Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Ru@CoMn2O4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7186 KB  
Article
Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance
by Milad Zehtab Salmasi, Amir Narimani, Ali Omidkar and Hua Song
Catalysts 2025, 15(9), 827; https://doi.org/10.3390/catal15090827 - 1 Sep 2025
Viewed by 903
Abstract
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the [...] Read more.
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the oxygen evolution reaction (OER) was systematically explored using structural, morphological, and electrochemical characterization techniques. Among the various compositions, the Cr-containing catalyst, (MnFeNiCoCr)3O4, displayed outstanding electrocatalytic behavior, delivering a notably low overpotential of 323 mV at a current density of 10 mA/cm2 in 1.0 M KOH—surpassing the performance of benchmark RuO2. Additionally, this material exhibited the smallest Tafel slope (56 mV/dec), the greatest double-layer capacitance (3.35 mF/cm2), and the most extensive electrochemically active surface area, all indicating enhanced charge transfer capability and high catalytic proficiency. The findings highlight the potential of element tailoring in HEOs as a promising strategy for optimizing water oxidation catalysis. Full article
Show Figures

Graphical abstract

14 pages, 2965 KB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 1 | Viewed by 541
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

14 pages, 4055 KB  
Article
A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane
by Yan Cui, Zequan Zeng, Yaqin Hou, Shuang Ma, Wenzhong Shen and Zhanggen Huang
Molecules 2024, 29(10), 2255; https://doi.org/10.3390/molecules29102255 - 11 May 2024
Cited by 3 | Viewed by 1751
Abstract
Noble metals have become a research hotspot for the oxidation of light alkanes due to their low ignition temperature and easy activation of C-H; however, sintering and a high price limit their industrial applications. The preparation of effective and low-noble-metal catalysts still presents [...] Read more.
Noble metals have become a research hotspot for the oxidation of light alkanes due to their low ignition temperature and easy activation of C-H; however, sintering and a high price limit their industrial applications. The preparation of effective and low-noble-metal catalysts still presents profound challenges. Herein, we describe how a Ru@CoMn2O4 spinel catalyst was synthesized via Ru in situ doping to promote the activity of propane oxidation. Ru@CoMn2O4 exhibited much higher catalytic activity than CoMn2O4, achieving 90% propane conversion at 217 °C. H2-TPR, O2-TPD, and XPS were used to evaluate the catalyst adsorption/lattice oxygen activity and the adsorption and catalytic oxidation capacity of propane. It could be concluded that Ru promoted synergistic interactions between cobalt and manganese, leading to electron transfer from the highly electronegative Ru to Co2+ and Mn3+. Compared with CoMn2O4, 0.1% Ru@CoMn2O4, with a higher quantity of lattice oxygen and oxygen mobility, possessed a stronger capability of reducibility, which was the main reason for the significant increase in the activity of Ru@CoMn2O4. In addition, intermediates of the reaction between adsorbed propane and lattice oxygen on the catalyst were monitored by in situ DRIFTS. This work highlights a new strategy for the design of a low-noble-metal catalyst for the efficient oxidation of propane. Full article
(This article belongs to the Special Issue New Metal Catalysts for Sustainable Chemistry)
Show Figures

Figure 1

45 pages, 9325 KB  
Review
Molecular Mechanisms of Oxygen Evolution Reactions for Artificial Photosynthesis
by Yoshio Nosaka
Oxygen 2023, 3(4), 407-451; https://doi.org/10.3390/oxygen3040027 - 16 Nov 2023
Cited by 1 | Viewed by 5872
Abstract
Addressing the global environmental problem of water splitting to produce hydrogen fuel by solar energy is receiving so much attention. In water splitting, the essential problem to solve is the development of efficient catalysts for oxygen production. In this paper, having the prospect [...] Read more.
Addressing the global environmental problem of water splitting to produce hydrogen fuel by solar energy is receiving so much attention. In water splitting, the essential problem to solve is the development of efficient catalysts for oxygen production. In this paper, having the prospect for a practical application of photocatalysts to artificial photosynthesis, molecular mechanisms in the current literature are briefly reviewed. At first, recent progress in the function of the Mn cluster at the natural photosystem II is briefly described. The kinds of devices in which oxygen evolution reaction (OER) catalysts are used were designated: water electrolyzers, photoelectrodes, and photocatalysts. Some methods for analyzing molecular mechanisms in OER catalysis, emphasized by the FTIR method, are shown briefly. After describing common OER mechanisms, the molecular mechanisms are discussed for TiO2 and BiVO4 photoelectrodes with our novel data, followed by presenting OER co-catalysts of IrO2, RuO2, NiO2, and other metal oxides. Recent reports describing OER catalysts of perovskites, layered double hydroxides (LDH), metal–organic frameworks (MOF), single-atom catalysts, as well as metal complexes are reviewed. Finally, by comparing with natural photosystem, the required factors to improve the activity of the catalysts for artificial photosynthesis will be discussed. Full article
Show Figures

Figure 1

38 pages, 3801 KB  
Review
Review on the Chemistry of [M(NH3)n](XO4)m (M = Transition Metal, X = Mn, Tc or Re, n = 1–6, m = 1–3) Ammine Complexes
by Raj Narain Mehrotra
Inorganics 2023, 11(7), 308; https://doi.org/10.3390/inorganics11070308 - 20 Jul 2023
Cited by 9 | Viewed by 5422
Abstract
The preparation of ammine complexes of transition metals having oxidizing anions such as permanganate and perrhenate ions is a great challenge due to possible reactions between ammonia and oxidizing anions during the synthesis of these materials. However, it has an important role in [...] Read more.
The preparation of ammine complexes of transition metals having oxidizing anions such as permanganate and perrhenate ions is a great challenge due to possible reactions between ammonia and oxidizing anions during the synthesis of these materials. However, it has an important role in both the development of new oxidants in organic chemistry and especially in the preparation of mixed-metal oxide catalyst precursors and metal alloys for their controlled temperature decomposition reactions. Therefore, in this paper, synthetic procedures to prepare ammonia complexes of transition metal permanganate, pertechnetate, and perrhenate (the VIIB group tetraoxometallates) salts have been comprehensively reviewed. The available data about these compounds’ structures and spectroscopic properties, including the presence of hydrogen bonds that act as redox reaction centers during thermal decomposition, are given and evaluated in detail. The nature of the thermal decomposition products has also been summarized. The available information about the role of the ammine complexes of transition metal permanganate salts in organic oxidation reactions, such as the oxidation of benzyl alcohols and regeneration of oxo-compounds from oximes and phenylhydrazones, including the kinetics of these processes, has also been collected. Their physical and chemical properties, including the thermal decomposition characteristics of known diammine (Ag(I), Cd, Zn, Cu(II), Ni(II)), triammine (Ag(I)), and simple or mixed ligand tetraammine (Cu(II), Zn, Cd, Ni(II), Co(II), Pt(II), Pd(II), Co(III)), Ru(III), pentaammine (Co(III), Cr(III), Rh(III) and Ir(III)), and hexaammine (Ni(II), Co(III), Cr(III)) complexes of transition metals with tetraoxometallate(VII) anions (M = Mn, Tc and Re), have been summarized. The preparation and properties of some special mixed ligand/anion/cation-containing complexes, such as [Ru(NH3)4(NO)(H2O)](ReO4)2, [Co(NH3)5(H2O)](ReO4)2, [Co(NH3)5X](MnO4)2 (X = Cl, Br), [Co(NH3)6]Cl2(MnO4), [Co(NH3)5ReO4]X2 (X = Cl, NO3, ClO4, ReO4), and K[Co(NH3)6]Cl2(MnO4)2, are also included. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands)
Show Figures

Graphical abstract

23 pages, 9877 KB  
Review
The Progress on Magnetic Material Thin Films Prepared Using Polymer-Assisted Deposition
by Hongtao Ren, Jing Zhong and Gang Xiang
Molecules 2023, 28(13), 5004; https://doi.org/10.3390/molecules28135004 - 26 Jun 2023
Cited by 6 | Viewed by 3167
Abstract
Polymer-assisted deposition (PAD) has been widely used in the preparation of high-quality oxides and sulfides for basic research and applications. Specifically, diverse PAD-prepared magnetic material thin films such as ZnO, Ga2O3, SrRuO3, LaCoO3, LaMnO3 [...] Read more.
Polymer-assisted deposition (PAD) has been widely used in the preparation of high-quality oxides and sulfides for basic research and applications. Specifically, diverse PAD-prepared magnetic material thin films such as ZnO, Ga2O3, SrRuO3, LaCoO3, LaMnO3, Y3Fe5O12, MoS2, MoSe2, and ReS2 thin films have been grown, in which thickness-dependent, strain-modulated, doping-mediated, and/or morphology-dependent room-temperature ferromagnetism (RTFM) have been explored. Inspired by the discovery of intrinsic low-temperature FM in two-dimensional (2D) systems prepared using mechanical exfoliation, the search for more convenient methods to prepare 2D ferromagnetic materials with high-temperature FM has seen explosive growth, but with little success. Fortunately, the very recent synthesis of 2D NiO by PAD has shed light on this challenge. Based on these abovementioned developments, the difficulties of PAD when preparing a-few-nanometer single-crystalline materials and the opportunities in PAD for novel materials such as chiral magnetic soliton material Cr1/3NbS2 are discussed. Full article
Show Figures

Figure 1

14 pages, 3171 KB  
Article
Tuning the Electronic Structure of a Novel 3D Architectured Co-N-C Aerogel to Enhance Oxygen Evolution Reaction Activity
by Chunsheng Ni, Shuntian Huang, Tete Daniel Koudama, Xiaodong Wu, Sheng Cui, Xiaodong Shen and Xiangbao Chen
Gels 2023, 9(4), 313; https://doi.org/10.3390/gels9040313 - 7 Apr 2023
Cited by 1 | Viewed by 2246
Abstract
Hydrogen generation through water electrolysis is an efficient technique for hydrogen production, but the expensive price and scarcity of noble metal electrocatalysts hinder its large-scale application. Herein, cobalt-anchored nitrogen-doped graphene aerogel electrocatalysts (Co-N-C) for oxygen evolution reaction (OER) are prepared by simple chemical [...] Read more.
Hydrogen generation through water electrolysis is an efficient technique for hydrogen production, but the expensive price and scarcity of noble metal electrocatalysts hinder its large-scale application. Herein, cobalt-anchored nitrogen-doped graphene aerogel electrocatalysts (Co-N-C) for oxygen evolution reaction (OER) are prepared by simple chemical reduction and vacuum freeze-drying. The Co (0.5 wt%)-N (1 wt%)-C aerogel electrocatalyst has an optimal overpotential (0.383 V at 10 mA/cm2), which is significantly superior to that of a series of M-N-C aerogel electrocatalysts prepared by a similar route (M = Mn, Fe, Ni, Pt, Au, etc.) and other Co-N-C electrocatalysts that have been reported. In addition, the Co-N-C aerogel electrocatalyst has a small Tafel slope (95 mV/dec), a large electrochemical surface area (9.52 cm2), and excellent stability. Notably, the overpotential of Co-N-C aerogel electrocatalyst at a current density of 20 mA/cm2 is even superior to that of the commercial RuO2. In addition, density functional theory (DFT) confirms that the metal activity trend is Co-N-C > Fe-N-C > Ni-N-C, which is consistent with the OER activity results. The resulting Co-N-C aerogels can be considered one of the most promising electrocatalysts for energy storage and energy saving due to their simple preparation route, abundant raw materials, and superior electrocatalytic performance. Full article
(This article belongs to the Special Issue Preparation and Characteristics of Aerogel-Based Materials)
Show Figures

Graphical abstract

51 pages, 13697 KB  
Review
On the Mechanism of Heterogeneous Water Oxidation Catalysis: A Theoretical Perspective
by Shanti Gopal Patra and Dan Meyerstein
Inorganics 2022, 10(11), 182; https://doi.org/10.3390/inorganics10110182 - 26 Oct 2022
Cited by 7 | Viewed by 5334
Abstract
Earth abundant transition metal oxides are low-cost promising catalysts for the oxygen evolution reaction (OER). Many transition metal oxides have shown higher OER activity than the noble metal oxides (RuO2 and IrO2). Many experimental and theoretical studies have been performed [...] Read more.
Earth abundant transition metal oxides are low-cost promising catalysts for the oxygen evolution reaction (OER). Many transition metal oxides have shown higher OER activity than the noble metal oxides (RuO2 and IrO2). Many experimental and theoretical studies have been performed to understand the mechanism of OER. In this review article we have considered four earth abundant transition metal oxides, namely, titanium oxide (TiO2), manganese oxide/hydroxide (MnOx/MnOOH), cobalt oxide/hydroxide (CoOx/CoOOH), and nickel oxide/hydroxide (NiOx/NiOOH). The OER mechanism on three polymorphs of TiO2: TiO2 rutile (110), anatase (101), and brookite (210) are summarized. It is discussed that the surface peroxo O* intermediates formation required a smaller activation barrier compared to the dangling O* intermediates. Manganese-based oxide material CaMn4O5 is the active site of photosystem II where OER takes place in nature. The commonly known polymorphs of MnO2; α-(tetragonal), β-(tetragonal), and δ-(triclinic) are discussed for their OER activity. The electrochemical activity of electrochemically synthesized induced layer δ-MnO2 (EI-δ-MnO2) materials is discussed in comparison to precious metal oxides (Ir/RuOx). Hydrothermally synthesized α-MnO2 shows higher activity than δ-MnO2. The OER activity of different bulk oxide phases: (a) Mn3O4(001), (b) Mn2O3(110), and (c) MnO2(110) are comparatively discussed. Different crystalline phases of CoOOH and NiOOH are discussed considering different surfaces for the catalytic activity. In some cases, the effects of doping with other metals (e.g., doping of Fe to NiOOH) are discussed. Full article
(This article belongs to the Special Issue Computational Catalysis: Methods and Applications)
Show Figures

Figure 1

29 pages, 5653 KB  
Review
Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery
by Dongmei Song, Changgang Hu, Zijian Gao, Bo Yang, Qingxia Li, Xinxing Zhan, Xin Tong and Juan Tian
Materials 2022, 15(17), 5837; https://doi.org/10.3390/ma15175837 - 24 Aug 2022
Cited by 24 | Viewed by 5181
Abstract
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn–air battery has attracted extensive research in recent years due to the advantages of abundant resources, low [...] Read more.
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn–air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn–air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn–air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn–air battery. Metal–organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn–air battery. Firstly, the composition and working principle of the Zn–air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn–air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn–air battery. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 5079 KB  
Article
The Influence of Transitional Metal Dopants on Reducing Chlorine Evolution during the Electrolysis of Raw Seawater
by Prajwal Adiga, Nathan Doi, Cindy Wong, Daniel M. Santosa, Li-Jung Kuo, Gary A. Gill, Joshua A. Silverstein, Nancy M. Avalos, Jarrod V. Crum, Mark H. Engelhard, Kelsey A. Stoerzinger and Robert Matthew Asmussen
Appl. Sci. 2021, 11(24), 11911; https://doi.org/10.3390/app112411911 - 15 Dec 2021
Cited by 7 | Viewed by 4842
Abstract
Electrocatalytic water splitting is a possible route to the expanded generation of green hydrogen; however, a long-term challenge is the requirement of fresh water as an electrolyzer feed. The use of seawater as a direct feed for electrolytic hydrogen production would alleviate fresh [...] Read more.
Electrocatalytic water splitting is a possible route to the expanded generation of green hydrogen; however, a long-term challenge is the requirement of fresh water as an electrolyzer feed. The use of seawater as a direct feed for electrolytic hydrogen production would alleviate fresh water needs and potentially open an avenue for locally generated hydrogen from marine hydrokinetic or off-shore power sources. One environmental limitation to seawater electrolysis is the generation of chlorine as a competitive anodic reaction. This work evaluates transition metal (W, Co, Fe, Sn, and Ru) doping of Mn-Mo-based catalysts as a strategy to suppress chlorine evolution while sustaining catalytic efficiency. Electrochemical evaluations in neutral chloride solution and raw seawater showed the promise of a novel Mn-Mo-Ru electrode system for oxygen evolution efficiency and enhanced catalytic activity. Subsequent stability testing in a flowing raw seawater flume highlighted the need for improved catalyst stability for long-term applications of Mn-Mo-Ru catalysts. This work highlights that elements known to be selective toward chlorine evolution in simple oxide form (e.g., RuO2) may display different trends in selectivity when used as isolated dopants, where Ru suppressed chlorine evolution in Mn-based catalysts. Full article
Show Figures

Figure 1

20 pages, 13607 KB  
Article
Assessment of Surface Water Quality in the Podu Iloaiei Dam Lake (North-Eastern Romania): Potential Implications for Aquaculture Activities in the Area
by Cornelia Amarandei, Alina-Giorgiana Negru, Laurentiu-Valentin Soroaga, Simona-Maria Cucu-Man, Romeo-Iulian Olariu and Cecilia Arsene
Water 2021, 13(17), 2395; https://doi.org/10.3390/w13172395 - 31 Aug 2021
Cited by 4 | Viewed by 3322
Abstract
The Podu Iloaiei Dam Lake located on the Bahluet River from Bahlui hydrographic basin, north-eastern Romania, is one of the most important water resources used for aquaculture activities in the region of interest. In the present study, the chemical composition related to water-soluble [...] Read more.
The Podu Iloaiei Dam Lake located on the Bahluet River from Bahlui hydrographic basin, north-eastern Romania, is one of the most important water resources used for aquaculture activities in the region of interest. In the present study, the chemical composition related to water-soluble ions and elements was assessed in both water and sediment samples collected from the area of interest during July 2017 and October 2017, representative months for warm and cold seasons, respectively. Water-soluble ions (H3C2O2, HCO2, C2O42−, F, Cl, NO2, Br, NO3, SO42−, Li+, Na+, NH4+, K+, and Ca2+) were analyzed by ion chromatography, while inductively coupled plasma mass spectrometry was used to quantify water-soluble fractions of elements (Be, B, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ir, Tl, Pb, Bi, and U). Evidence was obtained on the contributions of both anthropogenic and natural (pedologic) related sources in controlling the chemical composition of the water and sediment samples in the area. Analysis of Piper diagrams revealed the existence of CO32−/HCO3 and Ca2+/Mg2+ as dominant species for the sediment samples. The interest water pool was found to be oligotrophic over the warm period and eutrophic over the cold period. Overall, abundances and the association of chemical species in the area seemed to be controlled by a complex interplay between the water body’s main characteristics, meteorological factors, and anthropogenic activities. Moreover, the present results suggest that precautions should be taken for physicochemical parameter monitoring and prevention acts for surface water quality assurance in order to control the potential negative influence of some chemical parameters on fish productivity. Reported data also have a high potential to be used by experts in the field of developing lake water management policies for a sustainable exploitation of various aquatic systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

28 pages, 6922 KB  
Review
Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments
by Ruibin Liang, Yongquan Du, Peng Xiao, Junyang Cheng, Shengjin Yuan, Yonglong Chen, Jian Yuan and Jianwen Chen
Nanomaterials 2021, 11(5), 1248; https://doi.org/10.3390/nano11051248 - 10 May 2021
Cited by 458 | Viewed by 23291
Abstract
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, [...] Read more.
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors. Full article
Show Figures

Figure 1

32 pages, 23030 KB  
Article
Zones of PGE–Chromite Mineralization in Relation to Crystallization of the Pados-Tundra Ultramafic Complex, Serpentinite Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Andrey A. Nikiforov, Larisa P. Barkova, Vladimir N. Korolyuk and Robert F. Martin
Minerals 2021, 11(1), 68; https://doi.org/10.3390/min11010068 - 12 Jan 2021
Cited by 16 | Viewed by 4229
Abstract
The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, [...] Read more.
The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

17 pages, 4566 KB  
Article
Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis
by Chelladurai Karuppiah, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li and Chun-Chen Yang
Catalysts 2021, 11(1), 76; https://doi.org/10.3390/catal11010076 - 7 Jan 2021
Cited by 35 | Viewed by 5752
Abstract
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of [...] Read more.
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries. Full article
(This article belongs to the Special Issue Catalysts in Energy Applications)
Show Figures

Graphical abstract

18 pages, 9442 KB  
Review
Noble-Gas Chemistry More than Half a Century after the First Report of the Noble-Gas Compound
by Zoran Mazej
Molecules 2020, 25(13), 3014; https://doi.org/10.3390/molecules25133014 - 1 Jul 2020
Cited by 19 | Viewed by 7198
Abstract
Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the [...] Read more.
Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the laboratory use and in the industry. As a ligand it can coordinate to metal centers resulting in [M(XeF2)x]n+ salts. With strong Lewis acids, XeF2 acts as a fluoride ion donor forming [XeF]+ or [Xe2F3]+ salts. Latest examples are [Xe2F3][RuF6]·XeF2, [Xe2F3][RuF6] and [Xe2F3][IrF6]. Adducts NgF2·CrOF4 and NgF2·2CrOF4 (Ng = Xe, Kr) were synthesized and structurally characterized at low temperatures. The geometry of XeF6 was studied in solid argon and neon matrices. Xenon hexafluoride is a well-known fluoride ion donor forming various [XeF5]+ and [Xe2F11]+ salts. A large number of crystal structures of previously known or new [XeF5]+ and [Xe2F11]+ salts were reported, i.e., [Xe2F11][SbF6], [XeF5][SbF6], [XeF5][Sb2F11], [XeF5][BF4], [XeF5][TiF5], [XeF5]5[Ti10F45], [XeF5][Ti3F13], [XeF5]2[MnF6], [XeF5][MnF5], [XeF5]4[Mn8F36], [Xe2F11]2[SnF6], [Xe2F11]2[PbF6], [XeF5]4[Sn5F24], [XeF5][Xe2F11][CrVOF5]·2CrVIOF4, [XeF5]2[CrIVF6]·2CrVIOF4, [Xe2F11]2[CrIVF6], [XeF5]2[CrV2O2F8], [XeF5]2[CrV2O2F8]·2HF, [XeF5]2[CrV2O2F8]·2XeOF4, A[XeF5][SbF6]2 (A = Rb, Cs), Cs[XeF5][BixSb1-xF6]2 (x = ~0.37–0.39), NO2XeF5(SbF6)2, XeF5M(SbF6)3 (M = Ni, Mg, Zn, Co, Cu, Mn and Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Despite its extreme sensitivity, many new XeO3 adducts were synthesized, i.e., the 15-crown adduct of XeO3, adducts of XeO3 with triphenylphosphine oxide, dimethylsulfoxide and pyridine-N-oxide, and adducts between XeO3 and N-bases (pyridine and 4-dimethylaminopyridine). [Hg(KrF2)8][AsF6]2·2HF is a new example of a compound in which KrF2 serves as a ligand. Numerous new charged species of noble gases were reported (ArCH2+, ArOH+, [ArB3O4]+, [ArB3O5]+, [ArB4O6]+, [ArB5O7]+, [B12(CN)11Ne]). Molecular ion HeH+ was finally detected in interstellar space. The discoveries of Na2He and ArNi at high pressure were reported. Bonding motifs in noble-gas compounds are briefly commented on in the last paragraph of this review. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry)
Show Figures

Figure 1

Back to TopTop