Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Stachybotrys chartarum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3658 KB  
Article
The Effect of Particles from Rotten Spruce Logs and Recycled Wooden Composites on Changes in the Bio-Resistance of Three-Layer Particleboards Against the Decaying Fungus Coniophora puteana and Mixture of Moulds
by Zuzana Vidholdová, Viktória Satinová and Ladislav Reinprecht
Forests 2024, 15(11), 2043; https://doi.org/10.3390/f15112043 - 19 Nov 2024
Viewed by 1076
Abstract
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study [...] Read more.
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study investigates the biological resistance of the three-layer, laboratory-prepared PBs with varied amounts of particles, from sound spruce wood to particles, and from spruce logs attacked by brown- or white rot, respectively, to particles from recycled wooden composites of laminated particleboards (LPBs) or blockboards (BBs), i.e., 100:0, 80:20, 50:50, and 0:100. The bio-resistance of PBs was evaluated against the brown-rot fungus Coniophora puteana, as well as against a mixture of moulds’ “microscopic fungi”, such as Aspergillus versicolor BAM 8, Aspergillus niger BAM 122, Penicillium purpurogenum BAM 24, Stachybotrys chartarum BAM 32, and Rhodotorula mucilaginosa BAM 571. PBs containing particles from brown-rotten wood or from recycled wood composites, particularly LPBs, had a partly enhanced decay resistance, but their mass loss was nevertheless more than 30%. On the other hand, the mould resistance of all variants of PBs, evaluated in the 21st day, was very poor, with the highest mould growth activity (MGA = 4). These findings suggested that some types of rotten and recycled wood particles can improve the biological resistance of PBs; however, their effectiveness is influenced by the type of wood degradation and the source of recycled materials. Further, the results highlight the need for improved biocidal, chemical, or thermal modifications of wood particles to enhance the overall biological durability of PBs for specific uses. Full article
Show Figures

Figure 1

15 pages, 3557 KB  
Article
The Effect of Organic Lake Sediments (Sapropel) on the Properties and Biological Resistance of Unfired Clay Bricks
by Violeta Voišnienė, Olga Kizinievič, Ramunė Albrektienė-Plačakė, Dovilė Vasiliauskienė, Jaunius Urbonavičius and Rasa Vilkauskaitė
Sustainability 2024, 16(6), 2327; https://doi.org/10.3390/su16062327 - 12 Mar 2024
Cited by 1 | Viewed by 1722
Abstract
Clay materials were prepared with clay and sapropel (SP) or clay and modified (frozen) sapropel (FSP) as the main raw materials. Clay-based materials were formed by mixing clay with a different dosage of SP or FSP (5–30 wt.%). The effect of SP or [...] Read more.
Clay materials were prepared with clay and sapropel (SP) or clay and modified (frozen) sapropel (FSP) as the main raw materials. Clay-based materials were formed by mixing clay with a different dosage of SP or FSP (5–30 wt.%). The effect of SP or FSP on the properties and biological resistance of clay-based materials was studied. The results show that the bulk density of clay-based materials decreased, and the compressive strength and initial rate of water absorption increased with the increase in the SP or FSP amount in the clay mixture. Research has shown that SP or FSP can be added as a natural additive containing microfibers to improve the mechanical properties of clay materials. When clay bricks had less than 15% sapropel, dry or frozen, we tested the resistance impact of the fungi Rhodotorula mucilaginosa, Stachybotrys chartarum, Cladosporium cladosporioides, and Aureobasidium pullulans under normal conditions. Full article
Show Figures

Figure 1

21 pages, 2742 KB  
Article
New Phenylspirodrimanes from the Sponge-Associated Fungus Stachybotrys chartarum MUT 3308
by Marie Dayras, Estelle Sfecci, Elena Bovio, Olivia Rastoin, Maeva Dufies, Fabien Fontaine-Vive, Elisabeth Taffin-de-Givenchy, Thierry Lacour, Gilles Pages, Giovanna Cristina Varese and Mohamed Mehiri
Mar. Drugs 2023, 21(3), 135; https://doi.org/10.3390/md21030135 - 21 Feb 2023
Cited by 7 | Viewed by 4148
Abstract
Two phenylspirodrimanes, never isolated before, stachybotrin J (1) and new stachybocin G (epi-stachybocin A) (2), along with the already reported stachybotrin I (3), stachybotrin H (4), stachybotrylactam (5), stachybotrylactam acetate ( [...] Read more.
Two phenylspirodrimanes, never isolated before, stachybotrin J (1) and new stachybocin G (epi-stachybocin A) (2), along with the already reported stachybotrin I (3), stachybotrin H (4), stachybotrylactam (5), stachybotrylactam acetate (6), 2α-acetoxystachybotrylactam acetate (7), stachybotramide (8), chartarlactam B (9), and F1839-J (10) were isolated from the sponge-associated fungus Stachybotrys chartarum MUT 3308. Their structures were established based on extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses. Absolute configurations of the stereogenic centers of stachybotrin J (1), stachybocin G (2), and stachybotrin I (3), were determined by comparison of their experimental circular dichroism (CD) spectra with their time-dependent density functional theory (TD-DFT) circular dichroism (ECD) spectra. The putative structures of seventeen additional phenylspirodrimanes were proposed by analysis of their respective MS/MS spectra through a Feature-Based Molecular Networking approach. All the isolated compounds were evaluated for their cytotoxicity against five aggressive cancer cell lines (MP41, 786, 786R, CAL33, and CAL33RR), notably including two resistant human cancer cell lines (786R, CAL33RR), and compounds 5, 6, and 7 exhibited cytotoxicity with IC50 values in the range of 0.3−2.2 µM. Full article
Show Figures

Graphical abstract

17 pages, 8184 KB  
Article
Docking and Molecular Dynamic Investigations of Phenylspirodrimanes as Cannabinoid Receptor-2 Agonists
by Abdelsattar M. Omar, Anfal S. Aljahdali, Martin K. Safo, Gamal A. Mohamed and Sabrin R. M. Ibrahim
Molecules 2023, 28(1), 44; https://doi.org/10.3390/molecules28010044 - 21 Dec 2022
Cited by 15 | Viewed by 3286
Abstract
Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported [...] Read more.
Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56 revealed the highest docking score (−11.222 kcal/mol) compared to E3R_6KPF (native agonist, gscore value −12.12 kcal/mol). The molecular docking and molecular simulation results suggest that compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions displayed π–π stacking with Phe183 and hydrogen bond interactions with Thr114, Leu182, and Ser285. These findings identified the structural features of these metabolites that might lead to the design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be further investigated for their potential as a CB2 ligand. Full article
(This article belongs to the Special Issue Cannabinoid-Related Compounds for Medical Use)
Show Figures

Figure 1

19 pages, 2451 KB  
Article
Production of Satratoxin G and H Is Tightly Linked to Sporulation in Stachybotrys chartarum
by Katharina Tribelhorn, Magdalena Twarużek, Ewelina Soszczyńska, Jörg Rau, Christiane Baschien, Reinhard K. Straubinger, Frank Ebel and Sebastian Ulrich
Toxins 2022, 14(8), 515; https://doi.org/10.3390/toxins14080515 - 28 Jul 2022
Cited by 5 | Viewed by 7305
Abstract
Stachybotrys chartarum is a toxigenic fungus that is frequently isolated from damp building materials or improperly stored forage. Macrocyclic trichothecenes and in particular satratoxins are the most potent mycotoxins known to be produced by this fungus. Exposure of humans or animals to these [...] Read more.
Stachybotrys chartarum is a toxigenic fungus that is frequently isolated from damp building materials or improperly stored forage. Macrocyclic trichothecenes and in particular satratoxins are the most potent mycotoxins known to be produced by this fungus. Exposure of humans or animals to these secondary metabolites can be associated with severe health problems. To assess the pathogenic potential of S. chartarum isolates, it is essential to cultivate them under conditions that reliably promote toxin production. Potato dextrose agar (PDA) was reported to be the optimal nutrition medium for satratoxin production. In this study, the growth of S. chartarum genotype S strains on PDA from two manufacturers led to divergent results, namely, well-grown and sporulating cultures with high satratoxin concentrations (20.8 ± 0.4 µg/cm2) versus cultures with sparse sporulation and low satratoxin production (0.3 ± 0.1 µg/cm2). This finding is important for any attempt to identify toxigenic S. chartarum isolates. Further experiments performed with the two media provided strong evidence for a link between satratoxin production and sporulation. A comparison of three-point and one-point cultures grown on the two types of PDA, furthermore, demonstrated an inter-colony communication that influences both sporulation and mycotoxin production of S. chartarum genotype S strains. Full article
(This article belongs to the Special Issue Toxicity Mechanisms and Management Strategies of Mycotoxin)
Show Figures

Graphical abstract

75 pages, 8490 KB  
Review
Stachybotrys chartarum—A Hidden Treasure: Secondary Metabolites, Bioactivities, and Biotechnological Relevance
by Sabrin R. M. Ibrahim, Hani Choudhry, Amer H. Asseri, Mahmoud A. Elfaky, Shaimaa G. A. Mohamed and Gamal A. Mohamed
J. Fungi 2022, 8(5), 504; https://doi.org/10.3390/jof8050504 - 12 May 2022
Cited by 34 | Viewed by 6418
Abstract
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. [...] Read more.
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited. Full article
Show Figures

Figure 1

19 pages, 2132 KB  
Article
The Evolution of the Satratoxin and Atranone Gene Clusters of Stachybotrys chartarum
by Sebastian Ulrich, Katharina Lang, Ludwig Niessen, Christiane Baschien, Robert Kosicki, Magdalena Twarużek, Reinhard K. Straubinger and Frank Ebel
J. Fungi 2022, 8(4), 340; https://doi.org/10.3390/jof8040340 - 24 Mar 2022
Cited by 3 | Viewed by 3683
Abstract
Stachybotrys chartarum is frequently isolated from damp building materials or improperly stored animal forage. Human and animal exposure to the secondary metabolites of this mold is linked to severe health effects. The mutually exclusive production of either satratoxins or atranones defines the chemotypes [...] Read more.
Stachybotrys chartarum is frequently isolated from damp building materials or improperly stored animal forage. Human and animal exposure to the secondary metabolites of this mold is linked to severe health effects. The mutually exclusive production of either satratoxins or atranones defines the chemotypes A and S. Based upon the genes (satratoxin cluster, SC1-3, sat or atranone cluster, AC1, atr) that are supposed to be essential for satratoxin and atranone production, S. chartarum can furthermore be divided into three genotypes: the S-type possessing all sat- but no atr-genes, the A-type lacking the sat- but harboring all atr-genes, and the H-type having only certain sat- and all atr-genes. We analyzed the above-mentioned gene clusters and their flanking regions to shed light on the evolutionary relationship. Furthermore, we performed a deep re-sequencing and LC-MS/MS (Liquid chromatography–mass spectrometry) analysis. We propose a first model for the evolution of the S. chartarum genotypes. We assume that genotype H represents the most ancient form. A loss of the AC1 and the concomitant acquisition of the SC2 led to the emergence of the genotype S. According to our model, the genotype H also developed towards genotype A, a process that was accompanied by a loss of SC1 and SC3. Full article
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny)
Show Figures

Figure 1

19 pages, 1182 KB  
Review
Update on Stachybotrys chartarum—Black Mold Perceived as Toxigenic and Potentially Pathogenic to Humans
by Mariusz Dyląg, Klaudyna Spychała, Jessica Zielinski, Dominik Łagowski and Sebastian Gnat
Biology 2022, 11(3), 352; https://doi.org/10.3390/biology11030352 - 23 Feb 2022
Cited by 15 | Viewed by 18112
Abstract
In nature, there are many species of fungi known to produce various mycotoxins, allergens and volatile organic compounds (VOCs), as well as the commonly known etiological agents of various types of mycoses. So far, none of them have provoked so much emotion among [...] Read more.
In nature, there are many species of fungi known to produce various mycotoxins, allergens and volatile organic compounds (VOCs), as well as the commonly known etiological agents of various types of mycoses. So far, none of them have provoked so much emotion among homeowners, builders, conservators, mycologists and clinicians as Stachybotrys chartarum. This species compared to fungi of the genera Fusarium and Aspergillus is not as frequently described to be a micromycete that is toxigenic and hazardous to human and animal health, but interest in it has been growing consistently for three decades. Depending on the authors of any given review article, attention is focused either on the clinical aspects alongside the role of this fungus in deterioration of biomaterials, or aspects related to its biology, ecology and taxonomic position. On the one hand, it is well established that inhalation of conidia, containing the highest concentrations of toxic metabolites, may cause serious damage to the mammalian lung, particularly with repeated exposure. On the other hand, we can find articles in which authors demonstrate that S. chartarum conidia can germinate and form hyphae in lungs but are not able to establish an effective infection. Finally, we can find case reports that suggest that S. chartarum infection is linked with acute pulmonary hemorrhage, based on fungal structures recovered from patient lung tissue. New scientific reports have verified the current state of knowledge and note that clinical significance of this fungus is exceedingly controversial. For these reasons, understanding S. chartarum requires reviewing the well-known toxigenic features and harmful factors associated with this fungus, by gathering the newest ones into a coherent whole. The research problem related to this fungus seems to be not overly publicized, and there is still a demand to truthfully define the real threats of S. chartarum and phylogenetically related species. The most important problem, which should be fully elucidated as soon as possible, remains the clarification of the pathogenicity of S. chartarum and related species. Maybe it is urgent time to ask a critical question, namely what exactly do we know 28 years after the outbreak of pulmonary hemorrhage in infants in Cleveland, Ohio, USA most likely caused by S. chartarum? Full article
Show Figures

Graphical abstract

16 pages, 3392 KB  
Article
Comparative Mitogenomics of Fungal Species in Stachybotryaceae Provides Evolutionary Insights into Hypocreales
by Li-Yuan Ren, Shu Zhang and Yong-Jie Zhang
Int. J. Mol. Sci. 2021, 22(24), 13341; https://doi.org/10.3390/ijms222413341 - 12 Dec 2021
Cited by 19 | Viewed by 3128
Abstract
Stachybotrys chartarum is one of the world’s ten most feared fungi within the family Stachybotryaceae, although to date, not a single mitogenome has been documented for Stachybotryaceae. Herein, six mitogenomes of four different species in Stachybotryaceae are newly reported. The S. chartarum mitogenome [...] Read more.
Stachybotrys chartarum is one of the world’s ten most feared fungi within the family Stachybotryaceae, although to date, not a single mitogenome has been documented for Stachybotryaceae. Herein, six mitogenomes of four different species in Stachybotryaceae are newly reported. The S. chartarum mitogenome was 30.7 kb in length and contained two introns (one each in rnl and cox1). A comparison of the mitogenomes of three different individuals of S. chartarum showed few nucleotide variations and conservation of gene content/order and intron insertion. A comparison of the mitogenomes of four different Stachybotryaceae species (Memnoniella echinata, Myrothecium inundatum, S. chartarum, and S. chlorohalonata), however, revealed variations in intron insertion, gene order/content, and nad2/nad3 joining pattern. Further investigations on all Hypocreales species with available mitogenomes showed greater variabilities in gene order (six patterns) and nad2/nad3 joining pattern (five patterns) although a dominant pattern always existed in each case. Ancestral state estimation showed that in each case the dominant pattern was always more ancestral than those rare patterns. Phylogenetic analyses based on mitochondrion-encoded genes supported the placement of Stachybotryaceae in Hypocreales. The crown age of Stachybotryaceae was estimated to be approximately the Early Cretaceous (141–142 Mya). This study greatly promotes our understanding of the evolution of fungal species in Hypocreales. Full article
(This article belongs to the Special Issue Mitochondria Genome)
Show Figures

Figure 1

12 pages, 1633 KB  
Article
Molecular Characterization of Fungal Biodiversity in Long-Term Polychlorinated Biphenyl-Contaminated Soils
by Camille Marchal, Joaquim Germain, Muriel Raveton, Blandine Lyonnard, Cindy Arnoldi, Marie-Noëlle Binet and Bello Mouhamadou
Microorganisms 2021, 9(10), 2051; https://doi.org/10.3390/microorganisms9102051 - 28 Sep 2021
Cited by 5 | Viewed by 2238
Abstract
Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different [...] Read more.
Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils. Full article
(This article belongs to the Special Issue Fungal Biodiversity for Bioremediation)
Show Figures

Figure 1

15 pages, 6161 KB  
Article
Natural Compounds Isolated from Stachybotrys chartarum Are Potent Inhibitors of Human Protein Kinase CK2
by Samer Haidar, Franziska M. Jürgens, Dagmar Aichele, Annika Jagels, Hans-Ulrich Humpf and Joachim Jose
Molecules 2021, 26(15), 4453; https://doi.org/10.3390/molecules26154453 - 23 Jul 2021
Cited by 3 | Viewed by 3361
Abstract
A large number of secondary metabolites have been isolated from the filamentous fungus Stachybotrys chartarum and have been described before. Fourteen of these natural compounds were evaluated in vitro in the present study for their inhibitory activity towards the cancer target CK2. Among [...] Read more.
A large number of secondary metabolites have been isolated from the filamentous fungus Stachybotrys chartarum and have been described before. Fourteen of these natural compounds were evaluated in vitro in the present study for their inhibitory activity towards the cancer target CK2. Among these compounds, stachybotrychromene C, stachybotrydial acetate and acetoxystachybotrydial acetate turned out to be potent inhibitors with IC50 values of 0.32 µM, 0.69 µM and 1.86 µM, respectively. The effects of these three compounds on cell proliferation, growth and viability of MCF7 cells, representing human breast adenocarcinoma as well as A427 (human lung carcinoma) and A431 (human epidermoid carcinoma) cells, were tested using EdU assay, IncuCyte® live-cell imaging and MTT assay. The most active compound in inhibiting MCF7 cell proliferation was acetoxystachybotrydial acetate with an EC50 value of 0.39 µM. In addition, acetoxystachybotrydial acetate turned out to inhibit the growth of all three cell lines completely at a concentration of 1 µM. In contrast, cell viability was impaired only moderately, to 37%, 14% and 23% in MCF7, A427 and A431 cells, respectively. Full article
(This article belongs to the Collection Molecular Medicine)
Show Figures

Graphical abstract

14 pages, 3097 KB  
Article
Mold and Yeast-Like Fungi in the Seaside Air of the Gulf of Gdańsk (Southern Baltic) after an Emergency Disposal of Raw Sewage
by Małgorzata Michalska, Monika Kurpas, Katarzyna Zorena, Piotr Wąż and Roman Marks
J. Fungi 2021, 7(3), 219; https://doi.org/10.3390/jof7030219 - 17 Mar 2021
Cited by 9 | Viewed by 3986
Abstract
The aim of this study was to determine the correlation between the meteorological factors and the number of molds and yeast-like fungi in the air in the five coastal towns in the years 2014–2017, and in 2018, after emergency disposal of raw sewage [...] Read more.
The aim of this study was to determine the correlation between the meteorological factors and the number of molds and yeast-like fungi in the air in the five coastal towns in the years 2014–2017, and in 2018, after emergency disposal of raw sewage to the Gdańsk Gulf. In the years 2014–2018, a total number of 88 air samples were collected in duplicate in the five coastal towns of Hel, Puck, Gdynia, Sopot, and Gdańsk-Brzeźno. After the application of the (PCA) analysis, this demonstrated that the first principal component (PC1) had a positive correlation with the water temperature, wind speed, air temperature, and relative humidity. The second principal component (PC2) had a positive correlation with the relative humidity, wind speed, wind direction, and air temperature. In 2018, potentially pathogenic mold and yeast-like fungi (Candida albicans, Stachybotrys chartarum complex, Aspergillus section Fumigati) were detected in the seaside air. While the detected species were not observed in the years 2014–2017. We suggest that it is advisable to inform residents about the potential health risk in the event of raw sewage disposal into the water. Moreover, in wastewater treatment plants, tighter measures, including wastewater disinfection, should be introduced. Full article
(This article belongs to the Special Issue Marine Fungus)
Show Figures

Graphical abstract

12 pages, 2442 KB  
Article
Testing the Toxicity of Stachybotrys chartarum in Indoor Environments—A Case Study
by Marlena Piontek and Katarzyna Łuszczyńska
Energies 2021, 14(6), 1602; https://doi.org/10.3390/en14061602 - 13 Mar 2021
Cited by 4 | Viewed by 5818
Abstract
Infestation of interior walls of buildings with fungal mould is a reason for health concern which is exacerbated in energy-efficient buildings that limit air circulation. Both mycological and mycotoxicological studies are needed to determine the potential health hazards to residents. In this paper, [...] Read more.
Infestation of interior walls of buildings with fungal mould is a reason for health concern which is exacerbated in energy-efficient buildings that limit air circulation. Both mycological and mycotoxicological studies are needed to determine the potential health hazards to residents. In this paper, a rare case of the occurrence of Stachybotrys chartarum in an apartment building in the Lubuskie Province in Poland has been described. Isolated as the major constituent of a mixed mycobiota, its specific health relevance still needs to be carefully analyzed as its biochemical aptitude for the synthesis of mycotoxins may be expressed at different levels. Therefore, ecotoxicological tests were performed using two bioindicators: Dugesia tigrina Girard and Daphnia magna Straus. D. tigrina was used for the first time to examine the toxicity of S. chartarum. The ecotoxicological tests showed that the analyzed strain belonged to the third and fourth toxicity classes according to Liebmann’s classification. The strain of S. chartarum was moderately toxic on Potato Dextrose Agar (PDA) as a culture medium (toxicity class III), and slightly toxic on Malt Extract Agar (MEA) (toxicity class IV). Toxicity was additionally tested by instrumental analytical methods (LC-MS/MS). This method allowed for the identification of 13 metabolites (five metabolites reported for Stachybotrys and eight for unspecific metabolites). Spirocyclic drimanes were detected in considerable quantities (ng/g); a higher concentration was observed for stachybotryamide (109,000 on PDA and 62,500 on MEA) and lower for stachybotrylactam (27,100 on PDA and 46,300 on MEA). Both may explain the result observed through the bioindicators. Highly toxic compounds such as satratoxins were not found in the sample. This confirms the applicability of the two bioindicators, which also show mutual compatibility, as suitable tools to assess the toxicity of moulds. Full article
(This article belongs to the Special Issue Life Cycle Thinking for a Sustainable Built Environment)
Show Figures

Figure 1

10 pages, 1319 KB  
Article
Toxin Production by Stachybotrys chartarum Genotype S on Different Culture Media
by Sebastian Ulrich and Cornelius Schäfer
J. Fungi 2020, 6(3), 159; https://doi.org/10.3390/jof6030159 - 2 Sep 2020
Cited by 16 | Viewed by 5994
Abstract
Stachybotrys (S.) chartarum had been linked to severe health problems in humans and animals, which occur after exposure to the toxic secondary metabolites of this mold. S. chartarum had been isolated from different environmental sources, ranging from culinary herbs and improperly [...] Read more.
Stachybotrys (S.) chartarum had been linked to severe health problems in humans and animals, which occur after exposure to the toxic secondary metabolites of this mold. S. chartarum had been isolated from different environmental sources, ranging from culinary herbs and improperly stored fodder to damp building materials. To access the pathogenic potential of isolates, it is essential to analyze them under defined conditions that allow for the production of their toxic metabolites. All Stachybotrys species are assumed to produce the immunosuppressive phenylspirodrimanes, but the highly cytotoxic macrocyclic trichothecenes are exclusively generated by the genotype S of S. chartarum. In this study, we have analyzed four genotype S strains initially isolated from three different habitats. We grew them on five commonly used media (malt-extract-agar, glucose-yeast-peptone-agar, potato-dextrose-agar, cellulose-agar, Sabouraud-dextrose-agar) to identify conditions that promote mycotoxin production. Using LC-MS/MS, we have quantified stachybotrylactam and all S-type specific macrocyclic trichothecenes (satratoxin G, H, F, roridin E, L-2, verrucarin J). All five media supported a comparable fungal growth and sporulation at 25 °C in the dark. The highest concentrations of macrocyclic trichothecenes were detected on potato-dextrose-agar or cellulose-agar. Malt-extract-agar let to an intermediate and glucose-yeast-peptone-agar and Sabouraud-dextrose-agar to a poor mycotoxin production. These data demonstrate that the mycotoxin production clearly depends on the composition of the respective medium. Our findings provide a starting point for further studies in order to identify individual components that either support or repress the production of mycotoxins in S. chartarum. Full article
Show Figures

Graphical abstract

16 pages, 1670 KB  
Article
Pro-Inflammatory Responses in Human Bronchial Epithelial Cells Induced by Spores and Hyphal Fragments of Common Damp Indoor Molds
by Elisabeth Øya, Rune Becher, Leni Ekeren, Anani K.J. Afanou, Johan Øvrevik and Jørn A. Holme
Int. J. Environ. Res. Public Health 2019, 16(6), 1085; https://doi.org/10.3390/ijerph16061085 - 26 Mar 2019
Cited by 22 | Viewed by 4829
Abstract
Damp indoor environments contaminated with different mold species may contribute to the development and exacerbation of respiratory illnesses. Human bronchial epithelial BEAS-2B cells were exposed to X-ray treated spores and hyphal fragments from pure cultures of Aspergillus fumigatus, Penicillum chrysogenum, Aspergillus [...] Read more.
Damp indoor environments contaminated with different mold species may contribute to the development and exacerbation of respiratory illnesses. Human bronchial epithelial BEAS-2B cells were exposed to X-ray treated spores and hyphal fragments from pure cultures of Aspergillus fumigatus, Penicillum chrysogenum, Aspergillus versicolor and Stachybotrys chartarum. Hyphal fragments of A. fumigatus and P. chrysogenum induced expression and release of the pro-inflammatory cytokine interleukin (IL)-6 and the chemokine IL-8, while none of the other hyphal preparations had effects. Hyphal fragments from A. fumigatus and P. chrysogenum also increased the expression of IL-1α, IL-1β and tumor necrosis factor (TNF)-α, but these cytokines were not released. X-ray treated spores had little or no inflammatory potential. Attenuating Toll-like receptor (TLR)-2 by blocking antibodies strongly reduced the A. fumigatus and P. chrysogenum hyphae-induced IL-6 and IL-8 release, whereas TLR4 antagonist treatment was without effects. Untreated A. fumigatus spores formed hyphae and triggered expression of pro-inflammatory genes with similarities to the effects of hyphal fragments. In conclusion, while X-ray treated spores induced no pro-inflammatory responses, hyphal fragments of A. fumigatus and P. chrysogenum enhanced a TLR2-dependent expression and release of IL-6 and IL-8. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop