cureño-Díaz and José Ángel Hernández-Mariano
Diseases 2025, 13(10), 326; https://doi.org/10.3390/diseases13100326 - 2 Oct 2025
Abstract
Background: Depression is one of the most common mental disorders among undergraduate students, particularly those in medical training, who face high academic demands and emotional burdens. Biological factors such as lipid abnormalities have been proposed as contributors to depressive symptoms, although evidence in [...] Read more.
Background: Depression is one of the most common mental disorders among undergraduate students, particularly those in medical training, who face high academic demands and emotional burdens. Biological factors such as lipid abnormalities have been proposed as contributors to depressive symptoms, although evidence in this group is scarce. Therefore, we aimed to evaluate the association between triglyceride and total cholesterol levels and depressive symptoms in medical students. Methods: We conducted a cross-sectional study including 219 medical students from a public university in Mexico. Depressive symptoms were assessed using the CESD-7 scale, validated in the Mexican population. Fasting triglyceride and total cholesterol concentrations were measured with the Accutrend Plus analyzer. Prevalence ratios (PRs) and 95% confidence intervals (CIs) were estimated using robust Poisson regression, adjusting for potential confounders. Results: Overall, 38.8% of students presented depressive symptoms. In adjusted continuous models, each 10 mg/dL increase in triglycerides was associated with a 4% higher prevalence of depression (PR = 1.04, 95% CI 1.03–1.06), while each 10 mg/dL increase in total cholesterol was associated with a 13% higher prevalence (PR = 1.13, 95% CI 1.05–1.21). Analyses using clinically relevant cutoffs confirmed these associations: triglycerides ≥ 150 mg/dL (PR = 1.76, 95% CI 1.24–2.48) and cholesterol ≥ 200 mg/dL (PR = 1.66, 95% CI 1.19–2.31). Conclusions: Dyslipidemias may play a relevant role in the mental health of young adults and highlight the importance of incorporating metabolic risk assessment into strategies to prevent and address depression in medical students. Full article
(This article belongs to the Section Neuro-psychiatric Disorders)
Show Figures

Figure 1

19 pages, 344 KB  
Article
Studies on Cauchy–Stieltjes Kernel Families
by Abdulmajeed Albarrak, Raouf Fakhfakh and Ghadah Alomani
Mathematics 2025, 13(19), 3158; https://doi.org/10.3390/math13193158 - 2 Oct 2025
Abstract
In the setting of Cauchy–Stieltjes kernel (CSK) families, this study provides some features of free Poisson, free Gamma, and free Binomial laws, as well as some innovative limit theorems linked to Fermi convolution. These findings highlight the fundamental links between noncommutative probability and [...] Read more.
In the setting of Cauchy–Stieltjes kernel (CSK) families, this study provides some features of free Poisson, free Gamma, and free Binomial laws, as well as some innovative limit theorems linked to Fermi convolution. These findings highlight the fundamental links between noncommutative probability and analytic function theory, demonstrating the usefulness of CSK families for advancing the computational and theoretical aspects of free harmonic analysis. Full article
(This article belongs to the Section D1: Probability and Statistics)
12 pages, 683 KB  
Review
The Use of Double Poisson Regression for Count Data in Health and Life Science—A Narrative Review
by Sebastian Appelbaum, Julia Stronski, Uwe Konerding and Thomas Ostermann
Stats 2025, 8(4), 90; https://doi.org/10.3390/stats8040090 - 1 Oct 2025
Abstract
Count data are present in many areas of everyday life. Unfortunately, such data are often characterized by over- and under-dispersion. In 1986, Efron introduced the Double Poisson distribution to account for this problem. The aim of this work is to examine the application [...] Read more.
Count data are present in many areas of everyday life. Unfortunately, such data are often characterized by over- and under-dispersion. In 1986, Efron introduced the Double Poisson distribution to account for this problem. The aim of this work is to examine the application of this distribution in regression analyses performed in health-related literature by means of a narrative review. The databases Science Direct, PBSC, Pubmed PsycInfo, PsycArticles, CINAHL and Google Scholar were searched for applications. Two independent reviewers extracted data on Double Poisson Regression Models and their applications in the health and life sciences. From a total of 1644 hits, 84 articles were pre-selected and after full-text screening, 13 articles remained. All these articles were published after 2011 and most of them targeted epidemiological research. Both over- and under-dispersion was present and most of the papers used the generalized additive models for location, scale, and shape (GAMLSS) framework. In summary, this narrative review shows that the first steps in applying Efron’s idea of double exponential families for empirical count data have already been successfully taken in a variety of fields in the health and life sciences. Approaches to ease their application in clinical research should be encouraged. Full article
Show Figures

Figure 1

21 pages, 437 KB  
Article
Discovering New Recurrence Relations for Stirling Numbers: Leveraging a Poisson Expectation Identity for Higher-Order Moments
by Ying-Ying Zhang and Dong-Dong Pan
Axioms 2025, 14(10), 747; https://doi.org/10.3390/axioms14100747 - 1 Oct 2025
Abstract
This paper establishes two novel recurrence relations for Stirling numbers of the second kind—an L recurrence and a vertical recurrence—discovered through a probabilistic analysis of Poisson higher-order origin moments. While the link between these moments and Stirling numbers is known, our derivation via [...] Read more.
This paper establishes two novel recurrence relations for Stirling numbers of the second kind—an L recurrence and a vertical recurrence—discovered through a probabilistic analysis of Poisson higher-order origin moments. While the link between these moments and Stirling numbers is known, our derivation via a specific expectation identity provides a clear and efficient pathway to their computation, circumventing the need for infinite series. The primary theoretical contribution is the proof of these previously undocumented combinatorial recurrences, which are of independent mathematical interest. Furthermore, we demonstrate the severe practical inadequacy of high-order sample moments as estimators, highlighting the necessity of our analytical approach to obtaining reliable estimates in applied fields. Full article
(This article belongs to the Section Mathematical Analysis)
86 pages, 1368 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Аlkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
26 pages, 3111 KB  
Article
Design and Experiment of Bare Seedling Planting Mechanism Based on EDEM-ADAMS Coupling
by Huaye Zhang, Xianliang Wang, Hui Li, Yupeng Shi and Xiangcai Zhang
Agriculture 2025, 15(19), 2063; https://doi.org/10.3390/agriculture15192063 - 30 Sep 2025
Abstract
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor [...] Read more.
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor planting uprightness exist. In this paper, the Hertz–Mindlin with Bonding contact model was used to establish the scallion seedling model. Combined with the Plackett–Burman experiment, steepest ascent experiment, and Box–Behnken experiment, the bonding parameters of scallion seedlings were calibrated. Furthermore, the accuracy of the scallion seedling model parameters was verified through the stress–strain characteristics observed during the actual loading and compression process of the scallion seedlings. The results indicate that the scallion seedling normal/tangential contact stiffness, scallion seedling normal/tangential ultimate stress, and scallion Poisson’s ratio significantly influence the mechanical properties of scallion seedlings. Through optimization experiments, the optimal combination of the above parameters was determined to be 4.84 × 109 N/m, 5.64 × 107 Pa, and 0.38. In this paper, the flexible planting components of scallion seedlings were taken as the research object. Flexible protrusions were added to the planting disc to reduce the damage rate of scallion seedlings, and an EDEM-ADAMS coupling interaction model between the planting components and scallion seedlings was established. Based on this model, optimization and verification were carried out on the key components of the planting components. Orthogonal experiments were conducted with the contact area between scallion seedlings and the disc, rotational speed of the flexible disc, furrow depth, and clamping force on scallion seedlings as experimental factors, and with the uprightness and damage status of scallion seedlings as evaluation criteria. The experimental results showed that when the contact area between scallion seedlings and the disc was 255 mm2, the angular velocity was 0.278 rad/s, and the furrow depth was 102.15 mm, the performance of the scallion planting mechanism was optimal. At this point, the uprightness of the scallion seedlings was 94.80% and the damage rate was 3%. Field experiments were carried out based on the above parameters. The results indicated that the average uprightness of transplanted scallion seedlings was 93.86% and the damage rate was 2.76%, with an error of less than 2% compared with the simulation prediction values. Therefore, the parameter model constructed in this paper is reliable and effective, and the designed and improved transplanting mechanism can realize the upright and low-damage planting of scallion seedlings, providing a reference for the low-damage and high-uprightness transplanting operation of scallions. Full article
(This article belongs to the Section Agricultural Technology)
15 pages, 1300 KB  
Article
Synclastic Behavior of the Auxetic Core for Furniture Panels
by Jerzy Smardzewski and Michał Słonina
Appl. Sci. 2025, 15(19), 10614; https://doi.org/10.3390/app151910614 - 30 Sep 2025
Abstract
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative [...] Read more.
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative Poisson’s ratio. This study aimed to transform the hexagonal cell cores into cells with a negative or positive Poisson’s ratio (NPR, PPR), enabling these cores to form synclastic surfaces. New core structures for synclastic furniture sandwich honeycomb panels were modeled numerically and experimentally. It has been demonstrated that reentrant cells with NPR create synclastic surfaces, and new shapes of core cells, created by transforming hexagonal cells with PPR, also enable the formation of synclastic surfaces. Cores’ synclasticity was assessed in two orthogonal planes using physical models and Finite Element Analysis (FEA). A new and original discovery is the demonstration that not only auxetic but also modified hexagonal cells with Poisson’s ratios of νxy= 0.545 and νyx = 0.512, respectively, exhibit excellent synclastic properties. The agreement between FEA and experiment was very high. The results show that not only NPR but also cell topology provides a practical route to the synclastic formation of cores without the use of auxetic materials. Full article
20 pages, 2968 KB  
Article
Tensile Modeling PVC Gels for Electrohydraulic Actuators
by John Albert Faccinto, Jongcheol Lee and Kwang J. Kim
Polymers 2025, 17(19), 2641; https://doi.org/10.3390/polym17192641 - 30 Sep 2025
Abstract
Polyvinyl chloride (PVC)-dibutyl adipate (DBA) gels are a fascinating dielectric elastomer actuator showing promise in soft robotics. When actuated with high voltages, the gel deforms towards the anode. A recent application of PVC gels in electrohydraulic actuators motivates elastic and hyperelastic constitutive relationships [...] Read more.
Polyvinyl chloride (PVC)-dibutyl adipate (DBA) gels are a fascinating dielectric elastomer actuator showing promise in soft robotics. When actuated with high voltages, the gel deforms towards the anode. A recent application of PVC gels in electrohydraulic actuators motivates elastic and hyperelastic constitutive relationships for tensile loading modes. PVC gels with plasticizer-to-polymer weight ratios of 2:1, 4:1, 6:1, and 8:1 w/w were evaluated. PVC gels exhibit a linear elastic region up to 25% strain. The elastic modulus decreased with increasing plasticizer content from 288.8 kPa, 56.1 kPa, 24.7 kPa, to 11 kPa. Poisson’s ratio also decreased with increasing plasticizer content from 0.42, 0.43, 0.39, to 0.35. We suggest that the decrease in polymer concentration facilitates a weakly interconnected polymer network susceptible to chain slippage that hinders the network response, thus lowering Poisson’s ratio. Our work suggests that PVC gels can be treated as isotropic and incompressible for large strains and hyperelastic modeling; however, highly plasticized gels tend to act less incompressible at small strains. The power scaling law between the elastic modulus and plasticizer weight ratio showed high agreement, making the elastic modulus deterministic for any plasticizer content. The Neo–Hookean, Mooney–Rivlin, Yeoh, Gent, Ogden, and extended tube hyperelastic constitutive models are investigated. The Yeoh model shows the highest feasibility when evaluated up to 3.5 stretch, showing a maximum normalized root-mean-square-error of 6.85%. Together, these findings establish a constitutive basis for PVC-DBA gels, incorporating small strain elasticity, large strain non-linear behavior, and network analysis while providing suggestive insight into the network structure required for accurately modeling the EPIC. Full article
(This article belongs to the Special Issue Polymeric Materials in Optoelectronic Devices and Energy Applications)
Show Figures

Figure 1

16 pages, 913 KB  
Article
Mechanisms of Energy Transfer and Failure Zoning in Rock Mass Blasting: A Mohr–Coulomb Theory and Numerical Simulation Study
by Wei Zhang, Renshan Chen, Kaibo Yang and Jin Li
Appl. Sci. 2025, 15(19), 10600; https://doi.org/10.3390/app151910600 - 30 Sep 2025
Abstract
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, [...] Read more.
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, we classify the rock failure process into four zones: the cavity zone, fracture zone, radial fracture zone, and vibration zone. Additionally, we establish a dynamic partitioned model that considers explosion cavity expansion, compression wave propagation, and energy dissipation. Applying elastic failure conditions, we develop a calculation model for vibration parameters in each zone and use MATLAB programming to find numerical solutions for the radius of the failure zone, elastic potential energy, and the interface pressure over time. Verification with a granite underground blasting project in Qingdao shows the ratio of the spherical cavity radius to the charge radius is 1.49, and the crushing zone radius to the charge radius is 2.85. Theoretical results are consistent with the approximate method in magnitude and value, confirming the model’s reliability. The interface pressure sharply peaks and then decays exponentially. The growth of the fracture zone depends heavily on initial pressure, rock strength, and Poisson’s ratio. These findings support blasting engineering design and seismic effect assessment. Full article
(This article belongs to the Special Issue Rock Mechanics in Geotechnical and Tunnel Engineering)
Show Figures

Figure 1

34 pages, 4740 KB  
Article
In Silico Design and Computational Elucidation of Hypothetical Resveratrol–Curcumin Hybrids as Potential Cancer Pathway Modulators
by Nil Sazlı and Deniz Karataş
Pharmaceuticals 2025, 18(10), 1473; https://doi.org/10.3390/ph18101473 - 30 Sep 2025
Abstract
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), [...] Read more.
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), and Signal Transducer and Activator of Transcription 3 (STAT3). Although curcumin and resveratrol exhibit anticancer properties and affect these pathways, their pharmacokinetic limitations, including poor bioavailability and low solubility, restrict their clinical application. The aim of our study was to evaluate the synergistic anticancer potential of curcumin and resveratrol through hybrid molecules rationally designed from these compounds to mitigate their pharmacokinetic limitations. Furthermore, we analyzed the multi-target anticancer effects of these hybrids on the AKT serine/threonine kinase 1 (AKT1), MAPK, and STAT3 pathways using in silico molecular modeling approaches. Methods: Three hybrid molecules, including a long-chain (ELRC-LC) and a short-chain (ELRC-SC) hybrid, an ester-linked hybrid, and an ether-linked hybrid (EtLRC), were designed using the Avogadro software (v1.2.0), and their geometry optimization was carried out using Density Functional Theory (DFT). The electronic properties of the structures were characterized through Frontier Molecular Orbital (FMO), Molecular Electrostatic Potential (MEP), and Fourier Transform Infrared (FTIR) analyses. The binding energies of the hybrid molecules, curcumin, resveratrol, their analogs, and the reference inhibitor were calculated against the AKT1, MAPK, and STAT3 receptors using molecular docking. The stabilities of the best-fitting complexes were evaluated through 100 ns molecular dynamics (MD) simulations, and their binding free energies were estimated using the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Results: DFT analyses demonstrated stable electronic characteristics for the hybrids. Molecular docking analyses revealed that the hybrids exhibited stronger binding compared to curcumin and resveratrol. The binding energy of −11.4 kcal/mol obtained for the ELRC-LC hybrid against AKT1 was particularly remarkable. Analysis of 100 ns MD simulations confirmed the conformational stability of the hybrids. Conclusions: Hybrid molecules have been shown to exert multi-target mechanisms of action on the AKT1, MAPK, and STAT3 pathways, and to represent potential anticancer candidates capable of overcoming pharmacokinetic limitations. Our in silico-based study provides data that will guide future in vitro and in vivo studies. These rationally designed hybrid molecules, owing to their receptor affinity, may serve as de novo hybrid inhibitors. Full article
Show Figures

Figure 1

22 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 3465 KB  
Article
Longitudinal Gut Microbiome Changes Associated with Transitions from C. difficile Negative to C. difficile Positive on Surveillance Tests
by L. Silvia Munoz-Price, Samantha N. Atkinson, Vy Lam, Blake Buchan, Nathan Ledeboer, Nita H. Salzman and Amy Y. Pan
Microorganisms 2025, 13(10), 2277; https://doi.org/10.3390/microorganisms13102277 - 29 Sep 2025
Abstract
Clostridioides difficile is an obligate anaerobe and is primarily transmitted via the fecal–oral route. Data characterizing the microbiome changes accompanying transitions from non-colonized to C. difficile colonized subjects are currently lacking. In this retrospective cohort study, we examined 16S rRNA gene sequencing data [...] Read more.
Clostridioides difficile is an obligate anaerobe and is primarily transmitted via the fecal–oral route. Data characterizing the microbiome changes accompanying transitions from non-colonized to C. difficile colonized subjects are currently lacking. In this retrospective cohort study, we examined 16S rRNA gene sequencing data in a total of 481 fecal samples belonging to 107 patients. Based on C. difficile status over time, patients were categorized as Negative-to-Positive, Negative Control, and Positive Control. A linear mixed effects model was fitted to investigate the changes in the Shannon α-diversity index over time. Zero-inflated negative binomial/Poisson mixed effects models or generalized linear mixed models with negative binomial/Poisson distribution were used to investigate the changes in taxon counts over time among different groups. A total of 107 patients were eligible for the study. The median number of stool samples per patient was 3 (IQR 2–4). A total of 42 patients transitioned from C. difficile negative to positive (Negative-to-Positive), 47 patients remained negative throughout their tests (Negative Control) and 18 were always C. difficile positive (Positive Control). A significant difference in microbiome composition between the last negative samples and the first positive samples were shown in Negative-to-Positive patients, ANOSIM p = 0.022. In Negative-to-Positive patients, the phylum Pseudomonadota and family Enterobacteriaceae increased significantly in the first positive samples compared to the last negative samples, p = 0.0075 and p = 0.0094, respectively. Within the first 21 days, Actinomycetota decreased significantly over time in the Positive Control group compared to the other two groups (p < 0.001) while Bacillota decreased in both the Negative-to-Positive group and Positive Control. These results demonstrate that the transition from C. difficile negative to C. difficile positive is associated with alterations in gut microbial communities and their compositional patterns over time. Moreover, these changes play an important role in both the emergence and intensification of the gut microbiome dysbiosis in patients who transitioned from C. difficile negative to positive and those who always tested positive. Full article
(This article belongs to the Special Issue The Microbiome in Ecosystems)
Show Figures

Figure 1

13 pages, 1239 KB  
Article
Irregularity of Flight and Slow-Flight Practice Evident for a Subset of Private Pilots—Potential Adverse Impact on Safe Operations
by Douglas D. Boyd and Mark T. Scharf
Aerospace 2025, 12(10), 877; https://doi.org/10.3390/aerospace12100877 - 29 Sep 2025
Abstract
Background: General aviation pilots are, anecdotally, referred to as “weekend warriors” due to their flying infrequency. Considering that flight skills erode with irregular practice/reinforcement, we determined whether private pilots (PPLs) fly/train sufficiently to operate safely in the context of slow flight, a skill [...] Read more.
Background: General aviation pilots are, anecdotally, referred to as “weekend warriors” due to their flying infrequency. Considering that flight skills erode with irregular practice/reinforcement, we determined whether private pilots (PPLs) fly/train sufficiently to operate safely in the context of slow flight, a skill critical for safe operations and which rapidly atrophies with <~51 h flight time/8 months per prior research. Method: Slow-flight-related aviation accidents (2008–2019) were per the NTSB AccessR database, and fatal mishap rates were calculated using general aviation fleet times. Eight-month flight histories of airplanes in single PPL ownership were captured retrospectively using FlightAwareR. PPL survey responses were collected between January and March 2025. Statistical tests employed proportion/Independent-Samples Median Tests and a Poisson Distribution. Results: The slow-flight-related fatal accident rate (2017–2019) trended downwards (p = 0.077). In-flight tracking of 90 airplanes revealed an 8-month median flight time of 6 h, which is well below the aforementioned 51 h requisite for safe operations. Of the aircraft flown < 51 h, only 9% engaged in slow-flight practice. In the online survey, only the upper quartile of 126 PPLs achieved the aforementioned time requisite for preserving slow-flight skills, but nevertheless, 89% of respondents attested to being flight-proficient. Conclusions: Persistence in slow-flight-related fatal accidents likely partly reflects PPLs’ deficiency in in-flight time/slow-flight practice. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop