Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = TMDC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1803 KB  
Article
A Graphene–Molybdenum Disulfide Heterojunction Phototransistor
by Chuyue Jing, Ze Deng and Haichao Cui
Crystals 2026, 16(2), 105; https://doi.org/10.3390/cryst16020105 - 30 Jan 2026
Viewed by 109
Abstract
Heterojunctions combining graphene with transition metal dichalcogenides (TMDCs) have garnered considerable interest in phototransistor research. Molybdenum disulfide (MoS2) can be well combined with graphene owing to its excellent and special bandgap characteristics. In this study, a photoelectric transistor is designed and [...] Read more.
Heterojunctions combining graphene with transition metal dichalcogenides (TMDCs) have garnered considerable interest in phototransistor research. Molybdenum disulfide (MoS2) can be well combined with graphene owing to its excellent and special bandgap characteristics. In this study, a photoelectric transistor is designed and fabricated based on a graphene–molybdenum disulfide (MoS2) van der Waals heterojunction. Its novelty lies in constructing a vertical heterojunction architecture with a well-defined structure, clear interface, and easy gate modulation. It fully utilizes the high mobility of graphene and the appropriate bandgap of MoS2 to achieve efficient light absorption and carrier transport. The device exhibits a good photoelectric response and stability at room temperature, with key performance indicators including the following: a responsivity of 0.5023 mA/W, and a dark current of approximately 10−11 A at a gate voltage of 0 V and approaching 10−10 A at 30 V; when the light intensity is 1000 mW/cm2, the photocurrent reaches the 10−8 A level, demonstrating the synergistic modulation capability of gate voltage and light intensity. Although its responsivity is lower than some high-performance heterojunction devices, this device has advantages such as a simple structure, controllable preparation, stable room-temperature operation, and the potential for a broad-spectrum response, showing good application prospects in flexible electronics and integrated optoelectronic systems. This study provides an experimental basis and technical path for the development of two-dimensional material heterojunctions in programmable, multifunctional optoelectronic devices. Full article
(This article belongs to the Special Issue Thin Film Materials for Sensors)
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 361
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

13 pages, 7494 KB  
Communication
Halide-Assisted Synthesis of V-WSe2
by Yanhui Jiao, Xiaoqian Wang, Zisheng Tang, Manrui Liu, Chengqi Liu, Qi Zhang and Yong Liu
Materials 2025, 18(23), 5360; https://doi.org/10.3390/ma18235360 - 28 Nov 2025
Viewed by 391
Abstract
Over the past few years, two-dimensional transition metal dichalcogenides (TMDCs) have garnered substantial attention in the field of two-dimensional materials research, owing to their exceptional physicochemical properties. Notably, V-WSe2 distinguishes itself by reducing the Schottky barrier at the interface between the material [...] Read more.
Over the past few years, two-dimensional transition metal dichalcogenides (TMDCs) have garnered substantial attention in the field of two-dimensional materials research, owing to their exceptional physicochemical properties. Notably, V-WSe2 distinguishes itself by reducing the Schottky barrier at the interface between the material and metal electrodes, thus exhibiting remarkable potential for applications in optoelectronic devices. Our work explores the synthesis of monolayer V-WSe2 through halide-assisted atmospheric-pressure chemical vapor deposition (APCVD), with an emphasis on the effects of various halide types on the growth mechanism. In addition, we investigate the impact of vanadium (V) content on the performance of WSe2. Comprehensive optical and structural characterizations of the synthesized material were systematically performed. The findings indicate that incorporating halide salts effectively reduces the volatilization temperature of tungsten trioxide (WO3), thereby markedly enhancing reaction controllability and material crystallinity. Among the tested halide salts, KCl, NaCl, and KI, KI demonstrated the capability to achieve the lowest growth temperature. Varying the V content in the V-WSe2 structure significantly influences the optical properties, with higher vanadium concentrations reducing the material’s optical bandgap and Raman frequency. This study highlights the critical role of halides and vanadium content in the material growth process, providing valuable insights for the controlled synthesis of two-dimensional TMDC materials and how varying vanadium concentrations also affect the material’s performance. Full article
Show Figures

Figure 1

17 pages, 1763 KB  
Article
Controlling the Orientation of MoS2 Films on Mo Metal Thin Film Through Sulfur Flux Regulation: A Novel Reaction-Diffusion Model
by Joonam Kim, Masakazu Ike and Kenichi Tokuda
Nanomaterials 2025, 15(23), 1783; https://doi.org/10.3390/nano15231783 - 27 Nov 2025
Viewed by 621
Abstract
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is [...] Read more.
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is achieved here solely by adjusting the sulfur concentration during the sulfurization of 400 nm RF-sputtered Mo films. The metallic Mo substrate also allows potential film transfer via selective etching—analogous to the graphene/Cu system—providing a viable route for device integration on arbitrary substrates. Analyses (XRD, Raman, and TEM) reveal that low sulfur flux (30–50 sccm) favors horizontal growth, whereas high flux (>300 sccm) induces vertical orientation. To rationalize this behavior, a reaction-diffusion model based on the Thiele modulus was developed, quantitatively linking sulfur flux to film orientation and identifying critical thresholds (~50 and ~300 sccm) governing the horizontal-to-vertical transition. This unified approach enables the realization of distinct MoS2 orientations using identical materials and processes, analogous to the orientation control in graphene growth on copper. The ability to grow orientation-controlled MoS2 on non-noble metal substrates opens new opportunities for integrating electronic (horizontal) and catalytic (vertical) functionalities, thereby advancing scalable manufacturing of TMDC-based technologies. Full article
Show Figures

Figure 1

14 pages, 3288 KB  
Article
Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures
by Tian-Jun Dai, Zhong-Yuan Fan, Chao-Feng Peng, Xiang Xiao, Yi Zhou, Jian Sun, Zhang-Yu Zhou, Xiang Guo, Xue-Fei Liu and Xiang-Hong Niu
Molecules 2025, 30(18), 3840; https://doi.org/10.3390/molecules30183840 - 22 Sep 2025
Cited by 1 | Viewed by 929
Abstract
Understanding the non-equilibrium dynamical processes in two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is essential for elucidating their photoelectric behaviors. In this work, we investigate the electronic structure, electric field modulation, and transient optical performance of the MoSe2/WSe2 heterostructure using [...] Read more.
Understanding the non-equilibrium dynamical processes in two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is essential for elucidating their photoelectric behaviors. In this work, we investigate the electronic structure, electric field modulation, and transient optical performance of the MoSe2/WSe2 heterostructure using first principles and nonadiabatic molecular dynamics (NAMD) methods. Applying an external electric field effectively modulates the bandgap and band arrangement of MoSe2/WSe2 heterostructure, along with a transition from indirect to direct bandgap during which the type-II band alignment can be maintained. Specifically, the ultrafast interlayer photogenerated electron transfer time is 72 fs, and the interlayer electron-hole recombination time can be as long as 357 ns, which is longer than that of the intralayer recombination in the constituent monolayers (110 ns for MoSe2 and 288 ns for WSe2), yielding an ultrahigh charge separation efficiency of up to 99.99%. The significant time difference in the processes of photoinduced charge transfer and recombination can be attributed to the corresponding different nonadiabatic coupling averaged values, mainly determined by the electron–phonon coupling and energy difference. The carrier dynamics mechanism revealed in the MoSe2/WSe2 heterostructure is conducive to the development of 2D ultrafast optoelectronic devices. Full article
Show Figures

Graphical abstract

20 pages, 2436 KB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Cited by 2 | Viewed by 1206
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

13 pages, 3647 KB  
Article
Near-Infrared Synaptic Responses of WSe2 Artificial Synapse Based on Upconversion Luminescence from Lanthanide Doped Nanoparticles
by Yaxian Lu, Chuanwen Chen, Qi Sun, Ni Zhang, Kun Lv, Zhiling Chen, Yuelan He, Haowen Tang and Ping Chen
Inorganics 2025, 13(7), 236; https://doi.org/10.3390/inorganics13070236 - 10 Jul 2025
Cited by 2 | Viewed by 1619
Abstract
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly [...] Read more.
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly NIR synapse was fabricated based on lanthanide-doped upconversion nanoparticles (UCNPs) and two-dimensional (2D) WSe2 via solution spin coating technology. Biological synaptic functions were simulated successfully through 975 nm laser regulation, including paired-pulse facilitation (PPF), spike rate-dependent plasticity, and spike timing-dependent plasticity. Handwritten digital images were also recognized by an artificial neural network based on device characteristics with a high accuracy of 97.24%. In addition, human and animal identification in foggy and low-visibility surroundings was proposed by the synaptic response of the device combined with an NIR laser and visible simulation. These findings might provide promising strategies for developing a 24/7 visual response of humanoid robots. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

13 pages, 10650 KB  
Article
Barrier-Free Carrier Injection in 2D WSe2-MoSe2 Heterostructures via Fermi-Level Depinning
by Tian-Jun Dai, Xiang Xiao, Zhong-Yuan Fan, Zi-Yan Zhang, Yi Zhou, Yong-Chi Xu, Jian Sun and Xue-Fei Liu
Nanomaterials 2025, 15(13), 1035; https://doi.org/10.3390/nano15131035 - 3 Jul 2025
Cited by 1 | Viewed by 978
Abstract
Fermi-level pinning (FLP) at metal–semiconductor interfaces remains a key obstacle to achieving low-resistance contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC)-based heterostructures. Here, we present a first-principles study of Schottky barrier formation in WSe2-MoSe2 van der Waals heterostructures interfaced with [...] Read more.
Fermi-level pinning (FLP) at metal–semiconductor interfaces remains a key obstacle to achieving low-resistance contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC)-based heterostructures. Here, we present a first-principles study of Schottky barrier formation in WSe2-MoSe2 van der Waals heterostructures interfaced with four representative metals (Ag, Al, Au, and Pt). It was found that all metal–WSe2/MoSe2 direct contacts induce pronounced metal-induced gap states (MIGSs), leading to significant FLP inside the WSe2/MoSe2 band gaps and elevated Schottky barrier heights (SBHs) greater than 0.31 eV. By introducing a 2D metal-doped metallic (mWSe/mMoSe) layer between WSe2/MoSe2 and the metal electrodes, the MIGSs can be effectively suppressed, resulting in nearly negligible SBHs for both electrons and holes, with even an SBH of 0 eV observed in the Ag-AgMoSe-MoSe2 contact, thereby enabling quasi-Ohmic contact behavior. Our results offer a universal and practical strategy to mitigate FLP and achieve high-performance TMDC-based electronic devices with ultralow contact resistance. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

28 pages, 63037 KB  
Review
Advances in 2D Photodetectors: Materials, Mechanisms, and Applications
by Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Dinelka Somaweera, Han Wang, Wen Lei, Andrey E. Miroshnichenko and Haroldo T. Hattori
Micromachines 2025, 16(7), 776; https://doi.org/10.3390/mi16070776 - 30 Jun 2025
Cited by 8 | Viewed by 6232
Abstract
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet [...] Read more.
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet to mid-infrared. This review comprehensively examines the recent progress in 2D material-based photodetectors, highlighting key material classes including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP), MXenes, chalcogenides, and carbides. We explore their photodetection mechanisms—such as photovoltaic, photoconductive, photothermoelectric, bolometric, and plasmon-enhanced effects—and discuss their impact on critical performance metrics like responsivity, detectivity, and response time. Emphasis is placed on material integration strategies, heterostructure engineering, and plasmonic enhancements that have enabled improved sensitivity and spectral tunability. The review also addresses the remaining challenges related to environmental stability, scalability, and device architecture. Finally, we outline future directions for the development of high-performance, broadband, and flexible 2D photodetectors for diverse applications in sensing, imaging, and communication technologies. Full article
Show Figures

Figure 1

20 pages, 2054 KB  
Review
Solid-State Materials for Opto-Spintronics: Focus on Ferromagnets and 2D Materials
by Ana-Maria Florea (Raduta), Stefan Caramizoiu, Ana-Maria Iordache, Stefan-Marian Iordache and Bogdan Bita
Solids 2025, 6(2), 25; https://doi.org/10.3390/solids6020025 - 20 May 2025
Viewed by 5557
Abstract
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as [...] Read more.
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as ferromagnetic semiconductors, two-dimensional (2D) transition metal dichalcogenides (TMDCs), and topological insulators. It examines the unique properties of ferromagnetic and antiferromagnetic materials and their ability to interact with light to affect spin dynamics, offering potential for improved sensing and quantum computing. By combining opto-spintronics with solid-state systems, spintronic devices could become faster and more efficient, leading to new technological advancements and scalable technologies. Full article
Show Figures

Figure 1

19 pages, 12057 KB  
Article
Tuo-Min-Ding-Chuan Decoction Alleviates Asthma via Spatial Regulation of Gut Microbiota and Treg Cell Promotion
by Yanfei Hong, Zheng Yang, Zirui Liu, Na Li, Jingbo Qin, Dongyu Ge, Guiying Peng, Ji Wang and Qi Wang
Pharmaceuticals 2025, 18(5), 646; https://doi.org/10.3390/ph18050646 - 28 Apr 2025
Cited by 3 | Viewed by 2075
Abstract
Objective: Tuo-Min-Ding-Chuan decoction (TMDC), a traditional Chinese prescription, has demonstrated significant clinical efficacy in treating allergic asthma. This study aimed to investigate the mechanism of TMDC in treating asthma from the perspective of Treg cells and gut microbiota across distinct gut segments [...] Read more.
Objective: Tuo-Min-Ding-Chuan decoction (TMDC), a traditional Chinese prescription, has demonstrated significant clinical efficacy in treating allergic asthma. This study aimed to investigate the mechanism of TMDC in treating asthma from the perspective of Treg cells and gut microbiota across distinct gut segments (jejunum, ileum, cecum, and colon). Methods: An ovalbumin (OVA)-induced asthma model was established in mice, followed by oral administration of TMDC at high, medium, and low dose. Immune cells and lung inflammation were examined to assess asthma severity. Microbial composition was determined by 16S rRNA sequencing. Antibiotic cocktail and Lactobacillus rhamnosus GG (LGG) were administrated to confirm the key role of specific bacteria. Results: TMDC attenuated lung inflammation (p < 0.01) and eosinophilic infiltration (p < 0.01) as well as IL-4 and IL-5 secretion (p < 0.01); it was also associated with an increase in Treg cells in the lung, small intestine (SI), and colon (p < 0.05). Meanwhile, TMDC restored the number of microbiota species and the Shannon index in the hindgut and reinstated beneficial bacteria, such as Allobaculum and Turicibacter, which were diminished in asthmatic mice. Notably, TMDC significantly enriched Bifidobacterium and Lactobacillus, particularly in the hindgut. Lactobacillus abundance was significantly correlated (p < 0.05) with Treg cells, IL-4, IL-5, and eosinophils. Furthermore, LGG supplementation restored elevated lung inflammation (p < 0.05) and decreased Treg cells (p < 0.01) due to antibiotic-induced microbiota depletion. Conclusion: TMDC alleviated asthma by promoting Treg cell expansion in a Lactobacillus-dependent manner across different gut segments, providing new insights into its therapeutic mechanisms. Full article
Show Figures

Graphical abstract

30 pages, 7685 KB  
Review
Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials
by Yan Tian, Hao Liu, Jing Li, Baodan Liu and Fei Liu
Nanomaterials 2025, 15(6), 431; https://doi.org/10.3390/nano15060431 - 11 Mar 2025
Cited by 7 | Viewed by 4645
Abstract
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors [...] Read more.
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors with both high responsivity and fast response time remain a challenging issue for all the researchers. This review paper is organized as follows. Introduction introduces the fundamental properties and broadband photodetection performances of transition metal dichalcogenides (TMDCs), perovskites, topological insulators, graphene, and black phosphorus (BP). This section provides an in-depth analysis of their unique optoelectronic properties and probes the intrinsic physical mechanism of broadband detection. In Two-Dimensional Material-Based Broadband Photodetectors, some innovative strategies are given to expand the detection wavelength range of 2D material-based photodetectors and enhance their overall performances. Among them, chemical doping, defect engineering, constructing heterostructures, and strain engineering methods are found to be more effective for improving their photodetection performances. The last section addresses the challenges and future prospects of 2D material-based broadband photodetectors. Furthermore, to meet the practical requirements for very large-scale integration (VLSI) applications, their work reliability, production cost and compatibility with planar technology should be paid much attention. Full article
Show Figures

Figure 1

13 pages, 2577 KB  
Article
High-Performance Acoustic Transducers with Exfoliated NbSe2 Nanosheets and Hybrid Force Mechanisms
by Dong-Kwan Lee, Won-Jin Kim, Kun-Woo Nam and Sung-Hoon Park
Materials 2025, 18(4), 763; https://doi.org/10.3390/ma18040763 - 9 Feb 2025
Viewed by 1429
Abstract
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address [...] Read more.
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address this, we exfoliated NbSe₂ into nanosheets using lithium-ion intercalation and utilized them as diaphragms in acoustic transducers. Conventional electromagnetic and electrostatic mechanisms have limitations in sound pressure level (SPL) performance at high and low frequencies, respectively. To overcome this, we developed a hybrid force mechanism combining the strengths of both approaches. The NbSe₂ nanosheets were successfully prepared and analyzed, and the NbSe2-based hybrid acoustic transducer (N-HAT) demonstrated significantly improved SPL performance across a wide frequency range. This study offers a novel approach for designing high-performance acoustic devices by harnessing the unique properties of NbSe2. Full article
Show Figures

Figure 1

19 pages, 3404 KB  
Article
Auger Recombination and Carrier-Surface Optical Phonon Interaction in Van Der Waals Heterostructures Composed of Graphene and 2D Transition Metal Chalcogenides
by Mounira Mahdouani, Ramzi Bourguiga and Spiros Gardelis
Materials 2025, 18(3), 720; https://doi.org/10.3390/ma18030720 - 6 Feb 2025
Cited by 2 | Viewed by 1551
Abstract
We perform a theoretical investigation of the electron–surface optical phonon (SOP) interaction in Van der Waals heterostructures (vdWHs) formed by monolayer graphene (1LG) and transition metal dichalcogenides (TMDCs), using eigenenergies obtained from the tight-binding Hamiltonian for electrons. Our analysis reveals that the SOP [...] Read more.
We perform a theoretical investigation of the electron–surface optical phonon (SOP) interaction in Van der Waals heterostructures (vdWHs) formed by monolayer graphene (1LG) and transition metal dichalcogenides (TMDCs), using eigenenergies obtained from the tight-binding Hamiltonian for electrons. Our analysis reveals that the SOP interaction strength strongly depends on the specific TMDC material. TMDC layers generate localized SOP modes near the 1LG/TMDC interface, serving as effective scattering centers for graphene carriers through long-range Fröhlich coupling. This interaction leads to resonant coupling of electronic sub-levels with SOP, resulting in Rabi splitting of the electronon energy levels. We further explore the influence of different TMDCs, such as WS2, WSe2, MoS2, and MoSe2, on transport properties such as SOP-limited mobility, resistivity, conductivity, and scattering rates across various temperatures and charge carrier densities. Our analysis confirms that at elevated temperatures and low carrier densities, surface optical phonon scattering becomes a dominant factor in determining resistivity. Additionally, we investigate the Auger recombination process at the 1LG/TMDC interface, showing that both Auger and SOP scattering rates increase significantly at room temperature and higher, ultimately converging to constant values as the temperature rises. In contrast, their impact is minimal at lower temperatures. These results highlight the potential of 1LG/TMDC-based vdWHs for controlling key processes, such as SOP interactions and Auger recombination, paving the way for high-performance nanoelectronic and optoelectronic devices. Full article
(This article belongs to the Special Issue Low-Dimensional Materials: Design and Optoelectronic Properties)
Show Figures

Figure 1

10 pages, 3939 KB  
Article
Optimizing the Morphology and Optical Properties of MoS2 Using Different Substrate Placement: Numerical Simulation and Experimental Verification
by Feng Liao, Yuhan Zeng, Qingqing Xie, Yupeng Yang, Shuangyi Linghu, Li Liang and Zewen Zuo
Crystals 2025, 15(1), 59; https://doi.org/10.3390/cryst15010059 - 8 Jan 2025
Viewed by 1418
Abstract
The prerequisite for rapid and steady development of TMDC-based optoelectronic devices is high efficiency in materials preparation, which relies on a mature synthesis technique and optimized production conditions. Visualization based on numerical simulation, which illustrates the impact of growth parameters on deposited products, [...] Read more.
The prerequisite for rapid and steady development of TMDC-based optoelectronic devices is high efficiency in materials preparation, which relies on a mature synthesis technique and optimized production conditions. Visualization based on numerical simulation, which illustrates the impact of growth parameters on deposited products, is helpful to understand formation mechanisms and modify growth conditions. In this work, we construct two models with two different substrate placements, where the substrate is parallel or perpendicular to gas flow direction. The simulation results show more velocity distribution uniformity across a wider range from −1.4 cm to 1.4 cm for vertically placed (VP) compared to horizontally placed (HP) substrates. The calculated average velocities of 0.048, 0.053, 0.078, 0.137, and 0.391 cm/s along five different positions on the VP substrate are greater than the values of 0.027, 0.026, 0.025, 0.023, and 0.036 cm/s on the HP substrate. Comparing the precursor concentration distributions on both substrates, it is observed that the S molar concentration gradient on both substrates is negligible and the uniform Mo molar concentrations from z = −1.4 cm to 2.0 cm on the VP substrate ensure minimal change in the S/Mo ratio, which contributes to forming single-morphology domains. Furthermore, increasing the distance between the precursor inlets and the VP substrate decreases the amount of molecules on the substrate surface, achieving near-stoichiometry and promoting monolayer deposition. This is verified by the experimental result, which showed gentle morphological transformation on the VP substrate from a truncated triangle to a hexagon, and then back to a truncated triangle. By contrast, the multi-morphology and thickness of MoS2 on the HP substrate result from the complex Mo concentration along the flow direction. Moreover, PL intensities of the MoS2 domains deposited on the VP substrate are enhanced by 11.9-fold compared to the average intensity on the HP substrate. This result indicates the MoS2 grown on the VP substrate has less intrinsic defects than that grown on the HP substrate. The combination of numerical simulation with experimental methods facilitates the visualization of invisible growth conditions, which provides effective guidance for using simulation results for other TMDC materials. Full article
Show Figures

Figure 1

Back to TopTop