Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (466)

Search Parameters:
Keywords = SESAME

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 590 KB  
Article
Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads
by Hiroharu Natsume and Shogo Okamoto
Foods 2025, 14(19), 3373; https://doi.org/10.3390/foods14193373 - 29 Sep 2025
Abstract
The temporal dominance of sensations (TDS) and temporal liking (TL) methods offer complementary insights into the evolution of sensory and hedonic responses during food consumption. This study investigates the feasibility of predicting TL curves for food pairings from their TDS profiles using reservoir [...] Read more.
The temporal dominance of sensations (TDS) and temporal liking (TL) methods offer complementary insights into the evolution of sensory and hedonic responses during food consumption. This study investigates the feasibility of predicting TL curves for food pairings from their TDS profiles using reservoir computing, a type of recurrent neural network. Participants evaluated eight samples—two crackers (plain, sesame), two spreads (peanut butter, strawberry jam), and their four binary combinations—performing both TDS and TL evaluations. This process yielded paired time-series data of TDS and TL curves. We trained various reservoir models under different conditions, including varying reservoir sizes (64, 128, 192, or 256 neurons) and the inclusion of auxiliary input dimensions, such as flags indicating the types of foods tasted. Our results show that models with minimal auxiliary inputs achieved the lowest root mean squared errors (RMSEs), with the best performance being an RMSE of 0.44 points on a 9-point liking scale between the observed and predicted TL curves. The ability to predict TL curves for food pairings holds some promise for reducing the need for extensive sensory evaluation, especially when a large number of food combinations are targeted. Full article
(This article belongs to the Section Food Systems)
Show Figures

Figure 1

30 pages, 3145 KB  
Systematic Review
A Comprehensive Systematic Review of Precision Planting Mechanisation for Sesame: Agronomic Challenges, Technological Advances, and Integration of Simulation-Based Optimisation
by Gowrishankaran Raveendran, Ramadas Narayanan, Jung-Hoon Sul and Tieneke Trotter
AgriEngineering 2025, 7(9), 309; https://doi.org/10.3390/agriengineering7090309 - 22 Sep 2025
Viewed by 303
Abstract
The mechanisation of sesame (Sesamum indicum L.) planting remains a significant challenge due to the crop’s small, fragile seeds and non-uniform shape, which hinder the effectiveness of standard seeding systems. Crop emergence and production are adversely affected by poor singulation and uneven [...] Read more.
The mechanisation of sesame (Sesamum indicum L.) planting remains a significant challenge due to the crop’s small, fragile seeds and non-uniform shape, which hinder the effectiveness of standard seeding systems. Crop emergence and production are adversely affected by poor singulation and uneven seed distribution, which are frequently caused by conventional and general-purpose planting equipment. For sesame, consistency in seed distribution and emergence is very important, necessitating careful consideration of agronomic conditions as well as seed properties. This study was conducted as a systematic review following the PRISMA 2020 guidelines to critically evaluate the existing literature on advanced planting methods that prioritise precision, efficiency, and seed protection. A comprehensive search was conducted across Scopus, Web of Science, and Google Scholar for peer-reviewed studies published from 2000 to 2025. Studies focused on the agronomic parameters of sesame, planting technologies, and/or simulation integration, such as Discrete Element Modelling (DEM), were included in this review, and studies unrelated to sesame planting or not available in full text were excluded. The findings from these studies were analysed to examine the interaction between seed metering mechanisms and seed morphology, specifically seed thickness and shape variability. Agronomic parameters such as optimal seed spacing, sowing depth, and population density are analysed to guide the development of effective planting systems. The review also evaluates limitations in existing mechanised approaches while highlighting innovations in precision planting technology. These include optimised seed plate designs, vacuum-assisted metering systems, and simulation tools such as DEM for performance prediction and system refinement. A total of 22 studies were included and analysed using systematic narrative synthesis, grouped into agronomical, technological, and simulation-based themes. The studies were screened for methodological clarity, and reference list screening was performed to reduce reporting bias. In conclusion, the findings of this research support the development of crop-specific planting strategies tailored to meet the unique requirements of sesame production. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

24 pages, 6611 KB  
Article
A Method for Sesame (Sesamum indicum L.) Organ Segmentation and Phenotypic Parameter Extraction Based on CAVF-PointNet++
by Xinyuan Wei, Qiang Wang, Kaixuan Li and Wuping Zhang
Plants 2025, 14(18), 2898; https://doi.org/10.3390/plants14182898 - 18 Sep 2025
Viewed by 306
Abstract
Efficient and non-destructive extraction of organ-level phenotypic parameters of sesame (Sesamum indicum L.) plants is a key bottleneck in current sesame phenotyping research. To address this issue, this study proposes a method for organ segmentation and phenotypic parameter extraction based on CAVF-PointNet++ [...] Read more.
Efficient and non-destructive extraction of organ-level phenotypic parameters of sesame (Sesamum indicum L.) plants is a key bottleneck in current sesame phenotyping research. To address this issue, this study proposes a method for organ segmentation and phenotypic parameter extraction based on CAVF-PointNet++ and geometric clustering. First, this method constructs a high-precision 3D point cloud using multi-view RGB image sequences. Based on the PointNet++ model, a CAVF-PointNet++ model is designed to perform feature learning on point cloud data and realize the automatic segmentation of stems, petioles, and leaves. Meanwhile, different leaves are segmented using curvature-density clustering technology. Based on the results of segmentation, this study extracted a total of six organ-level phenotypic parameters, including plant height, stem diameter, leaf length, leaf width, leaf angle, and leaf area. The experimental results show that in the segmentation tasks of stems, petioles, and leaves, the overall accuracy of CAVF-PointNet++ reaches 96.93%, and the mean intersection over union is 82.56%, which are 1.72% and 3.64% higher than those of PointNet++, demonstrating excellent segmentation performance. Compared with the results of manual segmentation of different leaves, the proposed clustering method achieves high levels in terms of precision, recall, and F1-score, and the segmentation results are highly consistent. In terms of phenotypic parameter measurement, the coefficients of determination between manual measurement values and algorithmic measurement values are 0.984, 0.926, 0.962, 0.942, 0.914, and 0.984 in sequence, with root-mean-square errors of 5.9 cm, 1.24 mm, 1.9 cm, 1.2 cm, 3.5°, and 6.22 cm2, respectively. The measurement results of the proposed method show a strong correlation with the actual values, providing strong technical support for sesame phenotyping research and precision agriculture. It is expected to provide reference and support for the automated 3D phenotypic analysis of other crops in the future. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

15 pages, 3045 KB  
Article
Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina
by Peimeng Sun, Luyang Song, Mengyuan Mu, Jiayi Ma, Xinyu Li, Kunni Tian, Mengyuan Zhang, Mingyue Zhang, Yuanyuan Zhang, Caiyi Wen, Jing Wang and Ying Zhao
J. Fungi 2025, 11(9), 675; https://doi.org/10.3390/jof11090675 - 12 Sep 2025
Viewed by 392
Abstract
Macrophomina phaseolina is a widely distributed soilborne phytopathogenic fungus that causes destructive diseases such as charcoal rot and stem canker, posing serious threats to crop yield and quality. In recent years, mycoviruses have gained attention as potential biological control agents. In this study, [...] Read more.
Macrophomina phaseolina is a widely distributed soilborne phytopathogenic fungus that causes destructive diseases such as charcoal rot and stem canker, posing serious threats to crop yield and quality. In recent years, mycoviruses have gained attention as potential biological control agents. In this study, a novel double-stranded RNA (dsRNA) virus was identified from M. phaseolina strain 22C-8, isolated from sesame (Sesamum indicum L.) charcoal rot samples in Fuyang, Anhui Province, China. The viral genome comprised four dsRNA segments, each encoding a single open reading frame (ORF) predicted to encode RNA-dependent RNA polymerase (RdRp), coat protein (CP), and two hypothetical proteins. Phylogenetic analysis classified the virus as a new member of the genus Betachrysovirus in the family Chrysoviridae, and it was designated Macrophomina phaseolina chrysovirus 2 (MpChrV2). Pathogenicity assays in sesame seedlings revealed that MpChrV2 infection significantly reduced the virulence of M. phaseolina strain 22C-8. In contrast, virus-free derivatives (22C-8-VF18), obtained via protoplast regeneration, caused more severe symptoms and exhibited enhanced growth rates, indicating that MpChrV2 alters fungal physiology and pathogenicity. These findings suggest that MpChrV2 possesses a typical hypovirulence phenotype and holds promise as a biocontrol agent for sesame charcoal rot. Full article
Show Figures

Figure 1

17 pages, 1248 KB  
Article
Lipids from Oilcakes—High Quality Ingredients for Functional Food Products
by Ancuța Petraru, Sonia Amariei and Lacrimioara Senila
Molecules 2025, 30(17), 3640; https://doi.org/10.3390/molecules30173640 - 6 Sep 2025
Viewed by 882
Abstract
Fatty acids (FAs) are vital for human nutrition and are classified into three categories (saturated, unsaturated, and trans). FAs have different physiological effects and can contribute to health problems in different ways. By-products from the oil industry are rich in bioactive compounds. These [...] Read more.
Fatty acids (FAs) are vital for human nutrition and are classified into three categories (saturated, unsaturated, and trans). FAs have different physiological effects and can contribute to health problems in different ways. By-products from the oil industry are rich in bioactive compounds. These make them useful for further utilization in food formulation. There is a quantity of residual oil in the oilcake. Analysis of the fatty acid composition shows that unsaturated fatty acids are predominant. The predominant fatty acids in oilcakes are arachidic (sunflower), oleic, elaidic (flax), linoleic (LA), and linolelaidic (hemp, rape, and sesame) acids. The favorable and ideal (within the regulatory recommendations) results for the n-6/n-3 ratios of 3:1 indicate the high nutritional profile with beneficial effects for the human body of the oilcakes. The hypocholesterolemic/hypercholesterolemic for all samples ranged from 4.52 to 116.06, while atherogenicity and thrombogenicity indexes ranged from 0.01 to 0.3. This is in line with the favorable values found in the literature benchmarks. Full article
Show Figures

Figure 1

29 pages, 4063 KB  
Review
Synergism of Synthetic Sulfonamides and Natural Antioxidants for the Management of Diabetes Mellitus Associated with Oxidative Stress
by Ancuța Dinu (Iacob), Luminita-Georgeta Confederat, Ionut Dragostin, Ionela Daniela Morariu, Dana Tutunaru and Oana-Maria Dragostin
Curr. Issues Mol. Biol. 2025, 47(9), 709; https://doi.org/10.3390/cimb47090709 - 1 Sep 2025
Viewed by 516
Abstract
In the context of expanding research on the development of compounds with multiple therapeutic actions, this study aims to consolidate findings from the last decade on new synthetic sulfonamide therapies for managing type 2 diabetes mellitus (T2DM) associated with oxidative stress (OS). The [...] Read more.
In the context of expanding research on the development of compounds with multiple therapeutic actions, this study aims to consolidate findings from the last decade on new synthetic sulfonamide therapies for managing type 2 diabetes mellitus (T2DM) associated with oxidative stress (OS). The novelty of this synthesis study lies in the synergistic approach of antidiabetic molecular targets with those against oxidative stress, having the sulfonylurea class as a common point. By utilizing international databases, we identified and selected conclusive studies for this review. Promising results have been achieved through dual therapies that combine antioxidants (such as sesame oil, naringin, alpha-lipoic acid, resveratrol, and quercetin) with sulfonylureas (including glipizide, glibenclamide, gliclazide, and glimepiride). Additionally, triple therapies that associated sulfonylureas with other classes of antidiabetic medications have also shown encouraging outcomes. These findings are supported by in vivo tests conducted on experimental laboratory models as well as on human subjects. These recent advancements in synthetic sulfonamide research point to a promising future in diabetes management, especially considering the dual functionalities demonstrated by in vivo studies—specifically, their antidiabetic and antioxidant effects. Moreover, the synergy between sulfonamides and other antioxidant agents represents a beneficial strategy for optimizing future chemical structures, potentially allowing for their integration into personalized treatments aimed at combating T2DM. Full article
(This article belongs to the Special Issue Advances in Molecular Therapies and Disease Associations in Diabetes)
Show Figures

Figure 1

12 pages, 1852 KB  
Article
Genome Wide Identification of Sesame Dof Transcription Factors and Functional Analysis of SiDof8, SiDof10 and SiDof34 in Fatty Acid Synthesis
by Feicui Zhang, Shanyu Chen, Feiling Song, Limin Shi, Xuegao Lv, Zhengmei Zhu and Huabing Lu
Curr. Issues Mol. Biol. 2025, 47(9), 700; https://doi.org/10.3390/cimb47090700 - 30 Aug 2025
Viewed by 416
Abstract
The Dof (DNA binding with one finger) protein is one of the unique transcription factors in plants, and it plays an important role in plant growth and stress response. Sesame is an oil-bearing crop with high oil content and rich nutrition. In this [...] Read more.
The Dof (DNA binding with one finger) protein is one of the unique transcription factors in plants, and it plays an important role in plant growth and stress response. Sesame is an oil-bearing crop with high oil content and rich nutrition. In this study, 34 Dof genes were identified in the sesame genome using bioinformatics technology, and their physicochemical properties, gene structure, conserved motifs, tissue-specific expression and functions in fatty acid synthesis were preliminarily analyzed. The results showed that although there were differences in sequence length, molecular weight and isoelectric point, SiDofs all contained a conservative zinc finger structure, which could be divided into three categories in phylogeny. All 34 SiDof genes contain 1–2 exons, and the conserved motifs among subfamilies are similar. Tissue-specific expression analysis showed that the expression levels of SiDof8, SiDof10 and SiDof34 were the highest in seeds 24 days after pollination. Overexpression of SiDof8, SiDof10 and SiDof34 could significantly increase the contents of C18:0, C18:1, C18:2 and C18:3, and all of them are located in the nucleus. There were Dof DNA binding elements in the promoter region of fatty acid synthesis genes. These results provide a theoretical basis for further study on the function of the sesame Dof genes and biological breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

23 pages, 2247 KB  
Review
Comparison of the Effectiveness Differences between Western and Chinese Medicinal Ointments against Eczema
by Siu Kan Law, Yanping Wang and Xiao Xiao Wu
Pharmaceuticals 2025, 18(9), 1248; https://doi.org/10.3390/ph18091248 - 22 Aug 2025
Viewed by 908
Abstract
Eczema is the most common skin disease among Hong Kong’s adults and children, affecting an estimated 30% of the total population. Western and Chinese medicinal ointments are the usual treatment for eczema. Conventional Western medicinal ointments are topical corticosteroids and non-steroidal agents. Eczema [...] Read more.
Eczema is the most common skin disease among Hong Kong’s adults and children, affecting an estimated 30% of the total population. Western and Chinese medicinal ointments are the usual treatment for eczema. Conventional Western medicinal ointments are topical corticosteroids and non-steroidal agents. Eczema skin products include “Aveeno Parabens Lotion”, “Cerave Moisturizing Cream”, and “Cetaphil Lotion”. However, these are not a long-term solution for managing significant erythema. Chinese medicinal ointments are based on adjusting the formula, including the ingredients and amount, to address an individual’s skin condition and other factors that may be worsening symptoms. This approach aims to regulate the immune system and make it less reactive to environmental and food allergies. This approach is mainly for local topical use. The ingredients of eczema skin products should include Coptis chinensis Franch, Phellodendron chinense Schneid, Angelica sinensis (Oliv.) Diels, Rehmannia glutinosa Libosch, Curcuma longa L., and sesame oil. Chinese medicinal ointments are natural ingredients, personalized formulas, and concerned with holistic healing, while Western medicinal ointments provide fast-acting relief, targeted action, and a standardized dosage. Methods: Nine electronic databases, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and the China National Knowledge Infrastructure (CNKI), were searched mainly within the past twenty years and without any language restrictions. The inclusion criteria were the keywords “Western medicine and ointment”, “Chinese medicine and ointment”, and “Western and Chinese medicines and ointment”. Differences in effectiveness between Western and Chinese ointments were evaluated to determine if they had functions against eczema. This review included an analysis and summary of all relevant papers. Results: Western medicinal ointments are topical corticosteroids, and they exert their pharmacological activities via many mechanisms, including anti-inflammatory, immunosuppressive, antiproliferative, and vasoconstrictive effects on eczema. Similarly, Chinese medicinal ointments have the same pharmacological functions, but they may focus on the immune system for the treatment of inflammatory and skin conditions, including erythema, edema, dryness, desquamation, and callus exfoliation. Conclusion: Based on the clinical research, the effectiveness rate of integrated Chinese and Western medicines was 88%, which was greater than the 70% rate for using Western medicine alone to treat eczema. Western and Chinese medicinal ointments have different active ingredients with advantages and disadvantages for eczema or when acting as skin care products. The most important thing is knowing “How” to use Western and Chinese medicinal ointments properly, especially for some formulations of Chinese ointments. It may be beneficial to consider the pharmacokinetic studies of herbal ingredients, which offer personalized formulas tailored to individual body constitutions and conditions, as well as to emphasize holistic healing, addressing both symptoms and underlying imbalances in the body. Much more work needs to be carried out, such as safety assessments of these ointments for use as skin care products for eczema. Full article
(This article belongs to the Special Issue Natural Products for Skin Applications)
Show Figures

Graphical abstract

16 pages, 2172 KB  
Article
Systematic Purification of Peptides with In Vitro Antioxidant, Antihyperglycemic, Anti-Obesity, and Antidiabetic Potential Released from Sesame Byproduct Proteins
by Ulises Alan Mendoza-Barajas, Martha Elena Vázquez-Ontiveros, Jennifer Vianey Félix-Medina, Rosalio Velarde-Barraza, Jesús Christian Grimaldi-Olivas, Cesar Noe Badilla-Medina, Jesús Mateo Amillano-Cisneros and María Fernanda Quintero-Soto
Nutraceuticals 2025, 5(3), 23; https://doi.org/10.3390/nutraceuticals5030023 - 22 Aug 2025
Viewed by 1062
Abstract
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These [...] Read more.
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These fractions were then enzymatically hydrolyzed with alcalase, yielding high soluble protein content (>90%) and hydrolysis degrees ranging from 34.66 to 45.10%. The hydrolysates were fractionated by molecular weight (<5 kDa, 3–5 kDa, 1–3 kDa, and <1 kDa). These fractions demonstrated potential for inhibiting the DPPH radical (25.19–95.79%) and the α-glucosidase enzyme (40.14–55.63%), particularly the fractions with molecular weight <1 kDa. We identified 28 peptides, with molecular weights between 332.20 and 1096.63 Da, which showed potent antioxidant activities (IC50 = 90.18 µg/mL), as well as inhibitory effects on key enzymes such as α-glucosidase (IC50 = 61.48 µg/mL), dipeptidyl peptidase IV (IC50 = 12.12 µg/mL), and pancreatic lipase (IC50 = 6.14 mg/mL). These results demonstrate the antioxidant, antihyperglycemic, antidiabetic, and anti-obesity potential of SOEB peptides, highlighting their use in the formulation of new functional foods or nutraceuticals. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

26 pages, 931 KB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Viewed by 930
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

16 pages, 1167 KB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 671
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

27 pages, 4169 KB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 2442
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

27 pages, 2012 KB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 631
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

10 pages, 586 KB  
Article
Possession of Injectable Epinephrine Among Children with Parent-Reported Food Allergies in Saudi Arabia
by Amer Khojah, Ameera Bukhari, Ibrahim Alibrahim, Maria AlSulami, Turki Alotaibi, Ruba Alotaibi, Elaf Bahareth, Inam Abulreish, Sumayyah Alsuruji, Raghad Rajab, Loie Goronfolah, Mohammad Binhussein, Adeeb Bulkhi, Saddiq Habiballah and Imad Khojah
J. Clin. Med. 2025, 14(15), 5274; https://doi.org/10.3390/jcm14155274 - 25 Jul 2025
Viewed by 587
Abstract
Background/Objectives: A food allergy (FA) is an immune-mediated hypersensitivity reaction to specific food. FA reactions vary from mild to life-threatening anaphylaxis. Despite the effectiveness of epinephrine auto-injectors (EAIs), barriers such as lack of knowledge, limited access, and fear of needles hinder their [...] Read more.
Background/Objectives: A food allergy (FA) is an immune-mediated hypersensitivity reaction to specific food. FA reactions vary from mild to life-threatening anaphylaxis. Despite the effectiveness of epinephrine auto-injectors (EAIs), barriers such as lack of knowledge, limited access, and fear of needles hinder their use. This study explores EAI possession among children with parent-reported food allergies in Saudi Arabia. Methods: A cross-sectional study conducted from October 2023 to February 2024 included 296 parents of children with reported food allergies under the age of 18. Data were collected through a validated self-administered questionnaire. Results: Among 2102 respondents, 296 (14.1%) reported having a child with a food allergy. Most respondents were female (70%), with asthma being the most common comorbidity (26%). Common allergens included eggs, tree nuts, peanuts, milk, and sesame. Only 23.3% of children had an EAI. Higher EAI possession was associated with parental education, maternal allergy history, and access to specialist care. Conclusions: EAI possession among Saudi children with food allergies is suboptimal. Targeted educational interventions, increased access to allergists, and comprehensive management plans are essential to improve preparedness for anaphylaxis. Full article
(This article belongs to the Special Issue Allergic Diseases Across the Lifespan: From Infancy to Old Age)
Show Figures

Figure 1

21 pages, 1945 KB  
Article
Discovery of Species-Specific Peptide Markers for Superseed Authentication Using Targeted LC-MS/MS Proteomics
by Sorel Tchewonpi Sagu, Beatrice Schnepf, Peter Stenzel, Kapil Nichani, Alexander Erban, Joachim Kopka, Harshadrai M. Rawel and Andrea Henze
Molecules 2025, 30(14), 2993; https://doi.org/10.3390/molecules30142993 - 16 Jul 2025
Viewed by 615
Abstract
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be [...] Read more.
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be used as markers to distinguish superseed species was investigated. Ammonium bicarbonate/urea (Ambi/urea) extraction, sodium dodecyl sulfate (SDS) buffer and trichloroacetic acid (TCA) precipitation were initially implemented and, based on the level and composition of the extracted proteins, the SDS buffer protocol was selected. Electrophoresis analysis revealed consistent protein profiles between biological replicates from each of the eleven seed species, confirming the reproducibility of the SDS buffer protocol. Targeted mass spectrometry successfully identified species-specific peptide markers for six of eleven superseeds investigated, including peptides from conlinins in flaxseed (WVQQAK), 11S globulins in sesame (LVYIER), oleosin in quinoa (DVGQTIESK), agglutin-like lectins in amaranth (CAGVSVIR), as well as cupin-like proteins in poppy seeds (INIVNSQK) and edestins in hemp seeds (FLQLSAER). Moreover, proteome cross-analysis allowed us to disqualify the isomeric peptide LTALEPTNR from 11S globulins present in amaranth and quinoa. However, no reliable markers were identified for chia, canihua, basil, black cumin, and psyllium seeds under current conditions. While this targeted proteomics approach shows promise for superseed authentication, comprehensive method validation and alternative strategies for marker-deficient species are required before routine implementation. Full article
(This article belongs to the Special Issue Application of Analytical Chemistry in Food Science)
Show Figures

Graphical abstract

Back to TopTop