Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = RPL routing protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 577 KB  
Article
Offloaded Computation for QoS Routing in Wireless Sensor Networks
by Basma Mostafa and Miklos Molnar
Information 2025, 16(6), 464; https://doi.org/10.3390/info16060464 - 30 May 2025
Viewed by 548
Abstract
In Wireless Sensor Networks (WSNs) used for real-time applications, ensuring Quality of Service (QoS) is essential for maintaining end-to-end performance guarantees. QoS requirements are typically defined by a set of end-to-end constraints, including delay, jitter, and packet loss. In multi-hop scenarios, this requires [...] Read more.
In Wireless Sensor Networks (WSNs) used for real-time applications, ensuring Quality of Service (QoS) is essential for maintaining end-to-end performance guarantees. QoS requirements are typically defined by a set of end-to-end constraints, including delay, jitter, and packet loss. In multi-hop scenarios, this requires multi-constrained path computation. This research examines the standard Routing Protocol for Low-Power and Lossy Networks (RPL), which employs a Destination-Oriented Directed Acyclic Graph (DODAG) for data transmission. Nonetheless, there are several challenges related to multi-constrained route computation in the RPL: (1) The DODAG originates from an objective function that cannot manage multiple constraints. (2) The process of computing multi-constrained routes is resource-intensive, even for a single path. (3) The collection of QoS-compatible paths does not necessarily form a DODAG. To address these challenges, this paper suggests modifications to the existing protocols that shift computationally demanding tasks to edge servers. Such a strategic adjustment allows for the implementation of QoS-compatible route computation in WSNs using the RPL. It enhances their ability to meet increasingly stringent demands for QoS in numerous application environments. Full article
(This article belongs to the Special Issue Internet of Things and Cloud-Fog-Edge Computing, 2nd Edition)
Show Figures

Figure 1

11 pages, 653 KB  
Article
Routing Protocols Performance on 6LoWPAN IoT Networks
by Pei Siang Chia, Noor Hisham Kamis, Siti Fatimah Abdul Razak, Sumendra Yogarayan, Warusia Yassin and Mohd Faizal Abdollah
IoT 2025, 6(1), 12; https://doi.org/10.3390/iot6010012 - 10 Feb 2025
Cited by 1 | Viewed by 1913
Abstract
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) are specifically designed for applications that require lower data rates and reduced power consumption in wireless internet connectivity. In the context of 6LoWPAN, Internet of Things (IoT) devices with limited resources can now seamlessly connect [...] Read more.
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) are specifically designed for applications that require lower data rates and reduced power consumption in wireless internet connectivity. In the context of 6LoWPAN, Internet of Things (IoT) devices with limited resources can now seamlessly connect to the network using IPv6. This study focuses on examining the performance and power consumption of routing protocols in the context of 6LoWPAN, drawing insights from prior research and utilizing simulation techniques. The simulation involves the application of routing protocols, namely Routing Protocol for Low-power and Lossy (RPL) Networks, Ad hoc On-demand Distance Vector (AODV), Lightweight On-demand Ad hoc Distance-vector Next Generation (LOADng), implemented through the Cooja simulator. The simulation also runs in different network topologies to gain an insight into the performance of the protocols in the specific topology including random, linear, and eclipse topology. The raw data gathered from the tools including Powertrace and Collect-View were then analyzed with Python code to transfer into useful information and visualize the graph. The results demonstrate that the power consumption, specifically CPU power, Listen Power, and Total Consumption Power, will increase with the incremental of motes. The result also shows that RPL is the most power-efficient protocol among the scenarios compared to LOADng and AODV. The result is helpful because it brings insights into the performance, specifically power consumption in the 6LoWPAN network. This result is valuable to further implement these protocols in the testbed as well as provide an idea of the algorithmic enhancements. Full article
Show Figures

Figure 1

28 pages, 769 KB  
Article
Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments
by Bereket Endale Bekele, Krzysztof Tokarz, Nebiyat Yilikal Gebeyehu, Bolesław Pochopień and Dariusz Mrozek
Electronics 2024, 13(18), 3697; https://doi.org/10.3390/electronics13183697 - 18 Sep 2024
Cited by 2 | Viewed by 3165
Abstract
The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough understanding of network configurations to address unique challenges across various use cases. This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured tree, and dynamic transition networks, each designed [...] Read more.
The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough understanding of network configurations to address unique challenges across various use cases. This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured tree, and dynamic transition networks, each designed to meet the specific requirements of industrial automation, home automation, and environmental monitoring. Key performance metrics, including round-trip time (RTT), server processing time (SPT), and power consumption, are evaluated through both simulation and hardware experiments. Additionally, this study introduces an enhanced UDP protocol featuring an acknowledgment mechanism and a power consumption evaluation, aiming to improve data transmission reliability over the standard UDP protocol. Packet loss is specifically measured in hardware experiments to compare the performance of standard and enhanced UDP protocols. The findings show that the enhanced UDP significantly reduces packet loss compared to the standard UDP, enhancing data delivery reliability across dynamic and structured networks, though it comes at the cost of slightly higher power consumption due to additional processing. For network topology performance, the linear chain topology provides stable processing but higher RTT, making it suitable for applications such as tunnel monitoring; the structured tree topology offers low energy consumption and fast communication, ideal for home automation; and the dynamic transition network, suited for industrial Automated Guided Vehicles (AGVs), encounters challenges with adaptive routing. These insights guide the optimization of communication protocols and network configurations for more efficient and reliable IoT deployments. Full article
(This article belongs to the Special Issue Smart Communication and Networking in the 6G Era)
Show Figures

Figure 1

25 pages, 1972 KB  
Article
FL-DSFA: Securing RPL-Based IoT Networks against Selective Forwarding Attacks Using Federated Learning
by Rabia Khan, Noshina Tariq, Muhammad Ashraf, Farrukh Aslam Khan, Saira Shafi and Aftab Ali
Sensors 2024, 24(17), 5834; https://doi.org/10.3390/s24175834 - 8 Sep 2024
Cited by 7 | Viewed by 2781
Abstract
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and [...] Read more.
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and one of the most serious challenges is the security of the IoT. Security is a major concern, particularly routing attacks in the core network, which may cause severe damage due to information loss. Routing Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced with selective forwarding attacks. In this paper, we present a federated learning-based detection technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR), and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The components include control messages, routing topologies, repair procedures, and resources within sensor networks. Binary classification approaches have been used to assess the training efficiency of the proposed model. The training step includes the implementation of machine learning algorithms, including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers, exhibits the highest accuracy during training and achieves the most efficient runtime performance. The proposed system demonstrates exceptional performance, achieving a prediction precision of 97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the current leading research in this field, with its classification results, scalability, and enhanced privacy. Full article
Show Figures

Figure 1

22 pages, 381 KB  
Article
Securing IoT: Mitigating Sybil Flood Attacks with Bloom Filters and Hash Chains
by Iain Baird, Baraq Ghaleb, Isam Wadhaj, Gordon Russell and William J. Buchanan
Electronics 2024, 13(17), 3467; https://doi.org/10.3390/electronics13173467 - 31 Aug 2024
Cited by 2 | Viewed by 1798
Abstract
In the evolving landscape of the Internet of Things (IoT), ensuring the security and integrity of data transmission remains a paramount challenge. Routing Protocol for Low-Power and Lossy Networks (RPL) is commonly utilized in IoT networks to facilitate efficient data routing. However, RPL [...] Read more.
In the evolving landscape of the Internet of Things (IoT), ensuring the security and integrity of data transmission remains a paramount challenge. Routing Protocol for Low-Power and Lossy Networks (RPL) is commonly utilized in IoT networks to facilitate efficient data routing. However, RPL networks are susceptible to various security threats, with Sybil and flood attacks being particularly detrimental. Sybil attacks involve malicious nodes generating multiple fake identities to disrupt network operations, while flood attacks overwhelm network resources by inundating them with excessive traffic. This paper proposes a novel mitigation strategy leveraging Bloom filters and hash chains to enhance the security of RPL-based IoT networks against sybil and flood attacks. Extensive simulation and performance analysis demonstrate that this solution significantly reduces the impact of sybil and flood attacks while maintaining a low power consumption profile and low computational overhead. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

18 pages, 4142 KB  
Article
Improved Cell Allocation Strategies Using K-Means Clustering in Congested 6TiSCH Environments
by Fransiskus Xaverius Kevin Koesnadi and Sang-Hwa Chung
Sensors 2024, 24(17), 5608; https://doi.org/10.3390/s24175608 - 29 Aug 2024
Cited by 3 | Viewed by 1670
Abstract
The 6TiSCH protocol (IEEE 802.15.4e) is crucial for the Industrial Internet of Things (IIoT), utilizing a time-slotted channel hopping (TSCH) mode based on node distribution. In this study, we propose an innovative cell allocation strategy based on node position clustering using the K-means [...] Read more.
The 6TiSCH protocol (IEEE 802.15.4e) is crucial for the Industrial Internet of Things (IIoT), utilizing a time-slotted channel hopping (TSCH) mode based on node distribution. In this study, we propose an innovative cell allocation strategy based on node position clustering using the K-means algorithm, specifically designed to address congestion and optimize resource distribution in the 6TiSCH network. Our mechanism effectively groups nodes into clusters, allowing for dynamic adjustment of cell capacities in congested areas by analyzing traffic patterns and the spatial distribution of nodes. This clustering approach enhances the efficiency of slot frame utilization and minimizes communication delays by reducing interference and improving routing stability. The proposed strategy leverages the clustering results to improve cell usage efficiency and reduce communication latency between nodes. By tailoring cell allocation to the specific traffic needs of each cluster, we significantly reduce packet loss, manage congestion more effectively, and enhance data transmission reliability. We evaluated the clustering method using the K-means algorithm through experiments with the 6TiSCH simulator. Additionally, we considered using objective functions in Routing Protocol for Low-Power and Lossy Networks (RPL), such as OF0 and MRHOF, to assess clustering results and their impact on throughput and packet delivery. Our method resulted in significantly improved average performance metrics. Under the OF0 routing protocol, we achieved a 30.01% latency reduction, a 15.95% faster joining time, an 8% higher packet delivery ratio, and a 13.82% throughput increase. Similarly, we observed a 12.34% improvement in packet delivery ratio, 21.06% latency reduction, 12.68% faster joining time, and 25.97% higher throughput speed with the MRHOF routing protocol. These findings highlight the effectiveness of the improved cell allocation strategy in congested 6TiSCH environments, offering a better solution for enhancing network performance in IIoT applications. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

29 pages, 2313 KB  
Article
Q-RPL: Q-Learning-Based Routing Protocol for Advanced Metering Infrastructure in Smart Grids
by Carlos Lester Duenas Santos, Ahmad Mohamad Mezher, Juan Pablo Astudillo León, Julian Cardenas Barrera, Eduardo Castillo Guerra and Julian Meng
Sensors 2024, 24(15), 4818; https://doi.org/10.3390/s24154818 - 25 Jul 2024
Cited by 5 | Viewed by 3214
Abstract
Efficient and reliable data routing is critical in Advanced Metering Infrastructure (AMI) within Smart Grids, dictating the overall network performance and resilience. This paper introduces Q-RPL, a novel Q-learning-based Routing Protocol designed to enhance routing decisions in AMI deployments based on wireless mesh [...] Read more.
Efficient and reliable data routing is critical in Advanced Metering Infrastructure (AMI) within Smart Grids, dictating the overall network performance and resilience. This paper introduces Q-RPL, a novel Q-learning-based Routing Protocol designed to enhance routing decisions in AMI deployments based on wireless mesh technologies. Q-RPL leverages the principles of Reinforcement Learning (RL) to dynamically select optimal next-hop forwarding candidates, adapting to changing network conditions. The protocol operates on top of the standard IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), integrating it with intelligent decision-making capabilities. Through extensive simulations carried out in real map scenarios, Q-RPL demonstrates a significant improvement in key performance metrics such as packet delivery ratio, end-to-end delay, and compliant factor compared to the standard RPL implementation and other benchmark algorithms found in the literature. The adaptability and robustness of Q-RPL mark a significant advancement in the evolution of routing protocols for Smart Grid AMI, promising enhanced efficiency and reliability for future intelligent energy systems. The findings of this study also underscore the potential of Reinforcement Learning to improve networking protocols. Full article
(This article belongs to the Special Issue Advanced Communication and Computing Technologies for Smart Grid)
Show Figures

