Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = SPAC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3385 KiB  
Article
Development and Characterization of Polymeric Films Loaded with Terbinafine for Fungal Infection Treatment
by Gabriela Biliuta, Simona Petronela Gherman, Raluca Ioana Baron, Alexandra Bargan, Lacramioara Ochiuz, Cristina Gabriela Tuchilus, Adrian Florin Spac and Daniela Elena Zavastin
Polymers 2025, 17(8), 1004; https://doi.org/10.3390/polym17081004 - 8 Apr 2025
Viewed by 410
Abstract
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin [...] Read more.
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin affected by fungal infection. Polymeric films based on pullulan (P), oxidized pullulan (T-OP), sodium carboxymethylcellulose (NaCMC), and glycerin were obtained by the casting and evaporation technique, and the solubility of the drug was significantly increased by micellar solubilization with Tween-80, thus avoiding the use of organic solvents. Physico-chemical characterization through the FTIR technique and EDX analysis indicates the absence of strong interactions between the drug and the polymer, and the loading efficiency highlights the uniform distribution of the drug. The mechanical properties, bioadhesion, contact angle, and water sorption capacity highlight optimal adhesion parameters on the skin. In vitro studies indicate a prolonged drug release, in the first 300 min, of 80% and 60% for F2_TH and F1_TH, respectively, and the release kinetics follow the Weibull model. Significant antifungal activity was obtained for both polymeric films. The biocompatibility of the ingredients, the gentle technique for obtaining the films, and the results obtained from their analysis represent promise for their applicability in topical antifungal treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

23 pages, 5085 KiB  
Article
Process Importance Identification for the SPAC System Under Different Water Conditions: A Case Study of Winter Wheat
by Lijun Wang, Liangsheng Shi and Jinmin Li
Agronomy 2025, 15(3), 753; https://doi.org/10.3390/agronomy15030753 - 20 Mar 2025
Viewed by 276
Abstract
Modeling the soil–plant–atmosphere continuum (SPAC) system requires multiple subprocesses and numerous parameters. Sensitivity analysis is effective to identify important model components and improve the modeling efficiency. However, most sensitivity analyses for SPAC models focus on parameter-level assessment, providing limited insights into process-level importance. [...] Read more.
Modeling the soil–plant–atmosphere continuum (SPAC) system requires multiple subprocesses and numerous parameters. Sensitivity analysis is effective to identify important model components and improve the modeling efficiency. However, most sensitivity analyses for SPAC models focus on parameter-level assessment, providing limited insights into process-level importance. To address this gap, this study proposes a process sensitivity analysis method that integrates the Bayesian network with variance-based sensitivity measures. Four subprocesses are demarcated based on the physical relationships between model components revealed by the network. Applied to a winter wheat SPAC system under different water conditions, the method effectively and reliably identifies critical processes. The results indicate that, under minimal water stress, the subprocesses of photosynthesis and dry matter partitioning primarily determine agricultural outputs. As the water supply decreases, the subprocesses of soil water movement and evapotranspiration gain increasing importance, becoming predominant under sever water stress. Throughout the crop season, the subprocess importance and its response to water stress are modulated by the crop phenology. Compared to conventional parameter sensitivity analysis, our method excels in synthesizing divergent parameter importance changes and identifying influential subprocesses, even without high-sensitivity parameters. This study provides new insights into adaptive SPAC modeling by dynamically simplifying unimportant subprocesses in response to environmental changes. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

23 pages, 14094 KiB  
Article
Characterization of the Sedimentary Cover in the City of Aïn Témouchent, Northwest Algeria, Using Ambient Noise Measurements
by Ahmed Saadi, Fethi Semmane, Juan José Galiana-Merino, Abdelkrim Yelles-Chaouche, Abdelouahab Issaadi and Billel Melouk
Appl. Sci. 2025, 15(6), 2967; https://doi.org/10.3390/app15062967 - 10 Mar 2025
Viewed by 452
Abstract
The city of Aïn Témouchent, located in northwest Algeria at the westernmost part of the Lower Cheliff Basin, has experienced several moderate earthquakes, the most significant of which occurred on 22 December 1999 (Mw 5.7, 25 fatalities, severe damage). In this study, ambient [...] Read more.
The city of Aïn Témouchent, located in northwest Algeria at the westernmost part of the Lower Cheliff Basin, has experienced several moderate earthquakes, the most significant of which occurred on 22 December 1999 (Mw 5.7, 25 fatalities, severe damage). In this study, ambient noise measurements from 62 sites were analyzed using the horizontal-to-vertical spectral ratio (HVSR) method to estimate fundamental frequency (f0) and amplitude (A0). The inversion of HVSR curves provided sedimentary layer thickness and shear wave velocity (Vs) estimates. Additionally, four spatial autocorrelation (SPAC) array measurements refined the Rayleigh wave dispersion curves, improving Vs profiles (150–1350 m/s) and sediment thickness estimates (up to 390 m in the industrial zone). Vs30 and vulnerability index maps were developed to classify soil types and assess liquefaction potential within the city. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

