Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = SSA-ELM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 9064 KB  
Article
PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing
by Aymen Ramadan Mohamed Alahwel Besha, Opeoluwa Seun Ojekemi, Tolga Oz and Oluwatayomi Adegboye
Processes 2025, 13(9), 2707; https://doi.org/10.3390/pr13092707 - 25 Aug 2025
Viewed by 422
Abstract
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the [...] Read more.
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the Polar Lights Salp Cooperative Optimizer (PLSCO), to enhance predictive modeling in manufacturing processes. PLSCO combines the strengths of the Polar Light Optimizer (PLO), Competitive Swarm Optimization (CSO), and Salp Swarm Algorithm (SSA), utilizing a cooperative strategy that adaptively balances exploration and exploitation. In this mechanism, particles engage in a competitive division process, where winners intensify search via PLO and losers diversify using SSA, effectively avoiding local optima and premature convergence. The performance of PLSCO was validated on CEC2015 and CEC2020 benchmark functions, demonstrating superior convergence behavior and global search capabilities. When applied to a real-world predictive maintenance dataset, the ELM-PLSCO model achieved a high prediction accuracy of 95.4%, outperforming baseline and other optimization-assisted models. Feature importance analysis revealed that torque and tool wear are dominant indicators of machine failure, offering interpretable insights for condition monitoring. The proposed approach presents a robust, interpretable, and computationally efficient solution for predictive maintenance in intelligent manufacturing environments. Full article
Show Figures

Figure 1

26 pages, 13046 KB  
Article
Damage Identification of Corroded Reinforced Concrete Beams Based on SSA-ELM
by Libin Tian, Xuyang Gao, Panfeng Ba, Chunying Zheng and Caiwei Liu
Buildings 2025, 15(16), 2937; https://doi.org/10.3390/buildings15162937 - 19 Aug 2025
Viewed by 280
Abstract
Accurately quantifying corrosion damage in reinforced concrete (RC) beams is a significant challenge for structural health monitoring. This study introduces a novel damage identification method that integrates the Sparrow Search Algorithm (SSA)-optimized Extreme Learning Machine (ELM) to address this issue. By utilizing dynamic [...] Read more.
Accurately quantifying corrosion damage in reinforced concrete (RC) beams is a significant challenge for structural health monitoring. This study introduces a novel damage identification method that integrates the Sparrow Search Algorithm (SSA)-optimized Extreme Learning Machine (ELM) to address this issue. By utilizing dynamic characteristics, including natural frequencies and mode shapes, as input features, the model predicts three critical damage indicators: the mass corrosion ratio (ηs), flexural capacity reduction factor (α), and flexural stiffness reduction factor (β). Validation through ABAQUS finite element simulations demonstrated the superior performance of the SSA-ELM approach compared to conventional ELM, achieving a 60–70% reduction in mean square error (MSE). Specifically, the MSE for ηs decreased from 2.1062 to 0.3174. The experimental validation conducted on seven RC beams with corrosion levels ranging from 0% to 14.1% confirmed the method’s reliability, with prediction errors for α and β ranging from 5 to 10%. This represents a 50% improvement in accuracy compared to conventional ELM, which exhibited errors in the range of 9–20%. SSA-ELM is a novel and more effective solution to the challenges (e.g., early convergence and convergence speed) faced by existing optimized ELM methods (especially GWO-ELM and GA-ELM). Furthermore, the practical implementation of the proposed framework includes a MATLAB R2024a-based graphical user interface (GUI) with Docker containerization, enabling efficient field deployment for structural assessment. Overall, this study establishes SSA-ELM as a promising tool for post-corrosion safety evaluation of RC structures. Full article
Show Figures

Figure 1

28 pages, 7612 KB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 536
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

21 pages, 2686 KB  
Article
A Forecasting Approach for Wholesale Market Agricultural Product Prices Based on Combined Residual Correction
by Bo Li and Yuanqiang Lian
Appl. Sci. 2025, 15(10), 5575; https://doi.org/10.3390/app15105575 - 16 May 2025
Viewed by 633
Abstract
Wholesale market prices of agricultural products, being essential to the daily lives of consumers, are closely tied to living standards and the overall stability of the agricultural market. The use of a single model to predict nonlinear and dynamic agricultural price time series [...] Read more.
Wholesale market prices of agricultural products, being essential to the daily lives of consumers, are closely tied to living standards and the overall stability of the agricultural market. The use of a single model to predict nonlinear and dynamic agricultural price time series often results in low accuracy due to suboptimal use of available information. To address this issue, this paper proposes a combined residual correction-based prediction method. Initially, the sparrow search algorithm (SSA) is used to optimize the penalty factors and kernel parameters of support vector regression (SVR) and the input weights and hidden layer biases of the extreme learning machine (ELM), thereby improving the convergence rate and predictive accuracy of these models. Subsequently, the induced ordered weighted averaging (IOWA) operator is applied to determine the weight vectors for the SSA-SVR and SSA-ELM models, reducing the fluctuating prediction accuracies of individual models at different times. Finally, the residuals of the generalized regression neural network (GRNN) model are forecasted using a combined residual correction method that integrates SSA-SVR and SSA-ELM based on the IOWA operator, refining the GRNN’s forecast outcomes. An empirical analysis was performed by comparing the results of nine individual forecasting models on monthly pork prices in Beijing. The findings indicate that the SSA-SVR, SSA-GRNN, and SSA-ELM models outperformed the SVR, GRNN, and ELM models in terms of forecasting accuracy, respectively. This improvement is attributed to the parameter optimization of the SVR, GRNN, and ELM models through the SSA. The proposed model also showed superior forecasting accuracy compared to the nine individual models. The results confirm that the proposed model is an effective tool for predicting agricultural product prices and can be applied to forecast prices of other agricultural products with similar characteristics. Full article
Show Figures

Figure 1

17 pages, 2295 KB  
Article
Quantum Neural Networks Approach for Water Discharge Forecast
by Liu Zhen and Alina Bărbulescu
Appl. Sci. 2025, 15(8), 4119; https://doi.org/10.3390/app15084119 - 9 Apr 2025
Cited by 2 | Viewed by 1108
Abstract
Predicting the river discharge is essential for preparing effective measures against flood hazards or managing hydrological droughts. Despite mathematical modeling advancements, most algorithms have failed to capture the extreme values (especially the highest ones). In this article, we proposed a quantum neural networks [...] Read more.
Predicting the river discharge is essential for preparing effective measures against flood hazards or managing hydrological droughts. Despite mathematical modeling advancements, most algorithms have failed to capture the extreme values (especially the highest ones). In this article, we proposed a quantum neural networks (QNNs) approach for forecasting the river discharge in three scenarios. The algorithm was applied to the raw data series and the series without aberrant values. Comparisons with the results obtained on the same series by other neural networks (LSTM, BPNN, ELM, CNN-LSTM, SSA-BP, and PSO-ELM) emphasized the best performance of the present approach. The lower error between the recorded values and the predicted ones in the evaluation of maxima compared to the case of the competitors mentioned shows that the algorithm best fits the extremes. The most significant mean standard errors (MSEs) and mean absolute errors (MAEs) were 26.9424 and 4.8914, respectively, and the lowest R2 was 84.36%, indicating the good performances of the algorithm. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

23 pages, 12252 KB  
Article
Prediction of Reference Crop Evapotranspiration in China’s Climatic Regions Using Optimized Machine Learning Models
by Jian Hu, Rong Ma, Shouzheng Jiang, Yuelei Liu and Huayan Mao
Water 2024, 16(23), 3349; https://doi.org/10.3390/w16233349 - 21 Nov 2024
Cited by 1 | Viewed by 789
Abstract
The accurate estimation of reference crop evapotranspiration (ET0) is essential for crop water consumption modeling and agricultural water resource management. In the present study, three bionic algorithms (aquila optimizer (AO), tuna swarm optimization (TSO), and sparrow search algorithm (SSA)) were combined [...] Read more.
The accurate estimation of reference crop evapotranspiration (ET0) is essential for crop water consumption modeling and agricultural water resource management. In the present study, three bionic algorithms (aquila optimizer (AO), tuna swarm optimization (TSO), and sparrow search algorithm (SSA)) were combined with an extreme learning machine (ELM) model to form three mixed models (AO-ELM, TSO-ELM, and SSA-ELM). The accuracy of the ET0 estimates for five climate regions in China from 1970 to 2019 was evaluated using the FAO-56 Penman–Monteith (P-M) equation. The results showed that the predicted values of the three mixed models and the ELM model fitted the P-M calculated values well. R2 and RMSE were 0.7654–0.9864 and 0.1271–0.7842 mm·d−1, respectively, for which the prediction accuracy of the AO-ELM model was the highest. The performance of the AO-ELM combination5 (maximum temperature (Tmax), minimum temperature (Tmin), total solar radiation (Rs), sunshine duration (n)) was most significantly improved on the basis of the ELM model. The prediction accuracy for the stations in the plateau mountain climate (PMC) region was the best, while the prediction accuracy for the stations in the tropical monsoon climate region (TPMC) was the worst. In addition to the wind speed (U2) in the temperate continental climate region (TCC)—which was the largest variable affecting ET0—n, Ra, and total solar radiation (Rs) in the other climate regions were more important than relative humidity (RH) and wind speed (U2) in predicting ET0. Therefore, AO-ELM4 was selected for the TCC region (with Tmax, Tmin, Rs, and U2 as inputs) and AO-ELM5 (with Tmax, Tmin, Rs, and n as inputs) was selected for the TMC, PMC, SMC, and TPMC regions when determining the best model for each climate region with limited meteorological data. Full article
Show Figures

Figure 1

17 pages, 885 KB  
Article
SSA-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting
by Fei Wang, Yinxi Liang, Zhizhe Lin, Jinglin Zhou and Teng Zhou
Mathematics 2024, 12(12), 1895; https://doi.org/10.3390/math12121895 - 19 Jun 2024
Cited by 13 | Viewed by 1829
Abstract
Nowadays, accurate and efficient short-term traffic flow forecasting plays a critical role in intelligent transportation systems (ITS). However, due to the fact that traffic flow is susceptible to factors such as weather and road conditions, traffic flow data tend to exhibit dynamic uncertainty [...] Read more.
Nowadays, accurate and efficient short-term traffic flow forecasting plays a critical role in intelligent transportation systems (ITS). However, due to the fact that traffic flow is susceptible to factors such as weather and road conditions, traffic flow data tend to exhibit dynamic uncertainty and nonlinearity, making the construction of a robust and reliable forecasting model still a challenging task. Aiming at this nonlinear and complex traffic flow forecasting problem, this paper constructs a short-term traffic flow forecasting hybrid optimization model, SSA-ELM, based on extreme learning machine by embedding the sparrow search algorithm in order to solve the above problem. Extreme learning machine has been widely used in short-term traffic flow forecasting due to its characteristics such as low computational complexity and fast learning speed. By using the sparrow search algorithm to optimize the input weight values and hidden layer deviations in the extreme learning machine, the sparrow search algorithm is utilized to search for the global optimal solution while taking into account the original characteristics of the extreme learning machine, so that the model improves stability while increasing prediction accuracy. Experimental results on the Amsterdam A10 road traffic flow dataset show that the traffic flow forecasting model proposed in this paper has higher forecasting accuracy and stability, revealing the potential of hybrid optimization models in the field of short-term traffic flow forecasting. Full article
Show Figures

Figure 1

26 pages, 4262 KB  
Article
Comparative Analysis of Convolutional Neural Network-Long Short-Term Memory, Sparrow Search Algorithm-Backpropagation Neural Network, and Particle Swarm Optimization-Extreme Learning Machine Models for the Water Discharge of the Buzău River, Romania
by Liu Zhen and Alina Bărbulescu
Water 2024, 16(2), 289; https://doi.org/10.3390/w16020289 - 15 Jan 2024
Cited by 15 | Viewed by 3513
Abstract
Modeling and forecasting the river flow is essential for the management of water resources. In this study, we conduct a comprehensive comparative analysis of different models built for the monthly water discharge of the Buzău River (Romania), measured in the upper part of [...] Read more.
Modeling and forecasting the river flow is essential for the management of water resources. In this study, we conduct a comprehensive comparative analysis of different models built for the monthly water discharge of the Buzău River (Romania), measured in the upper part of the river’s basin from January 1955 to December 2010. They employ convolutional neural networks (CNNs) coupled with long short-term memory (LSTM) networks, named CNN-LSTM, sparrow search algorithm with backpropagation neural networks (SSA-BP), and particle swarm optimization with extreme learning machines (PSO-ELM). These models are evaluated based on various criteria, including computational efficiency, predictive accuracy, and adaptability to different training sets. The models obtained applying CNN-LSTM stand out as top performers, demonstrating a superior computational efficiency and a high predictive accuracy, especially when built with the training set containing the data series from January 1984 (putting the Siriu Dam in operation) to September 2006 (Model type S2). This research provides valuable guidance for selecting and assessing river flow prediction models, offering practical insights for the scientific community and real-world applications. The findings suggest that Model type S2 is the preferred choice for the discharge forecast predictions due to its high computational speed and accuracy. Model type S (considering the training set recorded from January 1955 to September 2006) is recommended as a secondary option. Model type S1 (with the training period January 1955–December 1983) is suitable when the other models are unavailable. This study advances the field of water discharge prediction by presenting a precise comparative analysis of these models and their respective strengths Full article
Show Figures

Figure 1

24 pages, 5469 KB  
Article
Variation Trend Prediction of Dam Displacement in the Short-Term Using a Hybrid Model Based on Clustering Methods
by Chuan Lin, Yun Zou, Xiaohe Lai, Xiangyu Wang and Yan Su
Appl. Sci. 2023, 13(19), 10827; https://doi.org/10.3390/app131910827 - 29 Sep 2023
Cited by 9 | Viewed by 1514
Abstract
The deformation behavior of a dam can comprehensively reflect its structural state. By comparing the actual response with model predictions, dam deformation prediction models can detect anomalies for effective advance warning. Most existing dam deformation prediction models are implemented within a single-step prediction [...] Read more.
The deformation behavior of a dam can comprehensively reflect its structural state. By comparing the actual response with model predictions, dam deformation prediction models can detect anomalies for effective advance warning. Most existing dam deformation prediction models are implemented within a single-step prediction framework; the single-time-step output of these models cannot represent the variation trend in the dam deformation, which may contain important information on dam evolution during the prediction period. Compared with the single value prediction, predicting the tendency of dam deformation in the short term can better interpret the dam’s structural health status. Aiming to capture the short-term variation trends of dam deformation, a multi-step displacement prediction model of concrete dams is proposed by combining the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the k-harmonic means (KHM) algorithm, and the error minimized extreme learning machine (EM-ELM) algorithm. The model can be divided into three stages: (1) The CEEMDAN algorithm is adopted to decompose dam displacement series into different signals according to their timing characteristics. Moreover, the sample entropy (SE) method is used to remove the noise contained in the decomposed signals. (2) The KHM clustering algorithm is employed to cluster the denoised data with similar characteristics. Furthermore, the sparrow search algorithm (SSA) is utilized to optimize the KHM algorithm to avoid the local optimal problem. (3) A multi-step prediction model to capture the short-term variation of dam displacement is established based on the clustered data. Engineering examples show that the model has good prediction performance and strong robustness, demonstrating the feasibility of applying the proposed model to the multi-step forecasting of dam displacement. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Concrete Dam)
Show Figures

Figure 1

20 pages, 3004 KB  
Article
Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy
by Dongdong Ye, Rui Li, Jianfei Xu and Jiabao Pan
Coatings 2023, 13(6), 1060; https://doi.org/10.3390/coatings13061060 - 7 Jun 2023
Cited by 7 | Viewed by 2534
Abstract
Accurate measurement of porosity is crucial for comprehensive performance evaluation of thermal barrier coatings (TBCs) on aero-engine blades. In this study, a novel data-driven predictive method based on terahertz time-domain spectroscopy (THz-TDS) was proposed. By processing and extracting features from terahertz signals, multivariate [...] Read more.
Accurate measurement of porosity is crucial for comprehensive performance evaluation of thermal barrier coatings (TBCs) on aero-engine blades. In this study, a novel data-driven predictive method based on terahertz time-domain spectroscopy (THz-TDS) was proposed. By processing and extracting features from terahertz signals, multivariate parameters were composed to characterize the porosity. Principal component analysis, which enabled effective representation of the complex signal information, was introduced to downscale the dimensionality of the time-domain data. Additionally, the average power spectral density of the frequency spectrum and the extreme points of the first-order derivative of the phase spectrum were extracted. These extracted parameters collectively form a comprehensive set of multivariate parameters that accurately characterize porosity. Subsequently, the multivariate parameters were used as inputs to construct an extreme learning machine (ELM) model optimized by the sparrow search algorithm (SSA) for predicting porosity. Based on the experimental results, it was evident that the predictive accuracy of SSA-ELM was significantly higher than the basic ELM. Furthermore, the robustness of the model was evaluated through K-fold cross-validation and the final model regression coefficient was 0.92, which indicates excellent predictive performance of the data-driven model. By introducing the use of THz-TDS and employing advanced signal processing techniques, the data-driven model provided a novel and effective solution for the rapid and accurate detection of porosity in TBCs. The findings of this study offer valuable references for researchers and practitioners in the field of TBCs inspection, opening up new avenues for improving the overall assessment and performance evaluation of these coatings. Full article
Show Figures

Figure 1

23 pages, 8643 KB  
Article
Improved BDS-2/3 Satellite Ultra-Fast Clock Bias Prediction Based with the SSA-ELM Model
by Shaoshuai Ya, Xingwang Zhao, Chao Liu, Jian Chen and Chunyang Liu
Sensors 2023, 23(5), 2453; https://doi.org/10.3390/s23052453 - 22 Feb 2023
Viewed by 1626
Abstract
Ultra-fast satellite clock bias (SCB) products play an important role in real-time precise point positioning. Considering the low accuracy of ultra-fast SCB, which is unable to meet the requirements of precise point position, in this paper, we propose a sparrow search algorithm to [...] Read more.
Ultra-fast satellite clock bias (SCB) products play an important role in real-time precise point positioning. Considering the low accuracy of ultra-fast SCB, which is unable to meet the requirements of precise point position, in this paper, we propose a sparrow search algorithm to optimize the extreme learning machine (SSA-ELM) algorithm in order to improve the performance of SCB prediction in the Beidou satellite navigation system (BDS). By using the sparrow search algorithm’s strong global search and fast convergence ability, we further improve the prediction accuracy of SCB of the extreme learning machine. This study uses ultra-fast SCB data from the international GNSS monitoring assessment system (iGMAS) to perform experiments. First, the second difference method is used to evaluate the accuracy and stability of the used data, demonstrating that the accuracy between observed data (ISUO) and predicted data (ISUP) of the ultra-fast clock (ISU) products is optimal. Moreover, the accuracy and stability of the new rubidium (Rb-II) clock and hydrogen (PHM) clock onboard BDS-3 are superior to those of BDS-2, and the choice of different reference clocks affects the accuracy of SCB. Then, SSA-ELM, quadratic polynomial (QP), and a grey model (GM) are used for SCB prediction, and the results are compared with ISUP data. The results show that when predicting 3 and 6 h based on 12 h of SCB data, the SSA-ELM model improves the prediction model by ~60.42%, 5.46%, and 57.59% and 72.27%, 44.65%, and 62.96% as compared with the ISUP, QP, and GM models, respectively. When predicting 6 h based on 12 h of SCB data, the SSA-ELM model improves the prediction model by ~53.16% and 52.09% and by 40.66% and 46.38% compared to the QP and GM models, respectively. Finally, multiday data are used for 6 h SCB prediction. The results show that the SSA-ELM model improves the prediction model by more than 25% compared to the ISUP, QP, and GM models. In addition, the prediction accuracy of the BDS-3 satellite is better than that of the BDS-2 satellite. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

13 pages, 2557 KB  
Article
Lithium-Ion Battery Life Prediction Method under Thermal Gradient Conditions
by Dawei Song, Shiqian Wang, Li Di, Weijian Zhang, Qian Wang and Jing V. Wang
Energies 2023, 16(2), 767; https://doi.org/10.3390/en16020767 - 9 Jan 2023
Cited by 4 | Viewed by 2768
Abstract
Thermal gradient is inevitable in a lithium-ion battery pack because of uneven heat generation and dissipation, which will affect battery aging. In this paper, an experimental platform for a battery cycle aging test is built that can simulate practical thermal gradient conditions. Experimental [...] Read more.
Thermal gradient is inevitable in a lithium-ion battery pack because of uneven heat generation and dissipation, which will affect battery aging. In this paper, an experimental platform for a battery cycle aging test is built that can simulate practical thermal gradient conditions. Experimental results indicate a high nonlinear degree of battery degradation. Considering the nonlinearity of Li-ion batteries aging, the extreme learning machine (ELM), which has good learning and fitting ability for highly nonlinear, highly nonstationary, and time-varying data, is adopted for prediction. A battery life prediction model based on the sparrow search algorithm (SSA) is proposed in this paper to optimize the random weights and bias of the ELM network and verified by experimental data. The results show that compared with traditional ELM and back-propagation neural networks, the prediction results of ELM optimized by SSA have lower mean absolute error percentages and root mean square errors, indicating that the SSA-ELM model has higher prediction accuracy and better stability and has obvious advantages in processing data with a high nonlinear degree. Full article
Show Figures

Figure 1

16 pages, 1078 KB  
Article
A New Mixed-Gas-Detection Method Based on a Support Vector Machine Optimized by a Sparrow Search Algorithm
by Haitao Zhang and Yaozhen Han
Sensors 2022, 22(22), 8977; https://doi.org/10.3390/s22228977 - 20 Nov 2022
Cited by 14 | Viewed by 2524
Abstract
To solve the problem of the low recognition rate of mixed gases and consider the phenomenon of low prediction accuracy when traditional gas-concentration-prediction methods deal with nonlinear data, this paper proposes a mixed-gas identification and gas-concentration-prediction method based on a support vector machine [...] Read more.
To solve the problem of the low recognition rate of mixed gases and consider the phenomenon of low prediction accuracy when traditional gas-concentration-prediction methods deal with nonlinear data, this paper proposes a mixed-gas identification and gas-concentration-prediction method based on a support vector machine (SVM) optimized by a sparrow search algorithm (SSA). Principal component analysis (PCA) is applied to perform data dimensionality reduction on the input data, and SSA is adopted to optimize the SVM hyperparameters to improve the recognition rate and gas-concentration-prediction accuracy of mixed gases. For the mixed-gas identification, the classification accuracy is significantly improved under the proposed SSA optimization SVM method (SSA-SVM), compared with random forest (RF), extreme-learning machine (ELM), and BP neural network methods. With respect to gas-concentration prediction, the maximum fitting degrees reached 99.34% for single gas-concentration prediction and 97.55% for mixed-gas-concentration prediction. The experimental results show that the SSA-SVM method had a high recognition rate and high concentration-prediction accuracy in gas-mixture detection. Full article
Show Figures

Figure 1

20 pages, 4402 KB  
Article
INS/GPS Integrated Navigation for Unmanned Ships Based on EEMD Noise Reduction and SSA-ELM
by Jiajia Xiao, Ying Li, Chuang Zhang and Zhaoyi Zhang
J. Mar. Sci. Eng. 2022, 10(11), 1733; https://doi.org/10.3390/jmse10111733 - 11 Nov 2022
Cited by 12 | Viewed by 2744
Abstract
The primary problem faced by the integrated navigation system based on the inertial navigation system (INS) and global positioning system (GPS) is providing reliable navigation and positioning solutions during GPS failure. Thus, this study proposes an innovative integrated navigation algorithm to address the [...] Read more.
The primary problem faced by the integrated navigation system based on the inertial navigation system (INS) and global positioning system (GPS) is providing reliable navigation and positioning solutions during GPS failure. Thus, this study proposes an innovative integrated navigation algorithm to address the limitation of precise positioning when GPS fails. First, for the limitation of noise interference in INS, noise reduction technology based on ensemble empirical mode decomposition (EEMD) is proposed to improve the quality of the INS signal and enhance the noise reduction effect. Second, an INS/GPS integrated framework based on the sparrow search algorithm (SSA) and extreme learning machine (ELM) is proposed. During normal GPS conditions, SSA-ELM is used to develop a high-precision prediction model to estimate differences between INS and GPS. When the GPS signal is interrupted, the difference predicted by SSA-ELM is used as the measurement input and the INS is corrected. To confirm the effectiveness of this method, a real ship experiment is conducted with other commonly used methods. The experimental results demonstrate that the proposed method can improve positioning accuracy and reliability when GPS is interrupted. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4212 KB  
Article
Prediction of Uniaxial Compressive Strength in Rocks Based on Extreme Learning Machine Improved with Metaheuristic Algorithm
by Junbo Qiu, Xin Yin, Yucong Pan, Xinyu Wang and Min Zhang
Mathematics 2022, 10(19), 3490; https://doi.org/10.3390/math10193490 - 24 Sep 2022
Cited by 25 | Viewed by 3379
Abstract
Uniaxial compressive strength (UCS) is a critical parameter in the disaster prevention of engineering projects, requiring a large budget and a long time to estimate in different rocks or the early stage of a project. If predicted accurately, the UCS of rocks significantly [...] Read more.
Uniaxial compressive strength (UCS) is a critical parameter in the disaster prevention of engineering projects, requiring a large budget and a long time to estimate in different rocks or the early stage of a project. If predicted accurately, the UCS of rocks significantly affects geotechnical applications. This paper develops a dataset of 734 samples from previous studies on different countries’ magmatic, sedimentary, and metamorphic rocks. Within the study context, three main factors, point load index, P-wave velocity, and Schmidt hammer rebound number, are utilized to estimate UCS. Moreover, it applies extreme learning machines (ELM) to map the nonlinear relationship between the UCS and the influential factors. Five metaheuristic algorithms, particle swarm optimization (PSO), grey wolf optimization (GWO), whale optimization algorithm (WOA), butterfly optimization algorithm (BOA), and sparrow search algorithm (SSA), are used to optimize the bias and weight of ELM and thus enhance its predictability. Indeed, several performance parameters are utilized to verify the proposed models’ generalization capability and predictive performance. The minimum, maximum, and average relative errors of ELM achieved by the whale optimization algorithm (WOA-ELM) are smaller than the other models, with values of 0.22%, 72.05%, and 11.48%, respectively. In contrast, the minimum and mean residual error produced by WOA-ELM are less than the other models, with values of 0.02 and 2.64 MPa, respectively. The results show that the UCS values derived from WOA-ELM are superior to those from other models. The performance indices (coefficient of determination (R2): 0.861, mean squared error (MSE): 17.61, root mean squared error (RMSE): 4.20, and value account for (VAF): 91% obtained using the WOA-ELM model indicates high accuracy and reliability, which means that it has broad application potential for estimating UCS of different rocks. Full article
(This article belongs to the Special Issue Mathematical Problems in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

Back to TopTop