Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = SOFC electrolytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3663 KB  
Article
Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells
by Haipeng Zhang, Shuai Luo, Pinghui Lin, Xu Lin, Xianghui Liu, Jiaqi Qian, Chenghui Lin, Zixiang Cheng, Na Ai, San Ping Jiang and Kongfa Chen
Catalysts 2025, 15(9), 832; https://doi.org/10.3390/catal15090832 - 1 Sep 2025
Viewed by 598
Abstract
The chromium-free oxide precursor strategy effectively avoids chromium volatilization and electrode contamination in metal-supported solid oxide fuel cells (MS-SOFCs), while enabling high-temperature co-sintering in air to simplify the fabrication process. However, the drastic microstructural coarsening, dimensional shrinkage, and thermal expansion mismatch with adjacent [...] Read more.
The chromium-free oxide precursor strategy effectively avoids chromium volatilization and electrode contamination in metal-supported solid oxide fuel cells (MS-SOFCs), while enabling high-temperature co-sintering in air to simplify the fabrication process. However, the drastic microstructural coarsening, dimensional shrinkage, and thermal expansion mismatch with adjacent components of such substrates during high-temperature sintering, reduction, and thermal cycling collectively contribute to the interfacial instability and structural degradation of MS-SOFCs. Herein, we address these issues by incorporating a small amount of Gd0.1Ce0.9O1.95 (GDC) to the NiO-Fe2O3 (NFO) substrate. The incorporation of GDC significantly enhances the sintering compatibility and reduction stability of the MS-SOFCs, alleviating the stress-induced warping and distortion. Moreover, the GDC phase has a pinning effect to suppressing the coarsening of the substrates during high-temperature sintering and reduction processes, enhancing mechanical integrity and structural robustness of the single cell. With 15 wt% GDC incorporated into the NiFe substrate, the corresponding MS-SOFC with GDC electrolyte film achieves a peak power density of 0.56 W cm−2 at 600 °C, along with markedly improved structural integrity and operational reliability. This work demonstrates a viable pathway for designing heterophase-engineered supports with matched thermomechanical properties, offering promising prospects for enhancing the durability of MS-SOFCs. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

17 pages, 3417 KB  
Article
Graphene/Zirconia Composites for Components in Solid Oxide Fuel Cells: Microstructure and Electrical Conductivity
by Francisco J. Coto-Ruiz, Ana de la Cruz-Blanco, Rocío Moriche, Ana Morales-Rodríguez and Rosalía Poyato
Nanomaterials 2025, 15(17), 1314; https://doi.org/10.3390/nano15171314 - 26 Aug 2025
Viewed by 743
Abstract
In this paper, 8 mol% yttria cubic stabilized zirconia (8YCSZ) composites with reduced graphene oxide (rGO) contents up to 10 vol% were consolidated by spark plasma sintering (SPS) at two different temperatures with the aim of evaluating the relationship of their electrical properties [...] Read more.
In this paper, 8 mol% yttria cubic stabilized zirconia (8YCSZ) composites with reduced graphene oxide (rGO) contents up to 10 vol% were consolidated by spark plasma sintering (SPS) at two different temperatures with the aim of evaluating the relationship of their electrical properties with the graphene content, the rGO crystallinity, and the microstructural features. Successful in situ reduction of GO was accomplished during SPS, and highly densified composites with homogeneous rGO distribution, even at the highest contents, were obtained. The electrical properties were analyzed using impedance spectroscopy. Measurements were taken up to 700 °C, revealing an inductive response for the composites with 5 and 10 vol% rGO and a capacitive response for the composites with 1 and 2.5 vol% rGO. The results indicate that, along with the ionic conduction typical of zirconia, there are additional polarization mechanisms associated with the presence of graphene at ceramic grain boundaries that substantially modify the impedance response. A minor electronic conductivity contribution was identified in the composites below the percolation threshold. These characteristics make the 8YCSZ composites promising candidates for application as SOFC components, as ceramic interconnects when the graphene content is above the percolation threshold, or as electrolytes when the graphene content is below this limit. Full article
Show Figures

Figure 1

8 pages, 971 KB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 373
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

18 pages, 5941 KB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 545
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

19 pages, 1487 KB  
Review
Progress in Materials and Metal Substrates for Solid Oxide Fuel Cells
by Young-Wan Ju
Energies 2025, 18(13), 3379; https://doi.org/10.3390/en18133379 - 27 Jun 2025
Viewed by 789
Abstract
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and [...] Read more.
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and solid oxide electrolytes and ceramic cathodes have been used. SOFCs normally operate at high temperatures because of the lower ion conductivity of ceramic components at low temperatures, and they have weaknesses in terms of mechanical strength and durability against thermal shock originating from the properties of ceramic materials. To solve these problems, metal-supported solid oxide fuel cells (MS-SOFCs) have been designed. SOFCs using metal substrates, such as Ni-based and Cr-based alloys, provide significant advantages, such as a low material cost, ruggedness, and tolerance to rapid thermal cycling. In this article, SOFCs are introduced briefly, and the types of metal substrate used in MS-SOFCs, as well as the advantages and disadvantages of each metal support, are reviewed. Full article
Show Figures

Figure 1

17 pages, 5119 KB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 591
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

24 pages, 5102 KB  
Article
Electrocatalytic Investigation of the SOFC Internal CH4 Dry Reforming with Modified Ni/GDC: Effect of Au Content on the Performance Enhancement by Fe-Au Doping
by Evangelia Ioannidou, Stylianos G. Neophytides and Dimitrios K. Niakolas
Catalysts 2025, 15(7), 618; https://doi.org/10.3390/catal15070618 - 23 Jun 2025
Viewed by 575
Abstract
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect [...] Read more.
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect of X wt.% of Au loading (where X = 1 or 3 wt.%) in binary Au-Ni/GDC and ternary 0.5 wt.% Fe-Au-Ni/GDC fuel electrodes. The investigation combined i-V, Impedance Spectroscopy and Gas Chromatography electrocatalytic measurements. It was found that modification with 0.5Fe-Au enhanced significantly the electrocatalytic activity of Ni/GDC for the IDRM reaction, whereas the low wt.% Au content had the most promoting effect. The positive interaction of 0.5 wt.% Fe with 1 wt.% Au increased the conductivity of Ni/GDC and enhanced the corresponding IDRM charge transfer electrochemical processes, especially those in the intermediate frequency region. Comparative long-term measurements, between cells comprising Ni/GDC and 0.5Fe-1Au-Ni/GDC, highlighted the significantly higher IDRM electrocatalytic activity of the modified electrode. The latter operated for almost twice the time (280 h instead of 160 h for Ni/GDC) with a lower degradation rate (0.44 mV/h instead of 0.51 mV/h). Ni/GDC degradation was ascribed to inhibited charge transfer processes in the intermediate frequencies region and to deteriorated ohmic resistance. Stoichiometric analysis on the (post-mortem) surface state of each fuel electrode showed that the wt.% content of reduced nickel on Ni/GDC was lower, compared to 0.5Fe-1Au-Ni/GDC, verifying the lower re-oxidation degree of the latter. This was further correlated to the hindered H2O production during IDRM operation, due to the lower selectivity of the modified electrode for the non-desired RWGS reaction. Full article
Show Figures

Graphical abstract

22 pages, 4523 KB  
Article
Entropy Generation Analysis and Performance Comparison of a Solid Oxide Fuel Cell with an Embedded Porous Pipe Inside of a Mono-Block-Layer-Build Geometry and a Planar Geometry with Trapezoidal Baffles
by J. J. Ramírez-Minguela, J. M. Mendoza-Miranda, V. Pérez-García, J. L. Rodríguez-Muñoz, Z. Gamiño-Arroyo, J. A. Alfaro-Ayala, S. Alonso-Romero and T. Pérez-Segura
Entropy 2025, 27(7), 659; https://doi.org/10.3390/e27070659 - 20 Jun 2025
Viewed by 494
Abstract
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the [...] Read more.
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the fuel and air channels (P-TBFA SOFC). The results for power density at different current densities are discussed. Also, a comparison of the field of species concentration, temperature, and current density on the electrode–electrolyte interface is analyzed at a defined power density. Finally, a comparison of maps of the local entropy generation rate and the global entropy generation due to heat transfer, fluid flow, mass transfer, activation loss, and ohmic loss are studied. The results show that the MOLB-PPA SOFC reaches a 7.5% higher power density than the P-TBFA SOFC. Furthermore, the P-TBFA SOFC has a more homogeneous temperature distribution than the MOLB-type SOFC. The entropy generation analysis indicates that the MOLB-PPA SOFC exhibits lower global entropy generation due to heat transfer compared to the P-TBFA SOFC. The entropy generation due to ohmic losses is predominant for both geometries. Finally, the total irreversibilities are 24.75% higher in the P-TBFA SOFC than in the MOLB-PPA SOFC. Full article
(This article belongs to the Special Issue Advances in Entropy and Computational Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

33 pages, 19731 KB  
Article
Comparative Study of Physicochemical Properties of Biochar Samples Derived from Nutshells as a Solid Fuel for Direct Carbon Solid Oxide Fuel Cells
by Magdalena Dudek, Bartosz Adamczyk, Anita Zych, Katarzyna Król, Przemysław Grzywacz, Krystian Sokołowski, Krzysztof Mech, Maciej Sitarz, Piotr Jeleń, Magdalena Ziąbka, Maja Mroczkowska-Szerszeń, Małgorzata Witkowska and Joanna Kowalska
Materials 2025, 18(9), 2112; https://doi.org/10.3390/ma18092112 - 4 May 2025
Viewed by 920
Abstract
This paper presents the results of an investigation into the effect of the physicochemical properties of carbon chars (biochars) on the performance of direct carbon solid oxide fuel cells (DC-SOFCs). Biochars were obtained from walnut, coconut, pistachio, hazelnut and peanut shells by pyrolysis [...] Read more.
This paper presents the results of an investigation into the effect of the physicochemical properties of carbon chars (biochars) on the performance of direct carbon solid oxide fuel cells (DC-SOFCs). Biochars were obtained from walnut, coconut, pistachio, hazelnut and peanut shells by pyrolysis at a temperature of 850 °C. The results of structural studies conducted using X-ray diffraction and Raman spectroscopy reflected a low degree of graphitisation of carbon particles. Biochar derived from walnut shells is characterised by a relatively uniform content of alkali elements, such as sodium, potassium, calcium, magnesium and iron, which are natural components of the mineral residue and act as catalysts for the Boudouard reaction. This study of gasification of biochar samples in a CO2 atmosphere recorded that the highest conversion rate from solid phase to gaseous phase was for the biochar sample produced from walnut shells. The superior properties of this sample are directly connected to structural features, as well as to the random distribution of alkali elements. DC-SOFCs involving 10 mol% of Sc2O3, 1 mol% of CeO2, 89 mol% of ZrO2 (10S1CeZ) or 8 mol% of Y2O3 in ZrO2 (8YSZ) were used as both solid oxide electrolytes and components of the anode electrode. It was found that the highest electrochemical power output (Pmax) was achieved for DC-SOFCs fuelled by biochar from walnut shells, with around 103 mW/cm2 obtained for such DC-SOFCs involving 10S1CeZ electrolytes. Full article
Show Figures

Figure 1

29 pages, 3880 KB  
Review
Comparative Electrochemical Performance of Solid Oxide Fuel Cells: Hydrogen vs. Ammonia Fuels—A Mini Review
by Lina Hamid, Omer Elmutasim, Dattatray S. Dhawale, Sarbjit Giddey and Gary Paul
Processes 2025, 13(4), 1145; https://doi.org/10.3390/pr13041145 - 10 Apr 2025
Cited by 3 | Viewed by 1729
Abstract
Solid oxide fuel cells (SOFCs) have garnered significant attention as a promising technology for clean and efficient power generation due to their ability to utilise renewable fuels such as hydrogen and ammonia. As carbon-free energy carriers, hydrogen and ammonia are expected to play [...] Read more.
Solid oxide fuel cells (SOFCs) have garnered significant attention as a promising technology for clean and efficient power generation due to their ability to utilise renewable fuels such as hydrogen and ammonia. As carbon-free energy carriers, hydrogen and ammonia are expected to play a pivotal role in achieving net-zero emissions. However, a critical research question remains: how does the electrochemical performance of SOFCs compare when fuelled by hydrogen vs. ammonia, and what are the implications for their practical application in power generation? This mini-review paper is premised on the hypothesis that while hydrogen-fuelled SOFCs currently demonstrate superior stability and performance at low and high temperatures, ammonia-fuelled SOFCs offer unique advantages, such as higher electrical efficiencies and improved fuel utilisation. These benefits make ammonia a viable alternative fuel source for SOFCs, particularly at elevated temperatures. To address this, the mini-review paper provides a comprehensive comparative analysis of the electrochemical performance of SOFCs under direct hydrogen and ammonia fuels, focusing on key parameters such as open-circuit voltage (OCV), power density, electrochemical impedance spectroscopy, fuel utilisation, stability, and electrical efficiency. Recent advances in electrode materials, electrolytes, fabrication techniques, and cell structures are also highlighted. Through an extensive literature survey, it is found that hydrogen-fuelled SOFCs exhibit higher stability and are less affected by temperature cycling. In contrast, ammonia-fuelled SOFCs achieve higher OCVs (by 7%) and power densities (1880 mW/cm2 vs. 1330 mW/cm2 for hydrogen) at 650 °C, along with 6% higher electrical efficiency. Despite these advantages, ammonia-fuelled SOFCs face challenges such as NOx emissions, nitride formation, environmental impact, and OCV stabilisation, which are discussed alongside potential solutions. This mini review aims to provide insights into the future direction of SOFC research, emphasising the need for further exploration of ammonia as a sustainable fuel alternative. Full article
(This article belongs to the Special Issue Advances in Solid Oxide Cells (SOCs): Performance and Reliability)
Show Figures

Figure 1

13 pages, 8870 KB  
Article
Ni-Doped Pr0.5Ba0.5CoO3+δ Perovskite with Low Polarization Resistance and Thermal Expansivity as a Cathode Material for Solid Oxide Fuel Cells
by Runze Sun, Songbo Li, Lele Gao, Shengli An, Zhen Yan, Huihui Cao, Qiming Guo and Mengxin Li
Molecules 2025, 30(7), 1482; https://doi.org/10.3390/molecules30071482 - 27 Mar 2025
Viewed by 740
Abstract
Solid oxide fuel cells (SOFCs) have become promising devices for converting chemical energy into electrical energy. Altering the microstructure of cathode materials to enhance the activity and stability of the oxygen reduction reaction is particularly important. Herein, Pr0.5Ba0.5Co1−X [...] Read more.
Solid oxide fuel cells (SOFCs) have become promising devices for converting chemical energy into electrical energy. Altering the microstructure of cathode materials to enhance the activity and stability of the oxygen reduction reaction is particularly important. Herein, Pr0.5Ba0.5Co1−XNiXO3+δ with a tetragonal perovskite structure was synthesized through the sol–gel method. The polarization resistance of the symmetrical half-cell with Pr0.5Ba0.5Co0.9Ni0.1O3+δ as the cathode was 0.041 Ω·cm2 at 800 °C and 0.118 Ω·cm2 lower than that of the symmetrical cell with Pr0.5Ba0.5CoO3+δ as the cathode, indicating that the Pr0.5Ba0.5Co1−XNiXO3+δ cathode material had high catalytic activity during the electrochemical reaction. The results of electron paramagnetic resonance revealed that the concentration of oxygen vacancies increased as the Ni doping amount increased to 0.15. As a result of the increase in the Ni doping amount, the thermal expansion coefficient of the Pr0.5Ba0.5CoO3+δ cathode material was effectively reduced, resulting in improved matching between the cathode and electrolyte material. The power density of the single cell increased by 69 mW·cm−2. Therefore, Pr0.5Ba0.5Co1−XNiXO3+δ is a promising candidate cathode material for high-performance SOFCs. Full article
(This article belongs to the Collection Green Energy and Environmental Materials)
Show Figures

Figure 1

9 pages, 687 KB  
Proceeding Paper
Dynamic Modeling of Fuel Cells for Applications in Aviation
by Niclas A. Dotzauer
Eng. Proc. 2025, 90(1), 68; https://doi.org/10.3390/engproc2025090068 - 20 Mar 2025
Cited by 1 | Viewed by 646
Abstract
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a [...] Read more.
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a dynamic fuel cell model for simulations of the powertrain. The Modelica language together with the ThermoFluidStream (TFS) library from the German Aerospace Center (DLR) provided a suitable framework. The fuel cell model takes into account the electrochemical as well as thermodynamic behavior. Hence, the proposed multi-physics model allows simulating the whole fuel cell system, from the hydrogen tank to the electric grid. Under certain simplifications, this enables performing mission simulations of the complete powertrain of future aircraft. As such, polymer electrolyte membrane (PEM) fuel cells and solid oxide fuel cells (SOFC) were considered. The fuel cell models are checked for plausibility in a simple test case against data from the literature. Furthermore, two setups of possible applications are introduced: one for each fuel cell type, which come from two projects. The preliminary control systems of these architectures are presented. Afterwards, the first results of the fuel cell systems are discussed. These results show that the models ran robustly in various environments and operational states. They provided the desired accuracy to predict the behavior of a fuel cell, while maintaining low CPU times and being capable of enabling real-time simulations in the future. Full article
Show Figures

Figure 1

17 pages, 10427 KB  
Article
Analysis of Electrochemical Properties of LT-SOFCs According to Thickness of PrOx Cathode Interlayer
by Ji-Woong Jeon, Jun-Geon Park, Geon-Hyeop Kim, Seung-Heon Lee, Jeong-Woo Shin and Gu-Young Cho
Sustainability 2025, 17(4), 1403; https://doi.org/10.3390/su17041403 - 8 Feb 2025
Viewed by 1899
Abstract
Solid oxide fuel cells (SOFCs) are attracting attention as an eco-friendly power source because they show high power density. However, SOFC requires a high-temperature environment of 800 °C or higher, and accordingly, the problem of thermal stability of the material constituting SOFC has [...] Read more.
Solid oxide fuel cells (SOFCs) are attracting attention as an eco-friendly power source because they show high power density. However, SOFC requires a high-temperature environment of 800 °C or higher, and accordingly, the problem of thermal stability of the material constituting SOFC has been raised. On the other hand, low-temperature solid oxide fuel cells (LT-SOFCs) research is steadily progressing to improve the electrochemical performance at low temperatures by improving the oxygen reduction reaction of the cathode by applying a cathode interlayer of various materials. In this study, LT-SOFCs were manufactured and electrochemically evaluated using praseodymium oxide (PrOx) as a cathode interlayer. Scandium Stabilized Zirconia (ScSZ) pellets were used as electrolyte support for LT-SOFC, and PrOx was deposited by various thicknesses as a cathode interlayer on ScSZ pellets by a sputtering process. Pt and Ni were deposited under the same process conditions for the cathode and anode, respectively. To analyze the thin-film characteristics of the PrOx cathode interlayer, SEM (Scanning Electron Microscopy), X-ray Diffraction (XRD), and XPS (X-ray Photoelectron Spectroscopy) were analyzed. The electrochemical characteristics of LT-SOFCs were evaluated by electrochemical impedance spectroscopy (EIS). Hydrogen was supplied to the anode at the flow rate of 50 sccm, and the performance of LT-SOFC was evaluated at 500 °C by exposing the cathode to the atmosphere. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 3662 KB  
Article
Valence Variability Induced in SrMoO₃ Perovskite by Mn Doping: Evaluation of a New Family of Anodes for Solid-Oxide Fuel Cells
by Lucía Sánchez de Bustamante, Romualdo Santos Silva, José Luis Martínez, María Teresa Fernández-Díaz, Ainara Aguadero and José Antonio Alonso
Materials 2025, 18(3), 542; https://doi.org/10.3390/ma18030542 - 24 Jan 2025
Cited by 3 | Viewed by 1375
Abstract
We report on a series of SrMo1−xMnxO3−δ perovskite oxides designed as potential anode materials for solid oxide fuel cells (SOFCs). These materials were synthesized using a citrate method, yielding scheelite-type precursors with nominal SrMo1−xMnxO [...] Read more.
We report on a series of SrMo1−xMnxO3−δ perovskite oxides designed as potential anode materials for solid oxide fuel cells (SOFCs). These materials were synthesized using a citrate method, yielding scheelite-type precursors with nominal SrMo1−xMnxO4 compositions, which were further reduced to obtain the active perovskite oxides. Their structural evolution was examined through X-ray diffraction (XRD) and neutron powder diffraction (NPD). These techniques provided insights into the crystallographic changes upon Mn doping, revealing key factors influencing ionic conductivity. Whereas the oxidized scheelite precursors are tetragonal, space group I41/a, the reduced perovskite specimens are cubic, space group Pm-3m, and show the conspicuous absence of oxygen vacancies, even at the highest temperature of 800 °C. The transport properties were analyzed through electrical conductivity measurements, exhibiting a metallic-like behavior. Thermogravimetric analysis (TGA) and dilatometry give insights into the thermal stability and expansion behavior, essential for SOFC operation. Test single SOFCs were built in an electrolyte-supported configuration, on LSGM pellets of 300 μm thickness, assessing the performance of the title materials as anodes. This work emphasizes the critical relationship between the crystal structure and its electrochemical behavior, providing a deeper understanding of how doping strategies can optimize fuel cell performance. Full article
(This article belongs to the Special Issue Development of Advanced Materials for Energy Conversion)
Show Figures

Figure 1

11 pages, 3009 KB  
Article
Hybridizing Fabrications of Gd-CeO2 Thin Films Prepared by EPD and SILAR-A+ for Solid Electrolytes
by Taeyoon Kim, Yun Bin Kim, Sungjun Yang and Sangmoon Park
Molecules 2025, 30(3), 456; https://doi.org/10.3390/molecules30030456 - 21 Jan 2025
Cited by 1 | Viewed by 1162
Abstract
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2− [...] Read more.
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2−x/2 solid solution was synthesized using hydrothermal (HY) and solid-state (SS) procedures to produce high-quality GDC nanoparticles suitable for EPD fabrication. The crystalline structure, cell parameters, and phases of the GDC products were analyzed using X-ray diffraction. Variations in oxygen vacancy concentrations in the GDC samples were achieved through the two synthetic methods. The ionic conductivities of pressed pellets from the HY, SS, and commercial G0.2DC samples, measured at 150 °C, were 0.6 × 10−6, 2.6 × 10−6, and 2.9 × 10−6 S/cm, respectively. These values were determined using electrochemical impedance spectroscopy (EIS) with a simplified equivalent circuit method. The morphologies of G0.2DC thin films prepared via EPD and SILAR-A+ processes were characterized, with particular attention to surface cracking. Crack-free GDC thin films, approximately 730–1200 nm thick, were successfully fabricated on conductive substrates through the hybridization of EPD and SILAR-A+, followed by hydrothermal annealing. EIS and ionic conductivity (1.39 × 10−9 S/cm) measurements of the G0.2DC thin films with thicknesses of 733 nm were performed at 300 °C. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

Back to TopTop