Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = TIEGCM simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12319 KB  
Article
The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024
by Di Bai, Yijun Fu, Chunyong Yang, Kedeng Zhang and Yongqiang Cui
Remote Sens. 2025, 17(15), 2616; https://doi.org/10.3390/rs17152616 - 28 Jul 2025
Viewed by 515
Abstract
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), [...] Read more.
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), in situ electron density data from the Swarm satellite, and corresponding simulations from the thermosphere–ionosphere–electrodynamics general circulation model (TIEGCM), the dynamic poleward shift of the equatorial ionization anomaly (EIA) during the main phase of the super geomagnetic storm has been explored. The results show that the EIA crests moved poleward from ±15° magnetic latitude (MLat) to ±20° MLat at around 19.6 UT, to ±25° MLat at 21.2 UT, and to ±31° MLat at 22.7 UT. This poleward shift was primarily driven by the enhanced eastward electric field, neutral winds, and ambipolar diffusion. Storm-induced meridional winds can move ionospheric plasma upward/downward along geomagnetic field lines, causing the poleward movement of EIA crests, with minor contributions from zonal winds. Ambipolar diffusion contributes/prevents the formation of EIA crests at most EIA latitudes/the equatorward edge. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

20 pages, 8775 KB  
Article
Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023
by Hongshan Liu, Hong Gao, Zheng Li, Jiyao Xu, Weihua Bai, Longchang Sun and Zhongmu Li
Remote Sens. 2024, 16(19), 3683; https://doi.org/10.3390/rs16193683 - 2 Oct 2024
Viewed by 999
Abstract
The response of NO emission at 5.3 μm in the thermosphere to the geomagnetic storm on 24 April 2023 is analyzed using TIMED/SABER observations and TIEGCM simulations. Both the observations and the simulations indicate a significant enhancement in NO emission during the storm. [...] Read more.
The response of NO emission at 5.3 μm in the thermosphere to the geomagnetic storm on 24 April 2023 is analyzed using TIMED/SABER observations and TIEGCM simulations. Both the observations and the simulations indicate a significant enhancement in NO emission during the storm. Observations show two peaks around 50°S/N in the altitude–latitude distribution of NO emission and its relative variation. Additionally, the peak emission and enhancement are stronger on the nightside compared with the dayside. The peak altitude in the Northern Hemisphere is approximately 2–10 km higher than in the Southern Hemisphere; meanwhile, the peak altitude on the dayside is approximately 2–8 km higher than that on the nightside. Simulations reveal three peaks around 50°S, the equator, and 65°N, with peak altitudes at higher latitudes being slightly lower than those observed. In general, the altitude–latitude distribution structure of the relative variation in simulated NO emission matches observations, with two peaks around 50°S/N. TIEGCM simulations suggest that the increase in NO density and temperature during a geomagnetic storm can lead to an increase in NO emission at most altitudes and latitudes. Furthermore, the significant enhancement around 50°S/N is mainly attributed to the changes in NO density. Full article
Show Figures

Figure 1

13 pages, 4586 KB  
Article
Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations
by Tikemani Bag, Diptiranjan Rout, Yasunobu Ogawa and Vir Singh
Atmosphere 2023, 14(3), 556; https://doi.org/10.3390/atmos14030556 - 14 Mar 2023
Cited by 8 | Viewed by 2334
Abstract
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy [...] Read more.
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy deposition results in the Joule and particle heating that subsequently increases the thermospheric temperature. The thermospheric temperature is effectively regulated by the process of thermospheric cooling emission by nitric oxide via 5.3 µm. A peculiar, intense geomagnetic storm (Dst = −105 nT) occurred during 21–22 January 2005, where the main phase developed during the northward orientation of the z-component of interplanetary magnetic field. We utilized the nitric oxide 5.3 µm infrared emission from the NCAR’s Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIEGCM) simulation and the Sounding of Atmosphere using Broadband Emission Radiometry (SABER) onboard the thermosphere–ionosphere–mesosphere energetic and dynamics satellite to investigate its response to this anomalous geomagnetic storm. We compared the model results with the observations on both the local and global scales. It is observed that the model results agree very well with the observations during quiet times. However, the model severely underestimates the cooling emission by one-fourth of the observations, although it predicts an enhancement in the thermospheric temperature and densities of atomic oxygen and nitric oxide during the geomagnetic storm. Full article
(This article belongs to the Special Issue Structure and Dynamics of Mesosphere and Lower Thermosphere)
Show Figures

Figure 1

14 pages, 4072 KB  
Article
An Empirical Orthogonal Function Study of the Ionospheric TEC Predicted Using the TIEGCM Model over the South Atlantic Anomaly in 2002 and 2008
by Jing Yu, Zheng Li, Yan Wang, Jingjing Shao, Luyao Wang, Jingyuan Li, Hua Zhang, Xiaojun Xu and Chunli Gu
Universe 2023, 9(2), 102; https://doi.org/10.3390/universe9020102 - 16 Feb 2023
Cited by 3 | Viewed by 1945
Abstract
In this study, the variability of the ionospheric total electron content (TEC) in the South Atlantic Anomaly (SAA) in the solar maximum of 2002 and the solar minimum of 2008 were compared by using an empirical orthogonal function (EOF) analysis. The ionospheric TEC [...] Read more.
In this study, the variability of the ionospheric total electron content (TEC) in the South Atlantic Anomaly (SAA) in the solar maximum of 2002 and the solar minimum of 2008 were compared by using an empirical orthogonal function (EOF) analysis. The ionospheric TEC data were simulated using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM). The first three EOFs accounted for 94.8% and 93.86% of the variability in the data in 2002 and 2008, respectively. The results showed that the TEC variations of the first three EOFs were generally consistent in 2002 and 2008. The first mode showed the equatorial anomaly caused by plasma drift and the east–west asymmetry possibly caused by the change in geomagnetic declination and zonal wind; EOF2 exhibited the zonal variation influenced by the solar EUV radiation and the semiannual variation possibly controlled by the [O/N2], solar zenith angle, and atmospheric circulation. EOF3 suggested an equatorial anomaly and winter anomaly influenced by the [O/N2] variation. However, the values and amplitude variations in the TEC were significantly greater in the solar maximum than that in the solar minimum, and the spring–autumn asymmetry of the TEC was more obvious in the solar minimum. In addition, we used the EOF method to extract the annual variation characteristics of the time coefficients and carried out a correlation analysis. The results showed that the annual variation in the TEC in 2002 was mainly affected by the solar EUV radiation, which was strongly correlated with F10.7 (r = 0.7348). In contrast, the TEC was mainly influenced by the geomagnetic activity in 2008 and had a strong correlation with Dst (r = −0.7898). Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

12 pages, 3816 KB  
Article
Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015
by Zheng Li, Meng Sun, Jingyuan Li, Kedeng Zhang, Hua Zhang, Xiaojun Xu and Xinhua Zhao
Universe 2022, 8(4), 236; https://doi.org/10.3390/universe8040236 - 12 Apr 2022
Cited by 9 | Viewed by 2798
Abstract
Using observations by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on board the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite and simulations by the TIEGCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model), we investigate the daytime variations of thermospheric nitric oxide (NO) cooling [...] Read more.
Using observations by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on board the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite and simulations by the TIEGCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model), we investigate the daytime variations of thermospheric nitric oxide (NO) cooling during the geomagnetic storm on 6 May 2015. The geomagnetic storm was minor, as the minimum Dst was −28 nT, the maximum Kp was 5+ and the maximum AE was 1259 nT. However, significant enhancements of peak NO cooling rate and prominent decreases in the peak NO cooling altitude were observed from high latitudes to low latitudes in both hemispheres on the dayside by the SABER instrument. The model simulations underestimate the response of peak NO cooling and have no significant variation of the altitude of peak NO cooling rate on the dayside during this minor geomagnetic storm. By investigating the temporal and latitudinal variations of vertical NO cooling profiles inferred from SABER data, we suggest that the horizontal equatorward winds caused by the minor geomagnetic storm were unexpectedly strong and thus play an important role in inducing these significant daytime NO cooling variations. Full article
(This article belongs to the Special Issue Space Weather in the Sun–Earth System)
Show Figures

Figure 1

Back to TopTop