24 pages, 2480 KiB  
Article
Development and Characterization of In Situ Gelling Nasal Cilostazol Spanlastics
by Maryana Salamah, Mária Budai-Szűcs, Bence Sipos, Balázs Volk, Gábor Katona, György Tibor Balogh and Ildikó Csóka
Gels 2025, 11(2), 82; https://doi.org/10.3390/gels11020082 - 22 Jan 2025
Cited by 2 | Viewed by 1019
Abstract
Cilostazol (CIL), a BCS class II antiplatelet aggregation and vasodilator agent, is used for cerebrovascular diseases to minimize blood–brain barrier dysfunction, white matter-lesion formation, and motor deficits. The current work aimed to develop and optimize cilostazol-loaded spanlastics (CIL-SPA) for nose-to-brain delivery to overcome [...] Read more.
Cilostazol (CIL), a BCS class II antiplatelet aggregation and vasodilator agent, is used for cerebrovascular diseases to minimize blood–brain barrier dysfunction, white matter-lesion formation, and motor deficits. The current work aimed to develop and optimize cilostazol-loaded spanlastics (CIL-SPA) for nose-to-brain delivery to overcome the low solubility and absorption, the first pass-metabolism, and the adverse effects. The optimal CIL-SPA formulation was loaded into Phytagel® (SPA-PG), Poloxamer-407 (SPA-P407), and chitosan (SPA-CS) gel bases and characterized in terms of colloidal properties, encapsulation efficiency (EE%), mucoadhesive properties, and biopharmaceutical aspects. The developed in situ gelling formulations showed a <300 nm average hydrodynamic diameter, <0.5 polydispersity index, and >|±30| mV zeta potential with a high EE% (>99%). All formulations met the droplet size-distribution criteria of nasal requirements (<200 µm), and all formulations showed adequate mucoadhesion properties. Both the BBB-PAMPA and horizontal permeability study through an artificial membrane revealed that all formulations had higher CIL flux and cumulative permeability at in vitro nose-to-brain conditions compared to the initial CIL. The in vitro drug-release study showed that all formulations released ca. 100% of CIL after 2 h. Therefore, the developed formulations could be promising for improving the low bioavailability of CIL through nose-to-brain delivery. Full article
(This article belongs to the Special Issue Polymer-Based Hydrogels Applied in Drug Delivery)
Show Figures

Graphical abstract

11 pages, 716 KiB  
Article
Experimental and Theoretical Design on the Development of Matrix Tablets with Multiple Drug Loadings Aimed at Optimizing Antidiabetic Medication
by Mousa Sha’at, Lacramioara Ochiuz, Cristina Marcela Rusu, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Mihaela Hartan and Adrian Florin Spac
Pharmaceutics 2024, 16(12), 1595; https://doi.org/10.3390/pharmaceutics16121595 - 14 Dec 2024
Viewed by 1385
Abstract
Background: Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, [...] Read more.
Background: Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system. Methods: The tablets were formulated using hydrophilic polymers, such as Carbopol® 71G NF and Noveon® AA-1. The release kinetics of M-HCl and HNK were investigated through advanced mathematical models, including fractal and multifractal dynamics, to capture the non-linear and time-dependent release processes. Traditional kinetic models (zero-order, first-order, Higuchi equations) were also evaluated for comparison. In vitro dissolution studies were conducted to determine the release profiles of the active ingredients under varying polymer concentrations. Results: The study revealed distinct release profiles for the two active ingredients. M-HCl exhibited a rapid release phase, with 80% of the drug released within 4–7 h depending on polymer concentration. In contrast, HNK demonstrated a slower release profile, achieving 80% release after 9–10 h, indicating a greater sensitivity to polymer concentration. At shorter intervals, drug release followed classical kinetic models, while multifractal dynamics dominated at longer intervals. Higher polymer concentrations resulted in slower drug release rates due to the formation of a gel-like structure upon hydration, which hindered drug diffusion. The mechanical properties and stability of the matrix tablets confirmed their suitability for extended-release applications. Mathematical modeling validated the experimental findings and provided insights into the structural and time-dependent factors influencing drug release. Conclusions: This study successfully developed dual-drug extended-release matrix tablets containing metformin hydrochloride and honokiol, highlighting the potential of hydrophilic polymers to regulate drug release. The findings emphasize the utility of advanced mathematical models for predicting release kinetics and underscore the potential of these formulations to improve patient compliance and therapeutic outcomes in diabetes management. Full article
Show Figures

Figure 1

19 pages, 4683 KiB  
Article
Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride
by Mousa Sha’at, Maria Ignat, Liviu Sacarescu, Adrian Florin Spac, Alexandra Barsan (Bujor), Vlad Ghizdovat, Emanuel Nazaretian, Catalin Dumitras, Maricel Agop, Cristina Marcela Rusu and Lacramioara Ochiuz
Biomedicines 2024, 12(12), 2838; https://doi.org/10.3390/biomedicines12122838 - 13 Dec 2024
Cited by 1 | Viewed by 910
Abstract
Background: This study explored the potential of MCM-48 mesoporous silica matrices as a drug delivery system for metformin hydrochloride, aimed at improving the therapeutic management of type 2 diabetes mellitus. The objectives included the synthesis and characterization of MCM-48, assessment of its [...] Read more.
Background: This study explored the potential of MCM-48 mesoporous silica matrices as a drug delivery system for metformin hydrochloride, aimed at improving the therapeutic management of type 2 diabetes mellitus. The objectives included the synthesis and characterization of MCM-48, assessment of its drug loading capacity, analysis of drug release profiles under simulated physiological conditions, and the development of a multifractal dynamics-based theoretical framework to model and interpret the release kinetics. Methods: MCM-48 was synthesized using a sol–gel method and characterized by SEM-EDX, TEM, and nitrogen adsorption techniques. Drug loading was performed via adsorption at pH 12 using metformin hydrochloride solutions of 1 mg/mL (P-1) and 3 mg/mL (P-2). In vitro dissolution studies were conducted to evaluate the release profiles in simulated gastric and intestinal fluids. A multifractal dynamics model was developed to interpret the release kinetics. Results: SEM-EDX confirmed the uniform distribution of silicon and oxygen, while TEM images revealed a highly ordered cubic mesoporous structure. Nitrogen adsorption analyses showed a high specific surface area of 1325.96 m²/g for unloaded MCM-48, which decreased with drug loading, confirming efficient incorporation of metformin hydrochloride. The loading capacities were 59.788 mg/g (P-1) and 160.978 mg/g (P-2), with efficiencies of 99.65% and 89.43%, respectively. In vitro dissolution studies showed a biphasic release profile: an initial rapid release in gastric conditions followed by sustained release in intestinal fluids, achieving cumulative releases of 92.63% (P-1) and 82.64% (P-2) after 14 hours. The multifractal dynamics-based theoretical release curves closely matched the experimental data. Conclusions: MCM-48 mesoporous silica effectively enhanced metformin delivery, offering a controlled release profile well-suited for type 2 diabetes management. The multifractal theoretical framework provided valuable insights into drug release dynamics, contributing to the advancement of innovative drug delivery systems. Full article
(This article belongs to the Special Issue Nano-Based Drug Delivery and Drug Discovery)
Show Figures