Figure 1

32 pages, 5572 KB  
Article
Performance Evaluation of Mobile RPL-Based IoT Networks under Hello Flood Attack
by Amal Hkiri, Sami Alqurashi, Omar Ben Bahri, Mouna Karmani, Hamzah Faraj and Mohsen Machhout
Electronics 2024, 13(11), 2226; https://doi.org/10.3390/electronics13112226 - 6 Jun 2024
Cited by 6 | Viewed by 2196
Abstract
The RPL protocol is essential for efficient communication within the Internet of Things (IoT) ecosystem, yet it remains vulnerable to various attacks, particularly in dense and mobile environments where it shows certain limitations and susceptibilities. This paper presents a comprehensive simulation-based analysis of [...] Read more.
The RPL protocol is essential for efficient communication within the Internet of Things (IoT) ecosystem, yet it remains vulnerable to various attacks, particularly in dense and mobile environments where it shows certain limitations and susceptibilities. This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the Hello Flood attack in mobile environments. Using four different group mobility models—the Column Mobility Model (CMM), Reference Point Group Mobility Model (RPGM), Nomadic Community Mobility Model (NCM), and Pursue Mobility Model (PMM)—within the Cooja simulator, this study uniquely investigates the Hello Flood attack in mobile settings, an area previously overlooked. Our systematic evaluation focuses on critical performance metrics, including the Packet Delivery Ratio (PDR), End-to-End Delay (E2ED), throughput, Expected Transmission Count (ETX), and Average Power Consumption (APC). The findings reveal several key insights: PDR decreases significantly, indicating increased packet loss or delivery failures; ETX values rise, necessitating more packet retransmissions and routing hops; E2ED increases, introducing delays in routing decisions and data transmission times; throughput declines as the attack disrupts data flow; and APC escalates due to higher energy usage on packet transmissions, especially over extended paths. These results underscore the urgent need for robust security measures to protect RPL-based IoT networks in mobile environments. Furthermore, our work emphasizes the exacerbated impact of the attack in mobile scenarios, highlighting the evolving security requirements of IoT networks. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

25 pages, 894 KB  
Article
ACTOR: Adaptive Control of Transmission Power in RPL
by Iliar Rabet, Hossein Fotouhi, Mário Alves, Maryam Vahabi and Mats Björkman
Sensors 2024, 24(7), 2330; https://doi.org/10.3390/s24072330 - 6 Apr 2024
Cited by 7 | Viewed by 1538
Abstract
RPL—Routing Protocol for Low-Power and Lossy Networks (usually pronounced “ripple”)—is the de facto standard for IoT networks. However, it neglects to exploit IoT devices’ full capacity to optimize their transmission power, mainly because it is quite challenging to do so in parallel [...] Read more.
RPL—Routing Protocol for Low-Power and Lossy Networks (usually pronounced “ripple”)—is the de facto standard for IoT networks. However, it neglects to exploit IoT devices’ full capacity to optimize their transmission power, mainly because it is quite challenging to do so in parallel with the routing strategy, given the dynamic nature of wireless links and the typically constrained resources of IoT devices. Adapting the transmission power requires dynamically assessing many parameters, such as the probability of packet collisions, energy consumption, the number of hops, and interference. This paper introduces Adaptive Control of Transmission Power for RPL (ACTOR) for the dynamic optimization of transmission power. ACTOR aims to improve throughput in dense networks by passively exploring different transmission power levels. The classic solutions of bandit theory, including the Upper Confidence Bound (UCB) and Discounted UCB, accelerate the convergence of the exploration and guarantee its optimality. ACTOR is also enhanced via mechanisms to blacklist undesirable transmission power levels and stabilize the topology of parent–child negotiations. The results of the experiments conducted on our 40-node, 12-node testbed demonstrate that ACTOR achieves a higher packet delivery ratio by almost 20%, reduces the transmission power of nodes by up to 10 dBm, and maintains a stable topology with significantly fewer parent switches compared to the standard RPL and the selected benchmarks. These findings are consistent with simulations conducted across 7 different scenarios, where improvements in end-to-end delay, packet delivery, and energy consumption were observed by up to 50%. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 4332 KB  
Article
Trust-Based Optimized Reporting for Detection and Prevention of Black Hole Attacks in Low-Power and Lossy Green IoT Networks
by Muhammad Ali Khan, Rao Naveed Bin Rais, Osman Khalid and Sanan Ahmad
Sensors 2024, 24(6), 1775; https://doi.org/10.3390/s24061775 - 9 Mar 2024
Cited by 3 | Viewed by 2407
Abstract
The Internet of Things (IoT) is empowering various sectors and aspects of daily life. Green IoT systems typically involve Low-Power and Lossy Networks (LLNs) with resource-constrained nodes. Lightweight routing protocols, such as the Routing Protocol for Low-Power and Lossy Networks (RPL), are increasingly [...] Read more.
The Internet of Things (IoT) is empowering various sectors and aspects of daily life. Green IoT systems typically involve Low-Power and Lossy Networks (LLNs) with resource-constrained nodes. Lightweight routing protocols, such as the Routing Protocol for Low-Power and Lossy Networks (RPL), are increasingly being applied for efficient communication in LLNs. However, RPL is susceptible to various attacks, such as the black hole attack, which compromises network security. The existing black hole attack detection methods in Green IoT rely on static thresholds and unreliable metrics to compute trust scores. This results in increasing false positive rates, especially in resource-constrained IoT environments. To overcome these limitations, we propose a delta-threshold-based trust model called the Optimized Reporting Module (ORM) to mitigate black hole attacks in Green IoT systems. The proposed scheme comprises both direct trust and indirect trust and utilizes a forgetting curve. Direct trust is derived from performance metrics, including honesty, dishonesty, energy, and unselfishness. Indirect trust requires the use of similarity. The forgetting curve provides a mechanism to consider the most significant and recent feedback from direct and indirect trust. To assess the efficacy of the proposed scheme, we compare it with the well-known trust-based attack detection scheme. Simulation results demonstrate that the proposed scheme has a higher detection rate and low false positive alarms compared to the existing scheme, confirming the applicability of the proposed scheme in green IoT systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

32 pages, 5248 KB  
Review
A Survey on Routing Solutions for Low-Power and Lossy Networks: Toward a Reliable Path-Finding Approach
by Hanin Almutairi and Ning Zhang
Network 2024, 4(1), 1-32; https://doi.org/10.3390/network4010001 - 15 Jan 2024
Cited by 5 | Viewed by 3206
Abstract
Low-Power and Lossy Networks (LLNs) have grown rapidly in recent years owing to the increased adoption of Internet of Things (IoT) and Machine-to-Machine (M2M) applications across various industries, including smart homes, industrial automation, healthcare, and smart cities. Owing to the characteristics of LLNs, [...] Read more.
Low-Power and Lossy Networks (LLNs) have grown rapidly in recent years owing to the increased adoption of Internet of Things (IoT) and Machine-to-Machine (M2M) applications across various industries, including smart homes, industrial automation, healthcare, and smart cities. Owing to the characteristics of LLNs, such as Lossy channels and limited power, generic routing solutions designed for non-LLNs may not be adequate in terms of delivery reliability and routing efficiency. Consequently, a routing protocol for LLNs (RPL) was designed. Several RPL objective functions have been proposed to enhance the routing reliability in LLNs. This paper analyses these solutions against performance and security requirements to identify their limitations. Firstly, it discusses the characteristics and security issues of LLN and their impact on packet delivery reliability and routing efficiency. Secondly, it provides a comprehensive analysis of routing solutions and identifies existing limitations. Thirdly, based on these limitations, this paper highlights the need for a reliable and efficient path-finding solution for LLNs. Full article
Show Figures

Figure 1

17 pages, 309 KB  
Article
Evaluation of 6LoWPAN Generic Header Compression in the Context of a RPL Network
by Thibaut Vandervelden, Diana Deac, Roald Van Glabbeek, Ruben De Smet, An Braeken and Kris Steenhaut
Sensors 2024, 24(1), 73; https://doi.org/10.3390/s24010073 - 22 Dec 2023
Cited by 3 | Viewed by 2805
Abstract
The Internet of Things (IoT) facilitates the integration of diverse devices, leading to the formation of networks such as Low-power Wireless Personal Area Networks (LoWPANs). These networks have inherent constraints that make header and payload compression an attractive solution to optimise communication. In [...] Read more.
The Internet of Things (IoT) facilitates the integration of diverse devices, leading to the formation of networks such as Low-power Wireless Personal Area Networks (LoWPANs). These networks have inherent constraints that make header and payload compression an attractive solution to optimise communication. In this work, we evaluate the performance of Generic Header Compression (6LoWPAN-GHC), defined in RFC 7400, for IEEE 802.15.4-based networks running the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). Through simulation and real-device experiments, we study the impact of 6LoWPAN-GHC on energy consumption and delays and investigate for which scenarios 6LoWPAN-GHC is beneficial. We show that all RPL control packets are compressible by 6LoWPAN-GHC, which reduces their transmission delay and as such their vulnerability to interference. However, for the devices under study transmitting at 250 kbit/s, the energy gain obtained from sending a compressed packet is outweighed by the energy needed to compress it. The use of 6LoWPAN-GHC causes an energy increase of between 2% and 26%, depending on the RPL packet type. When the range is more important than the bandwidth and a sub-GHz band is used at 10 kbit/s, an energy gain of 11% to 29% can be obtained, depending on the type of RPL control packet. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2023)
Show Figures

Figure 1

19 pages, 2828 KB  
Article
CERP: Cooperative and Efficient Routing Protocol for Wireless Sensor Networks
by Nesrine Atitallah, Omar Cheikhrouhou, Khaleel Mershad, Anis Koubaa and Fahima Hajjej
Sensors 2023, 23(21), 8834; https://doi.org/10.3390/s23218834 - 30 Oct 2023
Cited by 6 | Viewed by 2414
Abstract
Wireless sensor networks (WSNs), constrained by limited resources, demand routing strategies that prioritize energy efficiency. The tactic of cooperative routing, which leverages the broadcast nature of wireless channels, has garnered attention for its capability to amplify routing efficacy. This manuscript introduces a power-conscious [...] Read more.
Wireless sensor networks (WSNs), constrained by limited resources, demand routing strategies that prioritize energy efficiency. The tactic of cooperative routing, which leverages the broadcast nature of wireless channels, has garnered attention for its capability to amplify routing efficacy. This manuscript introduces a power-conscious routing approach, tailored for resource-restricted WSNs. By exploiting cooperative communications, we introduce an innovative relay node selection technique within clustered networks, aiming to curtail energy usage while safeguarding data dependability. This inventive methodology has been amalgamated into the Routing Protocol for Low-Power and Lossy Networks (RPL), giving rise to the cooperative and efficient routing protocol (CERP). The devised CERP protocol pinpoints and selects the most efficacious relay node, ensuring that packet transmission is both energy-minimal and reliable. Performance evaluations were executed to substantiate the proposed strategy, and its practicality was examined using an Arduino-based sensor node and the Contiki operating system in real-world scenarios. The outcomes affirm the efficacy of the proposed strategy, outshining the standard RPL concerning reliability and energy conservation, enhancing RPL reliability by 10% and energy savings by 18%. This paper is posited to contribute to the evolution of power-conscious routing strategies for WSNs, crucial for prolonging sensor node battery longevity while sustaining dependable communication. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

29 pages, 2188 KB  
Article
A Lightweight Mitigation Approach against a New Inundation Attack in RPL-Based IoT Networks
by Mehdi Rouissat, Mohammed Belkheir, Ibrahim S. Alsukayti and Allel Mokaddem
Appl. Sci. 2023, 13(18), 10366; https://doi.org/10.3390/app131810366 - 16 Sep 2023
Cited by 16 | Viewed by 2180
Abstract
Internet of Things (IoT) networks are being widely deployed for a broad range of critical applications. Without effective security support, such a trend would open the doors to notable security challenges. Due to their inherent constrained characteristics, IoT networks are highly vulnerable to [...] Read more.
Internet of Things (IoT) networks are being widely deployed for a broad range of critical applications. Without effective security support, such a trend would open the doors to notable security challenges. Due to their inherent constrained characteristics, IoT networks are highly vulnerable to the adverse impacts of a wide scope of IoT attacks. Among these, flooding attacks would cause great damage given the limited computational and energy capacity of IoT devices. However, IETF-standardized IoT routing protocols, such as the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL), have no relevant security-provision mechanism. Different variants of the flooding attack can be easily initiated in RPL networks to exhaust network resources and degrade overall network performance. In this paper, a novel variant referred to as the Destination Information Object Flooding (DIOF) attack is introduced. The DIOF attack involves an internal malicious node disseminating falsified information to instigate excessive transmissions of DIO control messages. The results of the experimental evaluation demonstrated the significant adverse impact of DIOF attacks on control overhead and energy consumption, which increased by more than 500% and 210%, respectively. A reduction of more than 32% in Packet Delivery Ratio (PDR) and an increase of more than 192% in latency were also experienced. These were more evident in cases in which the malicious node was in close proximity to the sink node. To effectively address the DIOF attack, we propose a new lightweight approach based on a collaborative and distributed security scheme referred to as DIOF-Secure RPL (DSRPL). It provides an effective solution, enhancing RPL network resilience against DIOF attacks with only simple in-protocol modifications. As the experimental results indicated, DSRPL guaranteed responsive detection and mitigation of the DIOF attacks in a matter of a few seconds. Compared to RPL attack scenarios, it also succeeded in reducing network overhead and energy consumption by more than 80% while maintaining QoS performance at satisfactory levels. Full article
Show Figures

Figure 1

26 pages, 6092 KB  
Article
Dynamic-RPL: Enhancing RPL-Based IoT Networks with Effective Support of Dynamic Topology Management
by Ibrahim S. Alsukayti
Electronics 2023, 12(18), 3834; https://doi.org/10.3390/electronics12183834 - 10 Sep 2023
Cited by 4 | Viewed by 2075
Abstract
The inherent characteristics and limitations of Internet of Things networks make it hard to avoid facing adverse network conditions. Addressing high performance in extreme situations still remains a challenge even for a standardized routing protocol like the IPv6 Routing Protocol for Low Power [...] Read more.
The inherent characteristics and limitations of Internet of Things networks make it hard to avoid facing adverse network conditions. Addressing high performance in extreme situations still remains a challenge even for a standardized routing protocol like the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). No effective support is provided by the design of RPL to guarantee high network performance in the presence of such challenging conditions. To address such a compelling need, an innovative approach referred to as Dynamic-RPL is proposed in this research paper. With only limited in-protocol modifications to RPL, Dynamic-RPL provides effective support of dynamic topology management in a distributed manner. Seamless optimization of network topology is realized with dynamic topological adjustments to sustain high network performance and stability. It incorporates modified RPL topology establishment, customized RPL objective function and parent selection, a new dynamic topology management algorithm, and additional inter-routing support. The evaluation results demonstrated the ability of Dynamic-RPL to maintain high overall network performance irrespective of the adversity of ongoing network conditions. Considering varying-scale experimental setups, high QoS performance and low energy consumption were achieved without much increase in network overhead. Dynamic-RPL succeeded in adapting responsively with little time required to have the network performance successfully restored and network topology completely converged. Full article
(This article belongs to the Special Issue Emerging Trends and Challenges in IoT Networks)
Show Figures

Figure 1

Back to TopTop