Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (45,834)

Search Parameters:
Keywords = RU

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1454 KiB  
Article
The Dark Side of Growth: Are Shadow Economies Undermining the Global Climate Goal?
by Oana Ramona Lobont, Nicoleta Mihaela Doran, Sorana Vatavu, Mariana Alexandra Barbulescu, Florin Costea and Gabriela Badareu
Sustainability 2025, 17(12), 5241; https://doi.org/10.3390/su17125241 (registering DOI) - 6 Jun 2025
Abstract
This study investigates the underexplored relationship between the shadow economy and environmental degradation and governance within the European Union, focusing on CO2 and GHG emissions, and climate-related natural disasters, from 2012 to 2021. Employing both panel data econometrics and Elastic Net regularisation, [...] Read more.
This study investigates the underexplored relationship between the shadow economy and environmental degradation and governance within the European Union, focusing on CO2 and GHG emissions, and climate-related natural disasters, from 2012 to 2021. Employing both panel data econometrics and Elastic Net regularisation, the analysis reveals asymmetric effects: while a larger shadow economy is associated with lower reported GHG emissions, likely due to underreporting or less energy-intensive activities, it simultaneously increases vulnerability to climate-induced disasters. Furthermore, environmental taxes, although effective in mitigating emissions, show limited impact on disaster frequency, suggesting that fiscal instruments alone may be insufficient to foster climate resilience. Economic prosperity correlates with higher emissions and greater climate risk, highlighting a trade-off between growth and sustainability. The findings underscore the necessity of integrating informal economic activities into environmental governance frameworks, particularly in the context of the European Green Deal. Recognising and regulating the environmental footprint of the shadow economy is essential for achieving comprehensive and equitable climate goals. Future research should explore the role of institutional quality and fiscal transparency in moderating the environmental effects of informality. Overall, this study calls for a rethinking of climate policies to include both the formal and informal dimensions of economic activity. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

17 pages, 4311 KiB  
Article
Hyperthermophilic L-Asparaginase from Thermococcus sibiricus and Its Double Mutant with Increased Activity: Insights into Substrate Specificity and Structure
by Maria V. Dumina, Dmitry D. Zhdanov, Alexander V. Veselovsky, Marina V. Pokrovskaya, Svetlana S. Aleksandrova, Mikhail E. Minyaev, Larisa A. Varfolomeeva, Ilya O. Matyuta, Konstantin M. Boyko and Alexander A. Zhgun
Int. J. Mol. Sci. 2025, 26(12), 5437; https://doi.org/10.3390/ijms26125437 (registering DOI) - 6 Jun 2025
Abstract
L-asparaginase (L-ASNase) is a key industrial enzyme significant for cancer therapy and the food industry for reducing dietary acrylamide. The hyperthermophilic L-ASNase from Thermococcus sibiricus (TsAI) was previously shown to exhibit high activity and thermostability and is promising for biotechnology. To gain insights [...] Read more.
L-asparaginase (L-ASNase) is a key industrial enzyme significant for cancer therapy and the food industry for reducing dietary acrylamide. The hyperthermophilic L-ASNase from Thermococcus sibiricus (TsAI) was previously shown to exhibit high activity and thermostability and is promising for biotechnology. To gain insights into structure-functional relationships of TsAI, determination of the substrate specificity, kinetic parameters, structural characterization, and molecular docking were performed. TsAI characteristics were compared with the TsAID54G/T56Q mutant, which exhibited increased activity after a double mutation in the substrate-binding region. TsAI and TsAID54G/T56Q were found to display high activity towards D-asparagine—62% and 21% of L-asparaginase activity, respectively—and low L-glutaminase coactivity of ~5%. Restoring the mesophilic-like triad GSQ in the mutant resulted in a two-fold increase in activity towards L-asparagine compared with TsAI. Crystal structures of TsAI forms solved at 1.9 Å resolution revealed that double mesophilic-like mutation increased the flexibility of the loop M51-L57, located in close proximity to the active site. Structural superposition and mutational analysis indicate that mobility of this loop is essential for the activity of thermo-ASNases. Molecular docking, without taking into account the temperature factor, showed that, in contrast to L-asparagine interaction, D-asparagine orientation in the TsAI and TsAID54G/T56Q active sites is similar and not optimal for catalysis. Under real conditions, high temperatures can induce structural changes that reduce L-ASNase discrimination towards D-asparagine. Overall, the obtained structural and biochemical data provide a basis for a more detailed understanding of thermo-ASNase functioning and possibilities to engineer improved variants for future biotechnological application. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

17 pages, 7878 KiB  
Article
Projection of the UV Radiation for Vitamin D Production Changes Between 2015–2024 and 2090–2099 Periods
by Vladimir Zubov, Eugene Rozanov and Tatiana Egorova
Atmosphere 2025, 16(6), 686; https://doi.org/10.3390/atmos16060686 (registering DOI) - 6 Jun 2025
Abstract
We evaluate changes in the daily doses of surface ultraviolet radiation (UV) necessary for vitamin D production (UVpD) during the 21st century caused by the evolution of the Earth’s climate and the atmospheric ozone layer. Experiments with the Earth system model SOCOLv4 (version [...] Read more.
We evaluate changes in the daily doses of surface ultraviolet radiation (UV) necessary for vitamin D production (UVpD) during the 21st century caused by the evolution of the Earth’s climate and the atmospheric ozone layer. Experiments with the Earth system model SOCOLv4 (version 4 of the Solar-Climate Ozone Links Chemistry-Climate Model) and an atmospheric radiative transfer model indicated a significant (20–80%) decrease in UVpD doses at the Earth’s surface between 2015–2024 and 2090–2099 in middle latitudes in both hemispheres and an increase of 30–40% in some areas of lower latitudes. These changes are driven by strong greenhouse gas growth and ozone-depleting substance reductions. The experiments also provided estimates of the relative contributions of the total ozone column (TOC), cloud parameters, and surface albedo changes to the corresponding variations in UVpD daily doses. Outside the tropics, the primary factor contributing to the decrease in UVpD doses (50% to 80%) is the increase in TOC. Changes in cloud parameters account for 20% to 30% of the decrease, while the decline in surface albedo contributes less than 20%. However, in the polar regions of the Northern Hemisphere, this contribution can reach up to 50%. In the lower latitudes, diminishing TOC and liquid water column of cloud (LWCC) provide the main contributions to the increase in UVpD doses. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

17 pages, 1502 KiB  
Article
Transcriptomic Analysis of Cold-Induced Temporary Cysts in Marine Dinoflagellate Prorocentrum cordatum
by Mariia Berdieva, Pavel Safonov, Olga Palii, Mikhail Prilutsky, Olga Matantseva and Sergei Skarlato
Int. J. Mol. Sci. 2025, 26(12), 5432; https://doi.org/10.3390/ijms26125432 (registering DOI) - 6 Jun 2025
Abstract
Dinoflagellates are unicellular organisms that are crucial components of aquatic ecosystems, known as important primary producers and causes of harmful blooms. They have complex life cycles, including immotile stages, which contribute to their distribution and survival in unfavorable conditions. Temperature changes, primarily cold [...] Read more.
Dinoflagellates are unicellular organisms that are crucial components of aquatic ecosystems, known as important primary producers and causes of harmful blooms. They have complex life cycles, including immotile stages, which contribute to their distribution and survival in unfavorable conditions. Temperature changes, primarily cold stress, significantly impact dinoflagellate physiology, influencing metabolic processes, growth rates, and encystment/excystment cycles. This study investigates the transcriptome of temporary cold-induced cysts in the marine planktonic dinoflagellate Prorocentrum cordatum. We compared gene expression in cysts subjected to a 7-h cold incubation with those returned to standard cultivation conditions and motile vegetative cells. Our results showed a marked predominance of downregulated genes in cold-induced cysts. Encystment affected signaling pathways, including calcium and protein kinase signaling, as well as RNA and protein metabolism. Upon returning to standard conditions, RNA metabolism was reactivated; upregulation of genes encoding some calcium-binding proteins and kinases was observed. Additionally, we analyzed RNA-binding pentatricopeptide repeat-containing proteins, the genes encoding which changed their expression in P. cordatum cysts, for similarities to plant MRL1 proteins. Finally, we focused on MEI2-like proteins to confirm their role in non-sexual cyst formation and position them within the diversity of MEI2 homologs in dinoflagellates. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 5228 KiB  
Article
Allerød–Younger Dryas Boundary (12.9–12.8 ka) as a “New” Geochronological Marker in Late Glacial Sediments of the Eastern Baltic Region
by Olga Druzhinina, Ivan Skhodnov, Kasper van den Berghe and Ksenia Filippova
Quaternary 2025, 8(2), 28; https://doi.org/10.3390/quat8020028 (registering DOI) - 6 Jun 2025
Abstract
This paper is a contribution to the ongoing debate on the nature and drivers of the abrupt environmental shift at the onset of the Younger Dryas. The goal of this study is to identify key parameters that characterize the Allerød–Younger Dryas boundary, 12.9–12.8 [...] Read more.
This paper is a contribution to the ongoing debate on the nature and drivers of the abrupt environmental shift at the onset of the Younger Dryas. The goal of this study is to identify key parameters that characterize the Allerød–Younger Dryas boundary, 12.9–12.8 ka in sedimentary sections, and are representative of broader paleobasin dynamics in the eastern Baltic region. Two new Late Glacial sediment archives, the Kulikovo and Sambian, provide data on this time interval. Geochronological and lithological (grain size and loss on ignition) analyses of the sequences indicate a change in sedimentation during 12.9–12.8 ka, which is manifested by a peak of terrigenous, coarser-grained material and an accompanying peak of organic matter in sediments. A review of the published data shows that this lithological situation is also characteristic of other paleobasins in the eastern Baltic region and beyond for layers dated to the onset of the Younger Dryas. This probably indicates an environmental event that caused a short-term increased input and deposition of organic matter, accompanied by a surge in erosional processes. The environmental shift triggered by the event is also recorded in a remarkable drop in pollen concentration and species diversity in the overlying layer. The sediment horizon in Late Glacial (Allerød–Younger Dryas) sequences corresponding to these parameters can be considered an important and reliable geochronological marker of the 12.9–12.8 ka interval. The organic-rich layer in the Kulikovo section, as well as other similar layers in the Baltic, can be considered a “black mat” phenomenon related to the onset of the Younger Dryas. Full article
Show Figures

Figure 1

21 pages, 2147 KiB  
Article
TAAR8 in the Brain: Implications for Dopaminergic Function, Neurogenesis, and Behavior
by Taisiia S. Shemiakova, Alisa A. Markina, Evgeniya V. Efimova, Ramilya Z. Murtazina, Anna B. Volnova, Aleksandr A. Veshchitskii, Elena I. Leonova and Raul R. Gainetdinov
Biomedicines 2025, 13(6), 1391; https://doi.org/10.3390/biomedicines13061391 - 6 Jun 2025
Abstract
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other [...] Read more.
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 in humans) are mostly known for their olfactory function, sensing innate odors. At the same time, there is growing evidence that these receptors may also be involved in brain function. TAAR8 is the least studied TAAR family member, and currently, there is no data on its function in the mammalian central nervous system. Methods: We generated triple knockout (tTAAR8-KO) mice lacking all murine Taar8 isoforms (Taar8a, Taar8b, and Taar8c) using CRISPR-Cas9 technology. In this study, we performed the first phenotyping of tTAAR8-KO mice for behavioral, electrophysiological, and neurochemical characteristics. Results: During the study, we found a number of alterations specific to tTAAR8-KO mice compared to controls. tTAAR8-KO mice demonstrated better short-term memory, more depressive-like behavior, and higher body temperature. Also, we observed changes in the dopaminergic system, brain electrophysiological activity, and adult neurogenic functions in mice lacking Taar8 isoforms. Conclusions: Based on the data obtained, it can be assumed that the physiological TAAR8 role is not limited only to the innate olfactory function, as previously proposed. TAAR8 could be involved in brain function, in particular in dopamine function regulation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

11 pages, 482 KiB  
Article
Immunological Markers of Cardiovascular Pathology in Older Patients
by Akbota Bugibayeva, Almagul Kurmanova, Kuat Abzaliyev, Symbat Abzaliyeva, Gaukhar Kurmanova, Diana Sundetova, Merei Abdykassymova, Raushan Bitemirova, Ulzas Sagalbayeva, Karashash Absatarova and Madina Suleimenova
Biomedicines 2025, 13(6), 1392; https://doi.org/10.3390/biomedicines13061392 - 6 Jun 2025
Abstract
Background: The aging process is accompanied by changes in the immunological status of a person. Immunosenescence is considered a significant cause of the development of cardiovascular diseases (CVD) in elderly people. However, to date, the relationship between immune/inflammatory processes and diseases associated with [...] Read more.
Background: The aging process is accompanied by changes in the immunological status of a person. Immunosenescence is considered a significant cause of the development of cardiovascular diseases (CVD) in elderly people. However, to date, the relationship between immune/inflammatory processes and diseases associated with age is considered quite complex and is not fully understood. Immunophenotyping and the intracellular production of cytokines involved in the processes of inflammatory aging will allow us to identify biomarkers that are associated with cardiovascular diseases in the elderly. Objectives: To identify immunological markers associated with the process of inflammatory aging in older individuals with cardiovascular diseases. Methods: CD-phenotyping and intracellular cytokine analysis of peripheral blood using the flow cytometry method were conducted in 52 people over 60 years of age (group 1 had CVD and group 2 did not). Blood samples were stained with monoclonal antibodies (mAb) using Becton Dickinson (BD) reagents for the staining and binding of surface receptors CD4+, CD8+, CD14+, CD19+, CD16+, CD56+, CD59+, CD95+, and HLA DR+ and intracellular receptors TNF, IL-10, GM-CSF, VEGFR-2, IGF, and perforin. In addition, the following parameters were studied: questionnaire data (gender, age, alcohol consumption, smoking, physical activity, and marital status), clinical data (blood pressure (BP), heart rate (HR), body mass index (BMI)), comorbid conditions, and cardiovascular diseases (coronary heart disease (CHD), chronic heart failure (CHF), arterial hypertension (AH), previous myocardial infarction (PICS), diabetes mellitus (DM), atrial fibrillation (AF), and stroke). Results: The older patients with cardiovascular pathology had high levels of monocytes CD14+ (p = 0.014), low levels of CD8+ lymphocytes (p = 0.046), and low intracellular production of GM-CSF (p = 0.013) compared to the older people without CVD. Conclusions: The revealed differences in the expression of CD14+ monocytes indicate their role in the development of cardiovascular pathology associated with age-related changes. A decrease in cytotoxic CD8+ lymphocytes and intracellular GM-CSF production leads to an increased risk of developing cardiovascular diseases in older individuals. These observed changes with age will not only expand existing knowledge about the aging of the regulatory link of the immune system but also help to obtain data to predict CVD in older people. Thus, the obtained results support the use of these immunological markers to identify the risk of circulatory disease and a personalized approach in geriatric practice. Full article
(This article belongs to the Special Issue Inflammaging and Immunosenescence: Mechanisms and Link)
Show Figures

Figure 1

18 pages, 704 KiB  
Review
The Problem of Molecular Target Choice for CAR-T Cells in Acute Myeloid Leukemia Therapy
by Varvara Maiorova, Murad D. Mollaev, Polina Vikhreva, Alexey Kibardin, Michael A. Maschan and Sergey S. Larin
Int. J. Mol. Sci. 2025, 26(12), 5428; https://doi.org/10.3390/ijms26125428 - 6 Jun 2025
Abstract
Recently, the chimeric antigen receptor (CAR)-T approach represented a breakthrough in the treatment of B-cell malignancies, encouraging the application of the approach for other hematological diseases, such as acute myeloid leukemia (AML). Heterogeneity and antigen variation in the pathological cell population hinder the [...] Read more.
Recently, the chimeric antigen receptor (CAR)-T approach represented a breakthrough in the treatment of B-cell malignancies, encouraging the application of the approach for other hematological diseases, such as acute myeloid leukemia (AML). Heterogeneity and antigen variation in the pathological cell population hinder the choice of molecular targets in the case of AML. In this review, the critical aspects were described that are usually considered when selecting molecular targets for the new CAR genetic constructs. The role of AML-associated antigens in AML progression was covered. In conclusion, we proposed an approach that may allow the elimination of pathological cells in AML more effectively. Full article
Show Figures

Figure 1

16 pages, 4392 KiB  
Article
Evaluating Design Rainstorm Durations for Urban Flood Control
by Kwan Tun Lee, Ta-Chun Chien, Wang-Sheng Yu, Nai-Kuang Chen, Pin-Chun Huang, Yi-Ting Lin, Yu-Han Hsu, Yu-Hsun Liao, Huan-Yuan Chen, Ching-Wen Hsu, Jing Zong Yang, Ciao-Ru Li and Cho-Min Yang
Earth 2025, 6(2), 53; https://doi.org/10.3390/earth6020053 - 5 Jun 2025
Abstract
In conventional hydrology, a short-duration design rainstorm is typically used to estimate the design discharge in urban sewer systems. The reason for using a short duration is that engineers believe the time of concentration in urban watersheds is relatively small. The short-duration hyetograph [...] Read more.
In conventional hydrology, a short-duration design rainstorm is typically used to estimate the design discharge in urban sewer systems. The reason for using a short duration is that engineers believe the time of concentration in urban watersheds is relatively small. The short-duration hyetograph is supposed to generate a flow hydrograph that accurately reflects the rainfall-runoff processes. In this study, we developed a street-sewer runoff model for an urban district of 2470 hectares. Detailed field flooding records were utilized to verify the stormwater model’s capability for inundation simulations. Subsequently, different rainfall series extracted from the recorded rainstorm data were used to investigate the causes of flooding corresponding to different durations of rainstorms. The results indicate that a 90 min main concentrated rainstorm causes small-scale flooding only; however, a 24 h rainfall series results in an extensive range of inundations. We further conducted similar short- and long-duration hyetograph tests in 16 urban drainage partitions (ranging from 2.3 to 193.5 hectares) to confirm the above findings. The results indicate that the maximum discharge in most partitions can only be found when the hyetograph duration exceeds 1080 min, which essentially contradicts previous engineering designs in urban watersheds in Taiwan. Full article
Show Figures

Figure 1

19 pages, 1248 KiB  
Article
Numerical Solution of the Inverse Thermoacoustics Problem Using QFT and Gradient Method
by Syrym E. Kasenov, Aigerim M. Tleulesova, Almas N. Temirbekov, Zholaman M. Bektemessov and Rysbike A. Asanova
Fractal Fract. 2025, 9(6), 370; https://doi.org/10.3390/fractalfract9060370 - 5 Jun 2025
Abstract
In this research, we consider the inverse problem for the wave equation under an unknown initial condition. A generalized solution to the direct problem was formulated, its correctness was established, and the stability assessment was obtained. The inverse problem was reduced to an [...] Read more.
In this research, we consider the inverse problem for the wave equation under an unknown initial condition. A generalized solution to the direct problem was formulated, its correctness was established, and the stability assessment was obtained. The inverse problem was reduced to an optimization problem, where the objective function was minimized using gradient methods, including the accelerated Nesterov algorithm. The conjugate problem was constructed, and the functional gradient was computed, while the existence of the Frechet derivative was proved. For the first time, the quaternion Fourier transform (QFT) was applied to the numerical solution of a direct problem, making it possible to analyze multidimensional wave processes more efficiently. A computational experiment was carried out, which demonstrated that if there is insufficient additional information, the restoration of the initial condition is incomplete. The introduction of the second boundary condition makes it possible to significantly improve the accuracy and stability of the solution. The results confirm the importance of an integrated approach and the availability of sufficient a priori information when solving inverse problems. Full article
Show Figures

Figure 1

22 pages, 5354 KiB  
Article
Platinum Group Minerals in Sulfide Droplets of the Zhelos Intrusion, Eastern Sayn, Russia: First Data
by Tatiana B. Kolotilina, Alexander V. Nikolaev, Alexander L. Finkelstein, Alexey S. Mekhonoshin and Olga Yu. Belozerova
Minerals 2025, 15(6), 612; https://doi.org/10.3390/min15060612 - 5 Jun 2025
Abstract
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in [...] Read more.
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in accelerating voltage, electron beam intensity and probe diameter is considered in order to estimate the X-ray generation region, when analyzing PGM microinclusions comparable in size to the radiation generation region or smaller. Estimates were made of the possibility of reducing the size of the local analysis area when the accelerating voltage was reduced. The influence of the matrix composition on the results of the local analysis of PGM microphases and accuracy of the Pd and Pt content determination was also evaluated. The findings of the experiments conducted allowed for the successful identification of elements belonging to the PGM microphases and the host matrix. This approach enabled the estimation of the precise levels of impurity elements in their composition. Using a scanning electron microscope in the automatic scanning mode for the detection of heavy elements, 10 single and composite grains of three platinum group minerals larger than 5 µm and 22 microphases ranging in size from 0.3 to 4 µm were detected in the sulfide droplets. The large phases are merenskyite, omeiite and michenerite, with merenskyite being predominant. Among the microscopic inclusions were identified Pd-Bi-Te, Os-Ru-As and Rh-As-S phases. The composition of the studied palladium bismuthotelluride samples indicates a formation temperature range of 489–700 °C. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 2107 KiB  
Review
Kidney and Bladder Transplantation: Advances, Barriers, and Emerging Solutions
by Gani Kuttymuratov, Timur Saliev, Ardak Ainakulov, Askar Ayaganov, Kuat Oshakbayev, Daulet Zharassov, Abdurakhman Tuleuzhan and Nurlybek Uderbayev
Medicina 2025, 61(6), 1045; https://doi.org/10.3390/medicina61061045 - 5 Jun 2025
Abstract
Urogenital transplantation has emerged as a ground-breaking field with the potential to revolutionize the treatment of end-stage organ failure and congenital or acquired defects of the kidney and urinary bladder. This review provides a comprehensive analysis of the current state, clinical experiences, and [...] Read more.
Urogenital transplantation has emerged as a ground-breaking field with the potential to revolutionize the treatment of end-stage organ failure and congenital or acquired defects of the kidney and urinary bladder. This review provides a comprehensive analysis of the current state, clinical experiences, and experimental progress in kidney and bladder transplantation, with a particular focus on immunological, surgical, and ethical challenges. While kidney transplantation is now a well-established procedure offering improved survival and quality of life for patients with chronic renal failure, bladder transplantation remains in the experimental phase, facing hurdles in vascularization, tissue integration, and functional restoration. Recent advancements in tissue engineering, regenerative medicine, and immunosuppressive strategies are critically discussed, highlighting their role in shaping the future of urogenital grafts. This review also explores xenotransplantation and bio-artificial organ development as promising frontiers. Continued interdisciplinary research is essential to overcome the current limitations and enable routine clinical application of bladder transplantation while optimizing outcomes in kidney grafts. Full article
(This article belongs to the Special Issue Kidney Transplantation Complications: Updates and Challenges)
Show Figures

Figure 1

29 pages, 9493 KiB  
Article
Development and Optimization of Edible Antimicrobial Films Based on Dry Heat–Modified Starches from Kazakhstan
by Marat Muratkhan, Kakimova Zhainagul, Kamanova Svetlana, Dana Toimbayeva, Indira Temirova, Sayagul Tazhina, Dina Khamitova, Saduakhasova Saule, Tamara Tultabayeva, Berdibek Bulashev and Gulnazym Ospankulova
Foods 2025, 14(11), 2001; https://doi.org/10.3390/foods14112001 - 5 Jun 2025
Abstract
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in [...] Read more.
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in vitro digestibility. Corn and cassava starches were selected as optimal components based on their physicochemical performance. A series of single-factor experiments and a Box–Behnken design were employed to assess the influence of starch concentration, gelatinization time, glycerol, and chitosan content on film properties including tensile strength, elongation at break, water vapor permeability (WVP), and transparency. The optimized formulation (5.0% starch, 28.2 min gelatinization, 2.6% glycerol, 1.4% chitosan) yielded a transparent (77.64%), mechanically stable (10.92 MPa tensile strength; 50.0% elongation), and moisture-resistant film. Structural and thermal analyses (SEM, AFM, DSC, TGA) confirmed the film’s homogeneity and stability. Furthermore, the film exhibited moderate antioxidant activity and antibacterial efficacy against Escherichia coli and Staphylococcus aureus. These findings demonstrate the feasibility of using dry heat–modified Kazakhstani starches to develop sustainable antimicrobial packaging materials. However, further studies are needed to explore sensory attributes, long-term storage performance, and compatibility with different food matrices. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 16360 KiB  
Article
Excellent Room-Temperature NO2 Gas-Sensing Properties of TiO2-SnO2 Composite Thin Films Under Light Activation
by Victor V. Petrov, Aleksandra P. Starnikova, Maria G. Volkova, Soslan A. Khubezhov, Ilya V. Pankov and Ekaterina M. Bayan
Nanomaterials 2025, 15(11), 871; https://doi.org/10.3390/nano15110871 - 5 Jun 2025
Abstract
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron [...] Read more.
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy, which causes the presence of n-n heterojunctions and provides improved gas-sensitive properties. The sensor based on the 3TiO2–97SnO2 film has the maximum responses, which is explained by the existence of a strong surface electric field formed by large surface potentials in the region of TiO2–SnO2 heterojunctions detected by the Kelvin probe force microscopy method. Exposure to low-intensity radiation (no higher than 0.2 mW/cm2, radiation wavelength—400 nm) leads to a 30% increase in the sensor response relative to 7.7 ppm NO2 at an operating temperature of 200 °C and a humidity of 60% RH. At room temperature (20 °C), under humidity conditions, the response is 1.8 when exposed to 0.2 ppm NO2 and 85 when exposed to 7.7 ppm. The lower sensitivity limit is 0.2 ppm NO2. The temporal stability of the proposed sensors has been experimentally confirmed. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop