Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,381)

Search Parameters:
Keywords = Sentinel-2A data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 823 KB  
Article
Real-Time Detection of LEO Satellite Orbit Maneuvers Based on Geometric Distance Difference
by Aoran Peng, Bobin Cui, Guanwen Huang, Le Wang, Haonan She, Dandan Song and Shi Du
Aerospace 2025, 12(10), 925; https://doi.org/10.3390/aerospace12100925 (registering DOI) - 14 Oct 2025
Abstract
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable [...] Read more.
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable trajectories. Frequent orbit maneuvers, though necessary to sustain nominal orbits, introduce significant difficulties for precise orbit determination (POD) and navigation augmentation, especially under complex operational conditions. Unlike most existing methods that rely on Two-Line Element (TLE) data—often affected by noise and limited accuracy—this study directly utilizes onboard GNSS observations in combination with real-time precise ephemerides. A novel time-series indicator is proposed, defined as the geometric root-mean-square (RMS) distance between reduced-dynamic and kinematic orbit solutions, which is highly responsive to orbit disturbances. To further enhance robustness, a sliding window-based adaptive thresholding mechanism is developed to dynamically adjust detection thresholds, maintaining sensitivity to maneuvers while suppressing false alarms. The proposed method was validated using eight representative maneuver events from the GRACE-FO satellites (May 2018–June 2022), successfully detecting seven of them. One extremely short-duration maneuver was missed due to the limited number of usable GNSS observations after quality-control filtering. To examine altitude-related applicability, two Sentinel-3A maneuvers were also analyzed, both successfully detected, confirming the method’s effectiveness at higher LEO altitudes. Since the thrust magnitudes and durations of the Sentinel-3A maneuvers are not publicly available, these cases primarily serve to verify applicability rather than to quantify sensitivity. Experimental results show that for GRACE-FO maneuvers, the proposed method achieves near-real-time responsiveness under long-duration, high-thrust conditions, with an average detection delay below 90 s. For Sentinel-3A, detections occurred approximately 7 s earlier than the reported maneuver epochs, a discrepancy attributed to the 30 s observation sampling interval rather than methodological bias. Comparative analysis with representative existing methods, presented in the discussion section, further demonstrates the advantages of the proposed approach in terms of sensitivity, timeliness, and adaptability. Overall, this study presents a practical, efficient, and scalable solution for real-time maneuver detection in LEO satellite missions, contributing to improved GNSS augmentation, space situational awareness, and autonomous orbit control. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
19 pages, 4130 KB  
Article
Deep Learning Application of Fruit Planting Classification Based on Multi-Source Remote Sensing Images
by Jiamei Miao, Jian Gao, Lei Wang, Lei Luo and Zhi Pu
Appl. Sci. 2025, 15(20), 10995; https://doi.org/10.3390/app152010995 - 13 Oct 2025
Abstract
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification [...] Read more.
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification and support orchard management and rural revitalization, this study explored feature selection and network optimization. We proposed an improved CF-EfficientNet model (incorporating FGMF and CGAR modules) for fruit planting classification. Multi-source remote sensing data (Sentinel-1, Sentinel-2, and SRTM) were used to extract spectral, vegetation, polarization, terrain, and texture features, thereby constructing a high-dimensional feature space. Feature selection identified 13 highly discriminative bands, forming an optimal dataset, namely the preferred bands (PBs). At the same time, two classification datasets—multi-spectral bands (MS) and preferred bands (PBs)—were constructed, and five typical deep learning models were introduced to compare performance: (1) EfficientNetB0, (2) AlexNet, (3) VGG16, (4) ResNet18, (5) RepVGG. The experimental results showed that the EfficientNetB0 model based on the preferred band performed best in terms of overall accuracy (87.1%) and Kappa coefficient (0.677). Furthermore, a Fine-Grained Multi-scale Fusion (FGMF) and a Condition-Guided Attention Refinement (CGAR) were incorporated into EfficientNetB0, and the traditional SGD optimizer was replaced with Adam to construct the CF-EfficientNet architecture. The results indicated that the improved CF-EfficientNet model achieved high performance in crop classification, with an overall accuracy of 92.6% and a Kappa coefficient of 0.830. These represent improvements of 5.5 percentage points and 0.153, compared with the baseline model, demonstrating superiority in both classification accuracy and stability. Full article
Show Figures

Figure 1

19 pages, 5198 KB  
Article
Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF
by Nur Yagmur Aydin
Appl. Sci. 2025, 15(20), 10997; https://doi.org/10.3390/app152010997 - 13 Oct 2025
Abstract
Nitrogen dioxide (NO2) poses severe risks to human health and the environment, especially in densely populated megacities. Ground-based air quality monitoring stations provide high-temporal-resolution data but are spatially limited, while satellite observations offer broad coverage but measure column densities rather than [...] Read more.
Nitrogen dioxide (NO2) poses severe risks to human health and the environment, especially in densely populated megacities. Ground-based air quality monitoring stations provide high-temporal-resolution data but are spatially limited, while satellite observations offer broad coverage but measure column densities rather than surface concentrations. To overcome these limitations, this study integrates ground-based observations with satellite-derived NO2 from Sentinel-5P TROPOMI and GEOS-CF products to estimate ground-level NO2 in Istanbul using machine learning (ML) approaches. Three ML algorithms (RF, XGB, and CB) were tested on two datasets spanning 2019–2024 at ~1 km resolution, incorporating 20 features, including topographic, meteorological, environmental, and demographic variables. Among models, CB achieved the best performance (R: 0.686, RMSE: 16.23 µg/m3, and MAE: 11.75 µg/m3 in the test dataset) with the Sentinel-5P dataset, successfully capturing spatial and seasonal variations in ground-level NO2 both quantitatively and qualitatively. SHAP analysis revealed that regarding satellite-derived NO2, anthropogenic indicators such as population density, road length, and digital elevation model were the most influential features, while meteorological factors contributed secondarily. Despite the lower spatial resolution of GEOS-CF data, both Sentinel-5P and GEOS-CF datasets supported reliable model outputs. This study provides the first ML-based ground-level NO2 estimation framework for the Istanbul Metropolitan City. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

23 pages, 10835 KB  
Article
Evaluation of Post-Fire Treatments (Erosion Barriers) on Vegetation Recovery Using RPAS and Sentinel-2 Time-Series Imagery
by Fernando Pérez-Cabello, Carlos Baroja-Saenz, Raquel Montorio and Jorge Angás-Pajas
Remote Sens. 2025, 17(20), 3422; https://doi.org/10.3390/rs17203422 (registering DOI) - 13 Oct 2025
Abstract
Post-fire soil and vegetation changes can intensify erosion and sediment yield by altering the factors controlling the runoff–infiltration balance. Erosion barriers (EBs) are widely used in hydrological and forest restoration to mitigate erosion, reduce sediment transport, and promote vegetation recovery. However, precise spatial [...] Read more.
Post-fire soil and vegetation changes can intensify erosion and sediment yield by altering the factors controlling the runoff–infiltration balance. Erosion barriers (EBs) are widely used in hydrological and forest restoration to mitigate erosion, reduce sediment transport, and promote vegetation recovery. However, precise spatial assessments of their effectiveness remain scarce, requiring validation through operational methodologies. This study evaluates the impact of EB on post-fire vegetation recovery at two temporal and spatial scales: (1) Remotely Piloted Aircraft System (RPAS) imagery, acquired at high spatial resolution but limited to a single acquisition date coinciding with the field flight. These data were captured using a MicaSense RedEdge-MX multispectral camera and an RGB optical sensor (SODA), from which NDVI and vegetation height were derived through aerial photogrammetry and digital surface models (DSMs). (2) Sentinel-2 satellite imagery, offering coarser spatial resolution but enabling multi-temporal analysis, through NDVI time series spanning four consecutive years. The study was conducted in the area of the Luna Fire (northern Spain), which burned in July 2015. A paired sampling design compared upstream and downstream areas of burned wood stacks and control sites using NDVI values and vegetation height. Results showed slightly higher NDVI values (0.45) upstream of the EB (p < 0.05), while vegetation height was, on average, ~8 cm lower than in control sites (p > 0.05). Sentinel-2 analysis revealed significant differences in NDVI distributions between treatments (p < 0.05), although mean values were similar (~0.32), both showing positive trends over four years. This study offers indirect insight into the functioning and effectiveness of EB in post-fire recovery. The findings highlight the need for continued monitoring of treated areas to better understand environmental responses over time and to inform more effective land management strategies. Full article
(This article belongs to the Special Issue Remote Sensing for Risk Assessment, Monitoring and Recovery of Fires)
Show Figures

Figure 1

26 pages, 13143 KB  
Article
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
by Ke Luo, Jianqiang Ren, Xiangxin Bu and Hongwei Zhao
Remote Sens. 2025, 17(20), 3408; https://doi.org/10.3390/rs17203408 - 11 Oct 2025
Viewed by 81
Abstract
Spatializing crop yield statistical data with administrative divisions as the basic unit helps reveal the spatial distribution characteristics of crop yield and provides necessary spatial information to support field management and government decision-making. However, owing to an insufficient understanding of the factors affecting [...] Read more.
Spatializing crop yield statistical data with administrative divisions as the basic unit helps reveal the spatial distribution characteristics of crop yield and provides necessary spatial information to support field management and government decision-making. However, owing to an insufficient understanding of the factors affecting yield, accurately depicting its spatial differences remains challenging. Taking Hailun city, Heilongjiang Province, as an example, this study proposes a yield downscaling method based on the standardized deviation from the mean of the comprehensive crop condition index (CCCI) during key phenological periods of the growing season. First, Sentinel-2 remote sensing data were used to retrieve crop condition parameters during key phenological periods, and the CCCI was constructed using the correlation between crop condition parameters in key phenological periods and statistical yield as the weight. Subsequently, regression analysis and the entropy weight method were applied to determine the spatiotemporal dynamic weights of the CCCI during key phenological stages and to calculate the standardized deviation from the mean. By combining these two components, the comprehensive spatial difference index of the crop growth condition (CSDICGC) was derived, which offered a new way to characterize the discrepancies between the pixel-level yield and statistical yield, thereby downscaling the yield statistical data from the administrative unit to the pixel scale. The results indicated that this method achieved a regional accuracy close to 100%, with a strong fit at the pixel scale. Pixel-level accuracy validation against ground-truth maize yield data resulted in an R2 of 0.82 and a mean relative error (MRE) of 4.75%. The novelty of this study was characterized by the integration of multistage crop condition parameters with dynamic spatiotemporal weighting to overcome the limitations of single-index methods. The crop yield statistical data downscaling spatialization method proposed in this paper is simple and efficient and has the potential to be popularized and applied over relatively large regions. Full article
(This article belongs to the Special Issue Near Real-Time (NRT) Agriculture Monitoring)
Show Figures

Figure 1

37 pages, 2717 KB  
Article
The Potential for Sample Testing at the Pen Level to Inform Prudent Antimicrobial Selection for Bovine Respiratory Disease Treatment: Investigations Using a Feedlot Simulation Tool
by Dana E. Ramsay, Wade McDonald, Sheryl P. Gow, Lianne McLeod, Simon J. G. Otto, Nathaniel D. Osgood and Cheryl L. Waldner
Antibiotics 2025, 14(10), 1009; https://doi.org/10.3390/antibiotics14101009 - 11 Oct 2025
Viewed by 85
Abstract
Background: Antimicrobial drugs are used to treat bacterial diseases in livestock production systems, including bovine respiratory disease (BRD) in feedlot cattle. It is recommended that therapeutic antimicrobial use (AMU) in food animals be informed by diagnostic tests to limit the emergence of antimicrobial [...] Read more.
Background: Antimicrobial drugs are used to treat bacterial diseases in livestock production systems, including bovine respiratory disease (BRD) in feedlot cattle. It is recommended that therapeutic antimicrobial use (AMU) in food animals be informed by diagnostic tests to limit the emergence of antimicrobial resistance (AMR) and preserve the effectiveness of available drugs. Recent evidence demonstrates preliminary support for the pen as a prospective target for AMR testing-based interventions in higher-risk cattle. Methods: A previously reported agent-based model (ABM) was modified and then used in this study to investigate the potential for different pen-level sampling and laboratory testing-informed BRD treatment strategies to favorably impact selected antimicrobial stewardship and management outcomes in the western Canadian context. The incorporation of sample testing to guide treatment choice was hypothesized to reduce BRD relapses, subsequent AMU treatments and resultant AMR in sentinel pathogen Mannheimia haemolytica. The ABM was extended to include a discrete event simulation (DES) workflow that models the testing process, including the time at sample collection (0 or 13 days on feed) and the type of AMR diagnostic test (antimicrobial susceptibility testing or long-read metagenomic sequencing). Candidate testing scenarios were simulated for both a test-only control and testing-informed treatment (TI) setting (n = 52 total experiments). Key model outputs were generated for both the pen and feedlot levels and extracted to data repositories. Results: There was no effect of the TI strategy on the stewardship or economic outcomes of interest under baseline ecological and treatment conditions. Changes in the type and number of uses by antimicrobial class were observed when baseline AMR in M. haemolytica was assumed to be higher at feedlot arrival, but there was no corresponding impact on subsequent resistance or morbidity measures. The impacts of sample timing and diagnostic test accuracy on AMR test positivity and other outputs were subsequently explored with a theoretical “extreme” BRD treatment protocol that maximized selection pressure for AMR. Conclusions: The successful implementation of a pen-level sampling and diagnostic strategy would be critically dependent on many interrelated factors, including the BRD treatment protocol, the prevalences of resistance to the treatment classes, the accuracy of available AMR diagnostic tests, and the selected “treatment change” thresholds. This study demonstrates how the hybrid ABM-DES model can be used for future experimentation with interventions proposed to limit AMR risk in the context of BRD management. Full article
Show Figures

Figure 1

30 pages, 11330 KB  
Article
Distance Transform-Based Spatiotemporal Model for Approximating Missing NDVI from Satellite Data
by Amirhossein Mirtabatabaeipour, Lakin Wecker, Majid Amirfakhrian and Faramarz F. Samavati
Remote Sens. 2025, 17(20), 3399; https://doi.org/10.3390/rs17203399 - 10 Oct 2025
Viewed by 210
Abstract
One widely used method for analyzing vegetation growth from satellite imagery is the Normalized Difference Vegetation Index (NDVI), a key metric for assessing vegetation dynamics. NDVI varies not only spatially but also temporally, which is essential for analyzing vegetation health and growth patterns [...] Read more.
One widely used method for analyzing vegetation growth from satellite imagery is the Normalized Difference Vegetation Index (NDVI), a key metric for assessing vegetation dynamics. NDVI varies not only spatially but also temporally, which is essential for analyzing vegetation health and growth patterns over time. High-resolution, cloud-free satellite images, particularly from publicly available sources like Sentinel, are ideal for this analysis. However, such images are not always available due to cloud and shadow contamination. To address this limitation, we propose a model that integrates both the temporal and spatial aspects of the data to approximate the missing or contaminated regions. In this method, we separately approximate NDVI using spatial and temporal components of the time-varying satellite data. Spatial approximation near the boundary of the missing data is expected to be more accurate, while temporal approximation becomes more reliable for regions further from the boundary. Therefore, we propose a model that leverages the distance transform to combine these two methods into a single, weighted model, which is more accurate than either method alone. We introduce a new decay function to control this transition. We evaluate our spatiotemporal model for approximating NDVI across 16 farm fields in Western Canada from 2018 to 2023. We empirically determined the best parameters for the decay function and distance-transform-based model. The results show a significant improvement compared to using only spatial or temporal approximations alone (up to a 263% improvement as measured by RMSE relative to the baseline). Furthermore, our model demonstrates a notable improvement compared to simple combination (up to 51% improvement as measured by RMSE) and Spatiotemporal Kriging (up to 28% improvement as measured by RMSE). Finally, we apply our spatiotemporal model in a case study related to improving the specification of the peak green day for numerous fields. Full article
(This article belongs to the Special Issue Big Geo-Spatial Data and Advanced 3D Modelling in GIS and Satellite)
Show Figures

Figure 1

21 pages, 6369 KB  
Article
Validation of Multi-Scale LAI Products in Heterogeneous Terrain-Based UAV Images
by Meng Liu, Wenping Yu, Dandan Li, Fangfang Shang, Longlong Zhang, Shuangjie Wang, Wen Yang, Ruoyi Zhao and Xuemei Wang
Remote Sens. 2025, 17(19), 3393; https://doi.org/10.3390/rs17193393 - 9 Oct 2025
Viewed by 157
Abstract
Significant uncertainties persist across different Leaf Area Index (LAI) products due to multiple factors; therefore, the accuracy assessment of the global LAI products is an indispensable step before their application. In this study, comprehensive validation of multi-scale LAI products including Sentinel-2, Landsat-8/9, and [...] Read more.
Significant uncertainties persist across different Leaf Area Index (LAI) products due to multiple factors; therefore, the accuracy assessment of the global LAI products is an indispensable step before their application. In this study, comprehensive validation of multi-scale LAI products including Sentinel-2, Landsat-8/9, and MCD15A3H was implemented utilizing fine-resolution LAI maps which were based on UAV images and field-measured LAI data. The validation results demonstrated a consistent, systematic underestimation across all the LAI products within the study area, the RMSE of these products ranged from 0.56 to 1.63, and the coarse-resolution MCD15A3H LAI product demonstrated highest accuracy (RMSE = 0.56, R2 = 0.69). The Sentinel-2 products exhibited intermediate accuracy among all those products (RMSE: 1.16–1.36). The Landsat-8/9 LAI product showed markedly lower accuracy relative to Sentinel-2; its RMSE (1.63) exceeded that of Sentinel-2 10 m LAI and 20 m LAI by 40.52% and 21.64%, respectively. In addition, all these LAI products showed consistent seasonal variation patterns with the reference LAI maps. Moreover, Sentinel-2 10 m LAI products showed serious underestimation for all vegetation types, with forests providing the highest RMSE = 0.89. This study serves as a valuable reference for the application of multi-scale LAI products in heterogeneous terrain and provides directions for the improvement of fine-resolution LAI retrieval algorithms. Full article
Show Figures

Figure 1

16 pages, 3068 KB  
Article
A Comparative Assessment of Regular and Spatial Cross-Validation in Subfield Machine Learning Prediction of Maize Yield from Sentinel-2 Phenology
by Dorijan Radočaj, Ivan Plaščak and Mladen Jurišić
Eng 2025, 6(10), 270; https://doi.org/10.3390/eng6100270 - 9 Oct 2025
Viewed by 238
Abstract
The aim of this study is to determine the reliability of regular and spatial cross-validation methods in predicting subfield-scale maize yields using phenological measures derived by Sentinel-2. Three maize fields from eastern Croatia were monitored during the 2023 growing season, with high-resolution ground [...] Read more.
The aim of this study is to determine the reliability of regular and spatial cross-validation methods in predicting subfield-scale maize yields using phenological measures derived by Sentinel-2. Three maize fields from eastern Croatia were monitored during the 2023 growing season, with high-resolution ground truth yield data collected using combine harvester sensors. Sentinel-2 time series were used to compute two vegetation indices, Enhanced Vegetation Index (EVI) and Wide Dynamic Range Vegetation Index (WDRVI). These features served as inputs for three machine learning models, including Random Forest (RF) and Bayesian Generalized Linear Model (BGLM), which were trained and evaluated using both regular and spatial 10-fold cross-validation. Results showed that spatial cross-validation produced a more realistic and conservative estimate of the performance of the model, while regular cross-validation overestimated predictive accuracy systematically because of spatial dependence among the samples. EVI-based models were more reliable than WDRVI, generating more accurate phenomenological fits and yield predictions across parcels. These results emphasize the importance of spatially explicit validation for subfield yield modeling and suggest that overlooking spatial structure can lead to misleading conclusions about model accuracy and generalizability. Full article
Show Figures

Figure 1

19 pages, 6432 KB  
Article
Quantifying Mining-Induced Phenological Disturbance and Soil Moisture Regulation in Semi-Arid Grasslands Using HLS Time Series
by Yanling Zhao, Shenshen Ren and Yanjie Tang
Land 2025, 14(10), 2011; https://doi.org/10.3390/land14102011 - 7 Oct 2025
Viewed by 263
Abstract
Coal mining disturbances in semi-arid grasslands affect land surface phenology (LSP), impacting ecosystem functions, restoration target setting, and carbon sequestration; however, the magnitude and spatial extent of these disturbances and their detectability across vegetation indices (VIs), remain insufficiently constrained. We developed and applied [...] Read more.
Coal mining disturbances in semi-arid grasslands affect land surface phenology (LSP), impacting ecosystem functions, restoration target setting, and carbon sequestration; however, the magnitude and spatial extent of these disturbances and their detectability across vegetation indices (VIs), remain insufficiently constrained. We developed and applied a streamlined quantitative framework to delineate the extent and intensity of mining-induced phenological disturbance and to compare the sensitivity and stability of commonly used VIs. Using Harmonized Landsat Sentinel (HLS) surface reflectance data over the Yimin mine, we reconstructed multitemporal VI trajectories and derived phenological metrics; directional phenology gradients were used to delineate disturbance, and VI responsiveness was evaluated via mean difference (MD) and standard deviation (SD) between affected and control areas. Research findings indicate that the impact of mining extends to an area approximately four times the size of the mining site, with the start of season (SOS) in affected areas occurring about 10 days later than in unaffected areas. Responses varied markedly among VIs, with the Modified Soil-Adjusted Vegetation Index (MSAVI) exhibiting the highest spectral stability under disturbance. This framework yields an information-rich quantification of phenological impacts attributable to mining and provides operational guidance for index selection and the prioritization of restoration and environmental management in semi-arid mining landscapes. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

19 pages, 836 KB  
Article
Activity Intensity and All-Cause Mortality Following Fall Injury Among Older Adults: Results from a 12-Year National Survey
by Oluwaseun Adeyemi, Tracy Chippendale, Olugbenga Ogedegbe, Dowin Boatright and Joshua Chodosh
Healthcare 2025, 13(19), 2530; https://doi.org/10.3390/healthcare13192530 - 7 Oct 2025
Viewed by 377
Abstract
Background: Fall injury is a sentinel event for mortality among older adults, and activity intensity may play a role in mitigating this outcome. This study assessed the relationship between activity intensity and all-cause mortality following fall injury among community-dwelling U.S. older adults. Methods: [...] Read more.
Background: Fall injury is a sentinel event for mortality among older adults, and activity intensity may play a role in mitigating this outcome. This study assessed the relationship between activity intensity and all-cause mortality following fall injury among community-dwelling U.S. older adults. Methods: For this retrospective cohort study, we pooled 12 years of data from the National Health Interview Survey and identified older adults (aged 65 years and older) who sustained fall injuries (N = 2454). The outcome variable was time to death following a fall injury. We defined activity intensity as a binary variable, none-to-low and normal-to-high, using the American Heart Association’s weekly 500 Metabolic Equivalent of Task (MET) as a cutoff. We controlled for sociodemographic, healthcare access, and health characteristics; performed survey-weighted Cox proportional hazard regression analysis; and reported the adjusted mortality risks (plus 95% confidence interval (CI)). Results: The survey comprised 2454 older adults with fall injuries, representing 863,845 US older adults. The population was predominantly female (68%), non-Hispanic White (85%), and divorced/separated (54%). During the follow-up period, 45% of the study population died. Approximately 81% of the study population had low activity levels. However, between 2006 and 2017, the proportion of the study population with low physical activity decreased from 90% to 67%. After adjusting for sociodemographic, healthcare access, and health characteristics, none-to-low activity intensity was associated with 50% increased mortality risk (aHR: 1.50; 95% CI: 1.20–1.87). Conclusions: Promoting higher physical activity levels may significantly reduce the all-cause mortality risk following fall injury among older adults. Full article
Show Figures

Figure 1

22 pages, 7528 KB  
Article
ADAImpact Tool: Toward a European Ground Motion Impact Map
by Nelson Mileu, Anna Barra, Pablo Ezquerro, Sérgio C. Oliveira, Ricardo A. C. Garcia, Raquel Melo, Pedro Pinto Santos, Marta Béjar-Pizarro, Oriol Monserrat and José Luís Zêzere
ISPRS Int. J. Geo-Inf. 2025, 14(10), 389; https://doi.org/10.3390/ijgi14100389 - 6 Oct 2025
Viewed by 390
Abstract
This article presents the ADAImpact tool, a QGIS plugin designed to assess the potential impacts of geohazards—such as landslides, subsidence, and sinkholes—using open-access surface displacement data from the European Ground Motion Service (EGMS), which is based on Sentinel-1 satellite observations. Created as part [...] Read more.
This article presents the ADAImpact tool, a QGIS plugin designed to assess the potential impacts of geohazards—such as landslides, subsidence, and sinkholes—using open-access surface displacement data from the European Ground Motion Service (EGMS), which is based on Sentinel-1 satellite observations. Created as part of the European RASTOOL project, ADAImpact integrates InSAR-derived ground movement data with exposure datasets (including population, infrastructure, and buildings) to support civil protection agencies in conducting risk assessments and planning emergency responses. The tool combines “Process Magnitude”, with “Exposure” metrics, quantifying the population and critical infrastructure affected, to generate potential impact maps for ground motion hazards. When applied to case studies along the Portugal–Spain border and the coastal region of Granada, Spain, ADAImpact successfully identified areas of high potential impact. These results underscore the tool’s utility in pre- and post-disaster assessment, highlighting its potential for scalability across Europe. Full article
Show Figures

Figure 1

23 pages, 2760 KB  
Article
Improving the Accuracy of Seasonal Crop Coefficients in Grapevine from Sentinel-2 Data
by Diego R. Guevara-Torres, Hankun Luo, Chi Mai Do, Bertram Ostendorf and Vinay Pagay
Remote Sens. 2025, 17(19), 3365; https://doi.org/10.3390/rs17193365 - 4 Oct 2025
Viewed by 314
Abstract
Accurate assessment of a crop’s water requirement is essential for optimising irrigation scheduling and increasing the sustainability of water use. The crop coefficient (Kc) is a dimensionless factor that converts reference evapotranspiration (ET0) into actual crop evapotranspiration (ET [...] Read more.
Accurate assessment of a crop’s water requirement is essential for optimising irrigation scheduling and increasing the sustainability of water use. The crop coefficient (Kc) is a dimensionless factor that converts reference evapotranspiration (ET0) into actual crop evapotranspiration (ETc) and is widely used for irrigation scheduling. The Kc reflects canopy cover, phenology, and crop type/variety, but is difficult to measure directly in heterogeneous perennial systems, such as vineyards. Remote sensing (RS) products, especially open-source satellite imagery, offer a cost-effective solution at moderate spatial and temporal scales, although their application in vineyards has been relatively limited due to the large pixel size (~100 m2) relative to vine canopy size (~2 m2). This study aimed to improve grapevine Kc predictions using vegetation indices derived from harmonised Sentinel-2 imagery in combination with spectral unmixing, with ground data obtained from canopy light interception measurements in three winegrape cultivars (Shiraz, Cabernet Sauvignon, and Chardonnay) in the Barossa and Eden Valleys, South Australia. A linear spectral mixture analysis approach was taken, which required estimation of vine canopy cover through beta regression models to improve the accuracy of vegetation indices that were used to build the Kc prediction models. Unmixing improved the prediction of seasonal Kc values in Shiraz (R2 of 0.625, RMSE = 0.078, MAE = 0.063), Cabernet Sauvignon (R2 = 0.686, RMSE = 0.072, MAE = 0.055) and Chardonnay (R2 = 0.814, RMSE = 0.075, MAE = 0.059) compared to unmixed pixels. Furthermore, unmixing improved predictions during the early and late canopy growth stages when pixel variability was greater. Our findings demonstrate that integrating open-source satellite data with machine learning models and spectral unmixing can accurately reproduce the temporal dynamics of Kc values in vineyards. This approach was also shown to be transferable across cultivars and regions, providing a practical tool for crop monitoring and irrigation management in support of sustainable viticulture. Full article
Show Figures

Figure 1

25 pages, 6271 KB  
Article
Estimating Fractional Land Cover Using Sentinel-2 and Multi-Source Data with Traditional Machine Learning and Deep Learning Approaches
by Sergio Sierra, Rubén Ramo, Marc Padilla, Laura Quirós and Adolfo Cobo
Remote Sens. 2025, 17(19), 3364; https://doi.org/10.3390/rs17193364 - 4 Oct 2025
Viewed by 408
Abstract
Land cover mapping is essential for territorial management due to its links with ecological, hydrological, climatic, and socioeconomic processes. Traditional methods use discrete classes per pixel, but this study proposes estimating cover fractions with Sentinel-2 imagery (20 m) and AI. We employed the [...] Read more.
Land cover mapping is essential for territorial management due to its links with ecological, hydrological, climatic, and socioeconomic processes. Traditional methods use discrete classes per pixel, but this study proposes estimating cover fractions with Sentinel-2 imagery (20 m) and AI. We employed the French Land cover from Aerospace ImageRy (FLAIR) dataset (810 km2 in France, 19 classes), with labels co-registered with Sentinel-2 to derive precise fractional proportions per pixel. From these references, we generated training sets combining spectral bands, derived indices, and auxiliary data (climatic and temporal variables). Various machine learning models—including XGBoost three deep neural network (DNN) architectures with different depths, and convolutional neural networks (CNNs)—were trained and evaluated to identify the optimal configuration for fractional cover estimation. Model validation on the test set employed RMSE, MAE, and R2 metrics at both pixel level (20 m Sentinel-2) and scene level (100 m FLAIR). The training set integrating spectral bands, vegetation indices, and auxiliary variables yielded the best MAE and RMSE results. Among all models, DNN2 achieved the highest performance, with a pixel-level RMSE of 13.83 and MAE of 5.42, and a scene-level RMSE of 4.94 and MAE of 2.36. This fractional approach paves the way for advanced remote sensing applications, including continuous cover-change monitoring, carbon footprint estimation, and sustainability-oriented territorial planning. Full article
(This article belongs to the Special Issue Multimodal Remote Sensing Data Fusion, Analysis and Application)
Show Figures

Figure 1

24 pages, 73520 KB  
Article
2C-Net: A Novel Spatiotemporal Dual-Channel Network for Soil Organic Matter Prediction Using Multi-Temporal Remote Sensing and Environmental Covariates
by Jiale Geng, Chong Luo, Jun Lu, Depiao Kong, Xue Li and Huanjun Liu
Remote Sens. 2025, 17(19), 3358; https://doi.org/10.3390/rs17193358 - 3 Oct 2025
Viewed by 297
Abstract
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes [...] Read more.
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes in input data across successive time steps. However, they do not adequately model the relationships among different input variables, which hinders the capture of complex data patterns and limits the accuracy of predictions. To address this problem, this paper proposes a novel deep learning model, 2-Channel Network (2C-Net), leveraging sequential multi-temporal remote sensing images to improve SOM prediction. The network separates input data into temporal and spatial data, processing them through independent temporal and spatial channels. Temporal data includes multi-temporal Sentinel-2 spectral reflectance, while spatial data consists of environmental covariates including climate and topography. The Multi-sequence Feature Fusion Module (MFFM) is proposed to globally model spectral data across multiple bands and time steps, and the Diverse Convolutional Architecture (DCA) extracts spatial features from environmental data. Experimental results show that 2C-Net outperforms the baseline model (CNN-LSTM) and mainstream machine learning model for DSM, with R2 = 0.524, RMSE = 0.884 (%), MAE = 0.581 (%), and MSE = 0.781 (%)2. Furthermore, this study demonstrates the significant importance of sequential spectral data for the inversion of SOM content and concludes the following: for the SOM inversion task, the bare soil period after tilling is a more important time window than other bare soil periods. 2C-Net model effectively captures spatiotemporal features, offering high-accuracy SOM predictions and supporting future DSM and soil management. Full article
(This article belongs to the Special Issue Remote Sensing in Soil Organic Carbon Dynamics)
Show Figures

Figure 1

Back to TopTop