Figure 1

24 pages, 4472 KiB  
Article
Enhancing Water and Soil Resources Utilization via Wolfberry–Alfalfa Intercropping
by Jinghai Wang, Minhua Yin, Yaya Duan, Yanbiao Wang, Yanlin Ma, Heng Wan, Yanxia Kang, Guangping Qi and Qiong Jia
Plants 2024, 13(17), 2374; https://doi.org/10.3390/plants13172374 - 26 Aug 2024
Cited by 4 | Viewed by 1213
Abstract
The impact of the intercropping system on the soil–plant–atmosphere continuum (SPAC), encompassing soil evaporation, soil moisture dynamics, and crop transpiration, remains an area of uncertainty. Field experiments were conducted for two years in conjunction with the SIMDualKc (Simulation Dual Crop Coefficient) model to [...] Read more.
The impact of the intercropping system on the soil–plant–atmosphere continuum (SPAC), encompassing soil evaporation, soil moisture dynamics, and crop transpiration, remains an area of uncertainty. Field experiments were conducted for two years in conjunction with the SIMDualKc (Simulation Dual Crop Coefficient) model to simulate two planting configurations: sole-cropped wolfberry (Lycium barbarum L.) (D) and wolfberry intercropped with alfalfa (Medicago sativa L.) (J). These configurations were subjected to different irrigation levels: full irrigation (W1, 75–85% θfc), mild deficit irrigation (W2, 65–75% θfc), moderate deficit irrigation (W3, 55–65% θfc), and severe deficit irrigation (W4, 45–55% θfc). The findings revealed that the JW1 treatment reduced the annual average soil evaporation by 32% compared with that of DW1. Additionally, mild, moderate, and severe deficit irrigation reduced soil evaporation by 17, 24, and 36%, respectively, compared with full irrigation. The intercropping system exhibited a more efficient canopy structure, resulting in reduced soil evaporation and alleviation of water stress to a certain extent. In terms of temporal dynamics, monocropping resulted in soil moisture levels from 1% to 15% higher than intercropping, with the most significant differences manifesting in the mid to late stages, whereas differences in the early stages were not statistically significant. Spatially, the intercropping system exhibited 7–19% lower soil water contents (SWCs) than sole cropping, primarily within the root water uptake zone within the 0–60 cm soil layer. The intercropping system showed an enhanced water absorption capacity for plant transpiration, resulting in a 29% increase in transpiration compared with sole cropping, thereby achieving water-saving benefits. These findings contribute to our understanding of the agronomic and environmental implications of intercropping wolfberry and alfalfa in arid regions and provide insights into optimizing water and soil resource management for sustainable agricultural practices. Full article
Show Figures

Figure 1

21 pages, 6474 KiB  
Article
Characterization of Shallow Sedimentary Layers in the Oran Region Using Ambient Vibration Data
by Ahmed Saadi, Juan José Galiana-Merino, Fethi Semmane, Abdelkrim Yelles-Chaouche and Abdelouahab Issaadi
Appl. Sci. 2024, 14(16), 7364; https://doi.org/10.3390/app14167364 - 21 Aug 2024
Cited by 1 | Viewed by 1185
Abstract
This study investigates the structure of shear-wave velocities (Vs) in the shallow layers of the Oran region, north-west of Algeria, using non-invasive techniques based on ambient vibration arrays. The region has experienced several moderate earthquakes, including the historical Oran earthquake of 1790. Ambient [...] Read more.
This study investigates the structure of shear-wave velocities (Vs) in the shallow layers of the Oran region, north-west of Algeria, using non-invasive techniques based on ambient vibration arrays. The region has experienced several moderate earthquakes, including the historical Oran earthquake of 1790. Ambient vibration measurements were carried out at 15 sites throughout the study area. Two methods were used: spatial autocorrelation (SPAC) and frequency–wavenumber analysis (f-k), which allowed us to better constrain Rayleigh wave dispersion curves. The inversion of the dispersion curves derived from the f-k analysis allowed for estimating the shear-wave velocity profiles and the Vs30 value at the sites under study. The other important result of the present study is an empirical equation that has been proposed to predict Vs30 in the Oran region. The determination of near-surface shear-wave velocity profiles is an important step in the assessment of seismic hazard. This study has demonstrated the effectiveness of using ambient vibration array techniques to estimate the soil Vs structure. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

15 pages, 2421 KiB  
Article
Response of Sap Flow Trends of Conifer and Broad-Leaved Trees to Rainfall Types in Sub-Humid Climate Region of China
by Yongxiang Cao, Yushi Wang, Naichang Zhang, Chendong Ning, Yu Bai and Jianbo Jia
Water 2024, 16(1), 95; https://doi.org/10.3390/w16010095 - 26 Dec 2023
Cited by 1 | Viewed by 2243
Abstract
Sap flow is one of the most important physiological water transport processes of trees, and the characteristics of sap flow are greatly affected by the spatial and temporal distribution of water in the SPAC (soil–plant–atmosphere continuum). However, different precipitation characteristics have great influence [...] Read more.
Sap flow is one of the most important physiological water transport processes of trees, and the characteristics of sap flow are greatly affected by the spatial and temporal distribution of water in the SPAC (soil–plant–atmosphere continuum). However, different precipitation characteristics have great influence on the water environment of forest trees, which causes considerable differences in sap flow. Therefore, researching the response of sap flow to precipitation type is the key to accurately determining plant transpiration in semi-arid areas. We used K-means clustering analysis to divide the rainfall during the study period into three rainfall types (the highest rainfall amount and intensity (types I), medium rainfall amount and intensity, with a long duration (types II); and the lowest rainfall amount and intensity (types III)) based on the rainfall amount and intensity in order to compare the differences in the response of sap flow trends and influencing factors of Pinus tabulaeformis and Robinia pseudoacacia under different rainfall types. The results showed that, under the daily scale average sap flow of P. tabulaeformis and R. pseudoacacia, rainfall type II decreased significantly relatively to rainfall types I and III (p < 0.05). In rainfall type II, The sap flow characteristics of R. pseudoacacia were positively correlated with solar radiation (p < 0.05), while those of P. tabulaeformis were positively correlated with temperature, solar radiation, and VPD (p < 0.01). The sap flow of P. tabulaeformis and R. pseudoacacia were significantly positively correlated with temperature, solar radiation, VPD, and soil moisture content (p < 0.01) and negatively correlated with relative humidity (p < 0.05) in rainfall type III. The hourly sap flow of P. tabulaeformis and R. pseudoacacia on rainfall days was higher than before the rainfall. Rainfall type I promoted the daily sap flow of both species, and the proportion of the sap flow in daytime was also higher. On rainy days, the sap flow rates of rainfall type I and III showed a “midday depression”. In type I rainfall events, the sap flow “midday depression” after rainfall occurred an hour ahead compared to the sap flow “midday depression” before rainfall. In type II rainfall events, the daytime sap flow rates of P. tabulaeformis and R. pseudoacacia were obviously inhibited, but the nighttime sap flow rate increased. In type III rainfall events, the sap flow before rainfall presented a unimodal curve versus time. The daily average sap flow of R. pseudoacacia was more susceptible to rainfall type II, while P. tabulaeformis was more susceptible to rainfall types I and III. The sap flow rate of R. pseudoacacia decreased on rainy days. The results show that the effects of different rainfall types on the sap flow trends of P. tabulaeformis and R. pseudoacacia were different. They revealed the responses of their sap flow trends to meteorological factors under different rainfall types, which provided basic data and theoretical support for further predicting the sap flow trends on rainy days, clarifying the effects of rainfall amount, rainfall duration, and rainfall intensity on sap flow trends and accurately estimating the transpiration water consumption of typical tree species in the sub-humid climate regions of China. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Conservation)
Show Figures

Figure 1

21 pages, 5228 KiB  
Article
Development of Solid Lipid Nanoparticles for Controlled Amiodarone Delivery
by Andreea Creteanu, Gabriela Lisa, Cornelia Vasile, Maria-Cristina Popescu, Adrian Florin Spac and Gladiola Tantaru
Methods Protoc. 2023, 6(5), 97; https://doi.org/10.3390/mps6050097 - 9 Oct 2023
Cited by 5 | Viewed by 2750
Abstract
In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The [...] Read more.
In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The aims of this study were to improve its solubility by encapsulating amiodarone into solid lipid nanoparticles using two excipients—Compritol® 888 ATO (pellets) (C888) as a lipid matrix and Transcutol® (T) as a surfactant. Six types of amiodarone-loaded solid lipid nanoparticles (AMD-SLNs) were obtained using a hot homogenization technique followed by ultrasonication with varying sonication parameters. AMD-SLNs were characterized by their size distribution, polydispersity index, zeta potential, entrapment efficiency, and drug loading. Based on the initial evaluation of the entrapment efficiency, only three solid lipid nanoparticle formulations (P1, P3, and P5) were further tested. They were evaluated through scanning electron microscopy, Fourier-transform infrared spectrometry, near-infrared spectrometry, thermogravimetry, differential scanning calorimetry, and in vitro dissolution tests. The P5 formulation showed optimum pharmaco-technical properties, and it had the greatest potential to be used in oral pharmaceutical products for the controlled delivery of amiodarone. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2023)
Show Figures

Figure 1

37 pages, 2956 KiB  
Article
Business IT Alignment Impact on Corporate Sustainability
by Uroš Zabukovšek, Polona Tominc and Samo Bobek
Sustainability 2023, 15(16), 12519; https://doi.org/10.3390/su151612519 - 17 Aug 2023
Cited by 5 | Viewed by 3728
Abstract
Business–IT alignment (BITA) has become crucial for effective organisational management in today’s interconnected global economy. This article investigates the relationship between BITA and corporate sustainability, exploring how businesses can leverage BITA for sustainable growth and development. The study employs a case research approach [...] Read more.
Business–IT alignment (BITA) has become crucial for effective organisational management in today’s interconnected global economy. This article investigates the relationship between BITA and corporate sustainability, exploring how businesses can leverage BITA for sustainable growth and development. The study employs a case research approach in a multinational manufacturing organisation, utilising a mixed methods research (MMR) design. In the quantitative part of the research, the PLS-SEM technique was used to examine the influence of six BITA factors on employees’ self-perceived action competence for sustainability (SPACS). This study confirmed that all six BITA factors strongly influence all three SPACS factors. In the qualitative part of the research, semi-structured interviews were used to measure the BITA maturity level of the organisation and the influence of BITA factors on corporate sustainability. Based on quantitative and qualitative research results, it can be confirmed that BITA strongly influences corporate sustainability. Results also confirm that there is no universal approach to BITA and its influence on corporate sustainability. Organisations must focus on all factors of BITA equally to achieve better levels of BITA and ensure its influence on corporate sustainability. Full article
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum)
by Genoveva Rosu, Emil Ioan Muresan, Adrian Florin Spac, Mariana Diaconu, Diana Elena Ciolacu, Angela Danila, Carmen Tita and Augustin Muresan
Polymers 2023, 15(10), 2348; https://doi.org/10.3390/polym15102348 - 17 May 2023
Cited by 5 | Viewed by 2829
Abstract
The objective of the work was to obtain materials with aromatherapeutic and antibacterial properties by applying emulsions based on peppermint essential oil (PEO) onto cotton fabric. For this purpose, some emulsions based on PEO incorporated in various matrices (chitosan + gelatin + beeswax; [...] Read more.
The objective of the work was to obtain materials with aromatherapeutic and antibacterial properties by applying emulsions based on peppermint essential oil (PEO) onto cotton fabric. For this purpose, some emulsions based on PEO incorporated in various matrices (chitosan + gelatin + beeswax; chitosan + beeswax; gelatin + beeswax and gelatin + chitosan) were prepared. Tween 80 was used as a synthetic emulsifier. The influence of the nature of matrices and of the concentration of Tween 80 on the stability of the emulsions was evaluated by the creaming indices. The materials treated with the stable emulsions were analyzed in terms of sensory activity, of the comfort characteristics, and of the gradual release of the PEO in the artificial perspiration solution. The sum of volatile components retained by samples after exposure to air was determined by GC-MS. The results regarding antibacterial activity showed that materials treated with emulsions have a good inhibitory effect on S. aureus (diameters of the inhibition zones between 53.6 and 64.0 mm) and on E. coli (diameters of the inhibition zones between 38.3 and 64.0 mm). Our data suggest that by applying peppermint-oil-based emulsions on a cotton support, aromatherapeutic patches, bandages and dressings with antibacterial properties can be obtained. Full article
(This article belongs to the Special Issue Develop Antimicrobial Polymer Textiles for Medical Applications)
Show Figures

Graphical abstract

21 pages, 3991 KiB  
Article
Picking Winners: Identifying Features of High-Performing Special Purpose Acquisition Companies (SPACs) with Machine Learning
by Caleb J. Williams
J. Risk Financial Manag. 2023, 16(4), 236; https://doi.org/10.3390/jrfm16040236 - 11 Apr 2023
Viewed by 2729
Abstract
Special Purpose Acquisition Companies (SPACs) are publicly listed “blank check” firms with a sole purpose: to merge with a private company and take it public. Selecting a target to take public via SPACs is a complex affair led by SPAC sponsors who seek [...] Read more.
Special Purpose Acquisition Companies (SPACs) are publicly listed “blank check” firms with a sole purpose: to merge with a private company and take it public. Selecting a target to take public via SPACs is a complex affair led by SPAC sponsors who seek to deliver investor value by effectively “picking winners” from the private sector. A key question for all sponsors is what they should be searching for. This paper aims to identify the characteristics of SPACs and their target companies that are relevant to market performance at sponsor lock-up windows. To achieve this goal, the study breaks market performance into a binary classification problem and uses a machine learning approach comprised of decision trees, logistic regression, and LASSO regression to identify features that exhibit a distinct relationship with market performance. The obtained results demonstrate that corporate or private equity backing in target firms greatly improves the odds of market outperformance one-year post-merger. This finding is novel in indicating that characteristics of target firms may also be deterministic of SPAC performance, in addition to SPACs, transaction, and the market features identified in the prior literature. It further suggests that a viable sponsor strategy could be constructed for generating outsized market returns at share lock-up windows by simply “following the money” and choosing target firms with prior involvement from corporate or private equity investors. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance)
Show Figures

Figure 1

15 pages, 1817 KiB  
Article
Past Connectivity but Recent Inbreeding in Cross River Gorillas Determined Using Whole Genomes from Single Hairs
by Marina Alvarez-Estape, Harvinder Pawar, Claudia Fontsere, Amber E. Trujillo, Jessica L. Gunson, Richard A. Bergl, Magdalena Bermejo, Joshua M. Linder, Kelley McFarland, John F. Oates, Jacqueline L. Sunderland-Groves, Joseph Orkin, James P. Higham, Karine A. Viaud-Martinez, Esther Lizano and Tomas Marques-Bonet
Genes 2023, 14(3), 743; https://doi.org/10.3390/genes14030743 - 18 Mar 2023
Cited by 6 | Viewed by 5390
Abstract
The critically endangered western gorillas (Gorilla gorilla) are divided into two subspecies: the western lowland (G. g. gorilla) and the Cross River (G. g. diehli) gorilla. Given the difficulty in sampling wild great ape populations and the [...] Read more.
The critically endangered western gorillas (Gorilla gorilla) are divided into two subspecies: the western lowland (G. g. gorilla) and the Cross River (G. g. diehli) gorilla. Given the difficulty in sampling wild great ape populations and the small estimated size of the Cross River gorilla population, only one whole genome of a Cross River gorilla has been sequenced to date, hindering the study of this subspecies at the population level. In this study, we expand the number of whole genomes available for wild western gorillas, generating 41 new genomes (25 belonging to Cross River gorillas) using single shed hairs collected from gorilla nests. By combining these genomes with publicly available wild gorilla genomes, we confirm that Cross River gorillas form three population clusters. We also found little variation in genome-wide heterozygosity among them. Our analyses reveal long runs of homozygosity (>10 Mb), indicating recent inbreeding in Cross River gorillas. This is similar to that seen in mountain gorillas but with a much more recent bottleneck. We also detect past gene flow between two Cross River sites, Afi Mountain Wildlife Sanctuary and the Mbe Mountains. Furthermore, we observe past allele sharing between Cross River gorillas and the northern western lowland gorilla sites, as well as with the eastern gorilla species. This is the first study using single shed hairs from a wild species for whole genome sequencing to date. Taken together, our results highlight the importance of implementing conservation measures to increase connectivity among Cross River gorilla sites. Full article
(This article belongs to the Special Issue Primate Phylogeny and Genetics)
Show Figures

Graphical abstract

18 pages, 362 KiB  
Article
High-Dimensional Regression Adjustment Estimation for Average Treatment Effect with Highly Correlated Covariates
by Zeyu Diao, Lili Yue, Fanrong Zhao and Gaorong Li
Mathematics 2022, 10(24), 4715; https://doi.org/10.3390/math10244715 - 12 Dec 2022
Viewed by 1506
Abstract
Regression adjustment is often used to estimate average treatment effect (ATE) in randomized experiments. Recently, some penalty-based regression adjustment methods have been proposed to handle the high-dimensional problem. However, these existing high-dimensional regression adjustment methods may fail to achieve satisfactory performance when the [...] Read more.
Regression adjustment is often used to estimate average treatment effect (ATE) in randomized experiments. Recently, some penalty-based regression adjustment methods have been proposed to handle the high-dimensional problem. However, these existing high-dimensional regression adjustment methods may fail to achieve satisfactory performance when the covariates are highly correlated. In this paper, we propose a novel adjustment estimation method for ATE by combining the semi-standard partial covariance (SPAC) and regression adjustment methods. Under some regularity conditions, the asymptotic normality of our proposed SPAC adjustment ATE estimator is shown. Some simulation studies and an analysis of HER2 breast cancer data are carried out to illustrate the advantage of our proposed SPAC adjustment method in addressing the highly correlated problem of the Rubin causal model. Full article
(This article belongs to the Special Issue Computational Statistics and Data Analysis)
Back to TopTop