Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = Thai traditional medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2343 KB  
Article
Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process
by Ronnachai Poowanna, Pawitra Pulbutr, Anake Kijjoa and Somsak Nualkaew
Int. J. Mol. Sci. 2025, 26(16), 7714; https://doi.org/10.3390/ijms26167714 - 9 Aug 2025
Viewed by 1214
Abstract
Croton tiglium L. seeds, a component of many recipes of Thai traditional medicine (TTM), had to undergo the Thai traditional detoxification process (TDP) before being used. However, this detoxification process has never been scientifically proven for its effectiveness. Thus, this research aimed to [...] Read more.
Croton tiglium L. seeds, a component of many recipes of Thai traditional medicine (TTM), had to undergo the Thai traditional detoxification process (TDP) before being used. However, this detoxification process has never been scientifically proven for its effectiveness. Thus, this research aimed to investigate the effects of TDP on purgative effect and acute toxicity, as well as the identification of some chemical constituents in C. tiglium seeds before (CB) and after (CA) treatment. The purgative effect and acute toxicity of CB and CA powders were evaluated using Wistar rats. The amounts of phorbol-12-myristate-13-acetate (PMA) and crotonic acid in the CB and CA powders were determined using HPLC. The results showed no acute toxicity in the rats administered CB and CA powders at doses of 300–2000 mg/kg of body weight (BW). However, CB and CA caused a dose-dependent increase in the number of fecal pellets as well as an increase in the amount of wet and dry feces. Interestingly, only CB, at the dose of 100 mg/kg, caused a significant purgative effect. The TDP was also found to affect the amounts of PMA and crotonic acid. While the amount of PMA in C. tiglium seed powder decreased from 1.59 mg/g in CB to 1.26 mg/g in CA, the amount of crotonic acid decreased from 0.001 mg/g in CB to an undetectable level in CA. This investigation demonstrated that TDP not only reduced the purgative effect and toxicity of croton seeds but also the amounts of PMA and crotonic acid. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

25 pages, 6142 KB  
Article
Cancer Chemopreventive Potential of Claoxylon longifolium Grown in Southern Thailand: A Bioassay-Guided Isolation of Vicenin 1 as the Active Compound and In Silico Studies on Related C-Glycosyl Flavones
by Chuanchom Khuniad, Lutfun Nahar, Anupam D. Talukdar, Rajat Nath, Kenneth J. Ritchie and Satyajit D. Sarker
Molecules 2025, 30(15), 3173; https://doi.org/10.3390/molecules30153173 - 29 Jul 2025
Viewed by 535
Abstract
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions [...] Read more.
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions afforded six known compounds, including caffeic acid (1), isovitexin (2), and vicenins 1–3 (3–5) from leaves and hexadecanoic acid methyl ester (6) from stems. Their structures were determined by spectroscopic means. Ten constituents were tentatively identified from the oily fractions of stems by GC-MS. Non-cytotoxic concentrations of compounds 16 were identified using the MTT cell viability assay. The ability of compounds 16 at non-cytotoxic concentrations to induce Nrf2 activation, correlating to their potential chemopreventive properties, was determined using a luciferase reporter assay in the AREc32 cell line. Only vicenin 1 (3) was considered to be a potent chemopreventive compound, as it increased luciferase activity by 2.3-fold. In silico studies on compounds 25 and vitexin (16) revealed the potential of these compounds as cancer chemopreventive and chemotherapeutic agents. This study provides the first report on the chemopreventive properties of C. longifolium. All identified and isolated compounds are reported here for the first time from this species. Full article
Show Figures

Graphical abstract

16 pages, 2431 KB  
Article
AppHerb: Language Model for Recommending Traditional Thai Medicine
by Thanawat Piyasawetkul, Suppachai Tiyaworanant and Tarapong Srisongkram
AI 2025, 6(8), 170; https://doi.org/10.3390/ai6080170 - 29 Jul 2025
Viewed by 855
Abstract
Trust in Traditional Thai Medicine (TTM) among Thai people has been reduced due to a lack of objective standards and the susceptibility of the general population to false information. The emergence of generative artificial intelligence (Gen AI) has significantly impacted various industries, including [...] Read more.
Trust in Traditional Thai Medicine (TTM) among Thai people has been reduced due to a lack of objective standards and the susceptibility of the general population to false information. The emergence of generative artificial intelligence (Gen AI) has significantly impacted various industries, including traditional medicine. However, previous Gen AI models have primarily focused on prescription generation based on Traditional Chinese Medicine (TCM), leaving TTM unexplored. To address this gap, we propose a novel fast-learning fine-tuned language model fortified with TTM knowledge. We utilized textual data from two TTM textbooks, Wat Ratcha-orasaram Ratchaworawihan (WRO), and Tamra Osot Phra Narai (NR), to fine-tune Unsloth’s Gemma-2 with 9 billion parameters. We developed two specialized TTM tasks: treatment prediction (TrP) and herbal recipe generation (HRG). The TrP and HRG models achieved precision, recall, and F1 scores of 26.54%, 28.14%, and 24.00%, and 32.51%, 24.42%, and 24.84%, respectively. Performance evaluation against TCM-based generative models showed comparable precision, recall, and F1 results with a smaller knowledge corpus. We further addressed the challenges of utilizing Thai, a low-resource and linguistically complex language. Unlike English or Chinese, Thai lacks explicit sentence boundary markers and employs an abugida writing system without spaces between words, complicating text segmentation and generation. These characteristics pose significant difficulties for machine understanding and limit model accuracy. Despite these obstacles, our work establishes a foundation for further development of AI-assisted TTM applications and highlights both the opportunities and challenges in applying language models to traditional medicine knowledge systems in Thai language contexts. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Graphical abstract

23 pages, 2078 KB  
Article
Antioxidant and Anti-Inflammatory Activities of Thai Traditional Hand and Foot Soaking Formulary and Its Bioactive Compounds
by Jaenjira Angsusing, Weerasak Samee, Supachoke Mangmool, Usma Dortae, Pranot Keawthip, Surakameth Mahasirimongkol, Somsak Kreechai, Kulthanit Wanaratna, Chuda Chittasupho and Nopparut Toolmal
Pharmaceutics 2025, 17(7), 907; https://doi.org/10.3390/pharmaceutics17070907 - 13 Jul 2025
Viewed by 802
Abstract
Background/Objectives: This study aimed to investigate the antioxidant and anti-inflammatory properties of a Hand and Foot Soaking Formulary composed of ten medicinal plants, with curcumin as a major bioactive marker, to provide scientific validation for its traditional use. Methods: The formulation was [...] Read more.
Background/Objectives: This study aimed to investigate the antioxidant and anti-inflammatory properties of a Hand and Foot Soaking Formulary composed of ten medicinal plants, with curcumin as a major bioactive marker, to provide scientific validation for its traditional use. Methods: The formulation was evaluated for total phenolic and flavonoid contents, with curcumin quantified using HPLC. Antioxidant activity was assessed using DPPH, ABTS, and FRAP assays. Cytotoxicity was evaluated in RAW264.7 cells using the MTT assay. Anti-inflammatory activity was determined by measuring nitric oxide (NO), PGE2, TNF-α, IL-1β, and IL-6 levels in LPS-stimulated RAW264.7 macrophages using ELISA. Results: The Hand and Foot Soaking Formulary exhibited promising antioxidant and anti-inflammatory properties, consistent with its traditional use. Phytochemical analysis confirmed the presence of bioactive compounds, with measurable levels of total phenolics, flavonoids, and significant curcumin content. Antioxidant activity was demonstrated through free radical scavenging and ferric-reducing assays, while cytotoxicity testing in RAW264.7 macrophages indicated low toxicity (IC50 = 48.61 ± 3.80 µg/mL). The formulary significantly reduced LPS-induced nitric oxide, PGE2, TNF-α, IL-1β, and IL-6 production. These effects were comparable to turmeric extract and curcumin, though curcumin displayed higher potency. Conclusions: The Hand and Foot Soaking Formulary demonstrates antioxidant and anti-inflammatory properties in vitro, supporting its traditional use. Its polyherbal composition may offer synergistic effects and holds promise as a safe, natural topical remedy. Full article
(This article belongs to the Special Issue Natural Compounds in Drug Delivery Systems)
Show Figures

Figure 1

23 pages, 6001 KB  
Article
Quantification of Flavonoid Contents in Holy Basil Using Hyperspectral Imaging and Deep Learning Approaches
by Apichat Suratanee, Panita Chutimanukul and Kitiporn Plaimas
Appl. Sci. 2025, 15(13), 7582; https://doi.org/10.3390/app15137582 - 6 Jul 2025
Viewed by 517
Abstract
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral [...] Read more.
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral data to flavonoid levels remains a challenge for developing early detection tools before harvest. This study integrates deep learning with hyperspectral imaging to quantify flavonoid contents in 113 samples from 26 Thai holy basil cultivars collected across diverse regions of Thailand. Two deep learning architectures, ResNet1D and CNN1D, were evaluated in combination with feature extraction techniques, including wavelet transformation and Gabor-like filtering. ResNet1D with wavelet transformation achieved optimal performance, yielding an area under the receiver operating characteristic curve (AUC) of 0.8246 and an accuracy of 0.7702 for flavonoid content classification. Cross-validation demonstrated the model’s robust predictive capability in identifying antioxidant-rich samples. Samples with the highest predicted flavonoid content were identified, and cultivars exhibiting elevated levels of both flavonoids and phenolics were highlighted across various regions of Thailand. These findings demonstrate the predictive capability of hyperspectral data combined with deep learning for phytochemical assessment. This approach offers a valuable tool for non-destructive quality evaluation and supports cultivar selection for higher phytochemical content in breeding programs and agricultural applications. Full article
Show Figures

Figure 1

17 pages, 5655 KB  
Article
Trans-p-Coumaryl Alcohol as a Bioactive Compound and Anti-Inflammatory Agent in Wannachawee Recipe for Psoriasis
by Supreeya Tantipat, Kongkiat Trisuwan, Phraepakaporn Kunnaja, Seewaboon Sireeratawong, Surapol Natakankitkul, Surasak Imiam and Sunee Chansakaow
Pharmaceutics 2025, 17(7), 864; https://doi.org/10.3390/pharmaceutics17070864 - 30 Jun 2025
Viewed by 466
Abstract
Background/Objectives: Wannachawee recipe (WCR) has been listed in the Hospital Traditional Medicine Formulary and has been used as a Thai medicine to treat psoriasis in the Thai Traditional Medicine Clinic of Prapokklao Hospital since 2006. Previous reports have found that WCR demonstrates [...] Read more.
Background/Objectives: Wannachawee recipe (WCR) has been listed in the Hospital Traditional Medicine Formulary and has been used as a Thai medicine to treat psoriasis in the Thai Traditional Medicine Clinic of Prapokklao Hospital since 2006. Previous reports have found that WCR demonstrates good results for the treatment of patients with psoriasis. Among 136 Thai psoriasis patients who received WCR, 92.80% responded well. Although WCR is effective, there is still a lack of scientific data, especially relating to the bioactive compound in WCR. Therefore, this study aims to evaluate the phytochemicals in WCR via bioassay-guided isolation. Methods: In this study, the WCR was extracted via decoction with water, in a process based on traditional Thai medicine. The water extract was concentrated and dried using a spray dryer. The crude water extract was isolated using the partition technique with organic solvents, namely petroleum ether and ethyl acetate. These fractions were then separated and tested for anti-inflammatory activity using the bioassay-guided fractionation method. Results: Two particular types of pro-inflammatory cytokines are involved in inflammation and are among the factors that cause psoriasis—TNF-α and IL-6. Thus, we evaluated the isolated samples in terms of anti-inflammatory activity. The isolation resulted in two pure compounds—p-coumaryl aldehyde and trans-p-coumaryl alcohol. In the efficacy test of the isolated compounds, compared to the standard indomethacin at the same concentration of 12.5 ug/mL, trans-p-coumaryl alcohol was found to have the best efficacy, inhibiting TNF-α by 29.28% and IL-6 by 36.75%, with the standard compound showing inhibitions rates of 15.80% for TNF-α and 27.44% for IL-6. Conclusions: This study is the first report to identify the bioactive compound of WCR as trans-p-coumaryl alcohol or 4-hydroxycinnamyl alcohol. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Figure 1

20 pages, 1856 KB  
Article
Pharmacological Evaluation of a Traditional Thai Polyherbal Formula for Alzheimer’s Disease: Evidence from In Vitro and In Silico Studies
by Pornthip Waiwut, Pitchayakarn Takomthong, Rutchayaporn Anorach, Nattareeyada Lomaboot, Supawadee Daodee, Yaowared Chulikhit, Orawan Monthakantirat, Charinya Khamphukdee and Chantana Boonyarat
Int. J. Mol. Sci. 2025, 26(13), 6287; https://doi.org/10.3390/ijms26136287 - 29 Jun 2025
Viewed by 488
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum indicum (OI), Zingiber officinale (ZO), and Boesenbergia rotunda (BR). Phytochemical analysis by HPLC confirmed the presence of key bioactive compounds including baicalein, baicalin, oroxylin A, 6-gingerol, 6-shogaol, pinocembrin, and pinostrobin. The PC formula exhibited strong antioxidant activity, highly selective butyrylcholinesterase (BChE) inhibition with a selectivity index (SI) of BChE > 20, suppression of Aβ aggregation, and protection against H2O2-induced neuronal damage in vitro. Network pharmacology analysis identified multiple AD-relevant targets and pathways, including APP, GSK3B, CASP3, GAPDH, PTGS2, and PPARG, implicating the PC formula in modulating oxidative stress, apoptosis, and inflammation. Notably, OI emerged as the primary contributor to the formula’s multitargeted actions. These findings support the therapeutic potential of the PC formula as a multitarget agent for AD, aligning with the growing interest in polypharmacological strategies for complex neurodegenerative diseases. Further in vivo and clinical studies are warranted to confirm its efficacy and safety. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Figure 1

27 pages, 4919 KB  
Article
Antitumor Activity of Isalpinin from Paphiopedilum dianthum on Non-Small Cell Lung Cancer Cell Lines
by Phisit Pouyfung, Nonthalert Lertnitikul, Hua Bai, Achitphol Chookaew, Varisa Pongrakhananon, Piriya Chonsut and Suwichak Chaisit
Molecules 2025, 30(13), 2762; https://doi.org/10.3390/molecules30132762 - 27 Jun 2025
Viewed by 654
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, with current treatments having significant limitations, including drug resistance, metastasis, and tumor heterogeneity. This study investigated the anticancer potential of isalpinin, a flavonoid isolated from Paphiopedilum dianthum, against non-small cell lung cancer (NSCLC) [...] Read more.
Lung cancer is a leading cause of cancer-related deaths globally, with current treatments having significant limitations, including drug resistance, metastasis, and tumor heterogeneity. This study investigated the anticancer potential of isalpinin, a flavonoid isolated from Paphiopedilum dianthum, against non-small cell lung cancer (NSCLC) cell lines A549, H23, and H460. Isalpinin significantly inhibited NSCLC cell viability in a dose- and time-dependent manner; H23 and H460 cells showed greater sensitivity (IC50 a ~ 44 μM at 48 h) compared to A549 cells (IC50 82 μM). Isalpinin suppressed proliferation, migration, and anchorage-independent growth, particularly in H23/H460 cells. Mechanistically, it induced apoptosis via increased ROS production and Bcl-2 downregulation, particularly in H23 and H460 cells. In a molecular docking analysis, isalpinin was found to directly bind to the ATP-binding pocket of AKT1, as confirmed by reduced Akt/GSK3β phosphorylation. These results suggest that isalpinin showed a potent multi-target natural compound against NSCLC that disrupts the key hallmarks of malignancy and pro-survival signaling. However, its subtype-specific efficacy warrants further in vivo studies and an investigation of combinatorial therapeutic approaches to elucidate its clinical potential. Full article
Show Figures

Graphical abstract

17 pages, 5490 KB  
Article
Moringa oleifera Leaf Extract Ameliorates Photooxidative Damage and Photoaging Induced by Ultraviolet-B in HaCaT Keratinocytes
by Tanaporn Hengpratom, Benjawan Dunkhunthod, Kittipot Sirichaiwetchakoon, Pimchaya Prompradit, Issara Chaisit, Mariena Ketudat-Cairns, Salila Pengthaisong, James R. Ketudat-Cairns and Yothin Teethaisong
Antioxidants 2025, 14(7), 766; https://doi.org/10.3390/antiox14070766 - 22 Jun 2025
Viewed by 1552
Abstract
Skin damage and premature aging are predominantly driven by UV radiation through several mechanisms. The most common of these are by reactive oxygen species (ROS) generation, upregulation of matrix metalloproteinases (MMPs), and weakened antioxidant defenses. Moringa oleifera is a nutritionally valuable plant with [...] Read more.
Skin damage and premature aging are predominantly driven by UV radiation through several mechanisms. The most common of these are by reactive oxygen species (ROS) generation, upregulation of matrix metalloproteinases (MMPs), and weakened antioxidant defenses. Moringa oleifera is a nutritionally valuable plant with diverse biological activities. This study optimized ethanol concentrations coupled with ultrasonic-assisted extraction to maximize the yield and efficacy of M. oleifera leaf extract (MOLE). We also elucidated the underlying mechanisms of MOLE in protecting against photooxidative damage and skin aging from UVB exposure in HaCaT keratinocytes. Extraction with 50% ethanol produced the highest total phenolic and flavonoid contents, aligning with the greatest antioxidant activity by ABTS and FRAP assays. MOLE showed no significant cytotoxicity up to 1000 µg/mL in the MTT assay. MOLE protected cells from detrimental UVB radiation by scavenging ROS; reducing cell damage and death; enhancing gene expression of superoxide dismutase (SOD-1), glutathione peroxidase (GPx), and catalase (CAT); and improving SOD activity. UVB exposure elevated MMP-1, MMP-3, and MMP-9 expression and decreased collagen type I (col-1) and elastin (ELN) expression, while these effects were ameliorated by MOLE. Our findings suggest that MOLE protected against UVB-induced photooxidative damage and premature aging in the HaCaT keratinocytes. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

19 pages, 2747 KB  
Article
Assessing Thermal Stress in Silver Barb (Barbonymus gonionotus): Oxidative Stress and Biochemical, Hematological, Hormonal, and Operculum Responses Within Survival Temperature Range
by Kanokporn Saenphet, Supap Saenphet, Nathamon Tanasrivaroottanun, Phanit Srisuttha, Wikit Phinrub, Dutrudi Panprommin and Paiboon Panase
Fishes 2025, 10(6), 287; https://doi.org/10.3390/fishes10060287 - 11 Jun 2025
Viewed by 582
Abstract
This study investigates the biochemical and physiological responses of the economically important fish Barbonymus gonionotus to acute temperature fluctuations. Focusing on malondialdehyde (MDA) levels in serum and visceral organs, serum biochemical indices, hematological parameters, cortisol levels, and operculum movement, this research assessed the [...] Read more.
This study investigates the biochemical and physiological responses of the economically important fish Barbonymus gonionotus to acute temperature fluctuations. Focusing on malondialdehyde (MDA) levels in serum and visceral organs, serum biochemical indices, hematological parameters, cortisol levels, and operculum movement, this research assessed the impacts of thermal stress. Experimental conditions involved two thermal regimes: heat shock at 25–29 °C and 25–37 °C; as well as cold shock at 25–21 °C and 25–13 °C sustained over 24 (D1), 48 (D2), and 72 (D3) h. Serum MDA levels increased significantly. Notably, MDA in the gills, brain, and liver fluctuated under cold stress, particularly at 13 °C. Serum parameters showed significant alterations except for AST, total protein, and cholesterol, which remained unaffected by heat shock. Red blood cell (RBC) counts dropped to their lowest at 13 °C, while white blood cell (WBC) counts diminished significantly when temperatures dropped to 21 °C and then stabilized. Cortisol surged with temperature changes, peaking at 13 °C and 29 °C for cold and heat shock, respectively. Operculum movement was inversely affected by thermal changes, decreasing with cold and increasing with heat. These findings underscore the sensitivity of silver barb to thermal extremes, providing insights for optimized aquaculture management and enhanced resilience to environmental stressors. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

20 pages, 3284 KB  
Article
Suk-SaiYasna Remedy, a Traditional Thai Medicine, Mitigates Stress-Induced Cognitive Impairment via Keap1-Nrf2 Pathway
by Wuttipong Masraksa, Supawadee Daodee, Orawan Monthakantirat, Chantana Boonyarat, Charinya Khamphukdee, Pakakrong Kwankhao, Abdulwaris Mading, Poowanarth Muenhong, Juthamart Maneenet, Suresh Awale, Kinzo Matsumoto and Yaowared Chulikhit
Int. J. Mol. Sci. 2025, 26(11), 5388; https://doi.org/10.3390/ijms26115388 - 4 Jun 2025
Viewed by 995
Abstract
Suk-SaiYasna (SSY) is a well-documented traditional Thai herbal formula in the Royal Scripture of King Narai’s Traditional Medicine. SSY contains Cannabis sativa leaves as a key ingredient and has traditionally been used to promote sleep, alleviate stress-related symptoms, and stimulate appetite. This study [...] Read more.
Suk-SaiYasna (SSY) is a well-documented traditional Thai herbal formula in the Royal Scripture of King Narai’s Traditional Medicine. SSY contains Cannabis sativa leaves as a key ingredient and has traditionally been used to promote sleep, alleviate stress-related symptoms, and stimulate appetite. This study aimed to investigate the neuroprotective effects of SSY in a mouse model of unpredictable chronic mild stress (UCMS)-induced cognitive impairment and explore the underlying mechanisms, particularly antioxidant enzyme pathways. Behavioral tests, including the Y-maze test, novel object recognition test, and Morris water maze test, demonstrated that UCMS-exposed mice exhibited cognitive impairment compared to non-stress mice. However, SSY treatment significantly improved learning and memory performance in UCMS-exposed mice. Mechanistic studies revealed that SSY reduced lipid peroxidation in the hippocampus and frontal cortex, key brain regions affected by chronic stress. Furthermore, UCMS significantly reduced the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), whereas SSY treatment restored their activity, indicating antioxidative and neuroprotective effects in vivo. Gene expression analysis further revealed that SSY regulates oxidative stress via the Nrf2/Keap1 signaling pathway. In vitro studies using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay confirmed the radical scavenging activities of SSY and its herbal components, demonstrating significant antioxidant potential. Phytochemical analysis identified delta-9-tetrahydrocannabinol, delta-9-tetrahydrocannabinolic acid A, and cannabinoids as bioactive compounds in SSY, along with potent antioxidants such as gallic acid, myricetin, myristicin, piperine, costunolide, and gingerol. These findings suggest that the SSY formula mitigates UCMS-induced cognitive function through its antioxidant properties via multiple pathways, including radical scavenging activities, modulating the Nrf2-Keap1 pathway, inducing the expression of HO-1, NQO1 mRNAs, and other antioxidant enzymes. This work bridges traditional Thai medicine with modern neuropharmacology. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Graphical abstract

25 pages, 3049 KB  
Article
HCM-Associated MuRF1 Variants Compromise Ubiquitylation and Are Predicted to Alter Protein Structure
by Jitpisute Chunthorng-Orn, Maya Noureddine, Peter W. J. Dawson, Samuel O. Lord, Jimi Ng, Luke Boyton, Katja Gehmlich, Fiyaz Mohammed and Yu-Chiang Lai
Int. J. Mol. Sci. 2025, 26(8), 3921; https://doi.org/10.3390/ijms26083921 - 21 Apr 2025
Viewed by 1517
Abstract
MuRF1 [muscle RING (Really Interesting New Gene)-finger protein-1] is an ubiquitin-protein ligase (E3), which encode by TRIM63 (tripartite motif containing 63) gene, playing a crucial role in regulating cardiac muscle size and function through ubiquitylation. Among hypertrophic cardiomyopathy (HCM) patients, 24 [...] Read more.
MuRF1 [muscle RING (Really Interesting New Gene)-finger protein-1] is an ubiquitin-protein ligase (E3), which encode by TRIM63 (tripartite motif containing 63) gene, playing a crucial role in regulating cardiac muscle size and function through ubiquitylation. Among hypertrophic cardiomyopathy (HCM) patients, 24 TRIM63 variants have been identified, with 1 additional variant linked to restrictive cardiomyopathy. However, only three variants have been previously investigated for their functional effects. The structural impacts of the 25 variants remain unexplored. This study investigated the effects of 25 MuRF1 variants on ubiquitylation activity using in vitro ubiquitylation assays and structural predictions using computational approaches. The variants were generated using site-directed PCR (Polymerase Chain Reaction) mutagenesis and subsequently purified with amylose affinity chromatography. In vitro ubiquitylation assays demonstrated that all 25 variants compromised the ability of MuRF1 to monoubiquitylate a titin fragment (A168-A170), while 17 variants significantly impaired or completely abolished auto-monoubiquitylation. Structural modelling predicted that 10 MuRF1 variants disrupted zinc binding or key stabilising interactions, compromising structural integrity. In contrast, three variants were predicted to enhance the structural stability of MuRF1, while six others were predicted to have no discernible impact on the structure. This study underscores the importance of functional assays and structural predictions in evaluating MuRF1 variant pathogenicity and provides novel insights into mechanisms by which these variants contribute to HCM and related cardiomyopathies. Full article
(This article belongs to the Special Issue Advanced Research on Protein Structure and Protein Dynamics)
Show Figures

Figure 1

19 pages, 808 KB  
Article
Plants Used for Treating Hypertension Among Ethnic Groups in Northern Thailand
by Prattana Sumridpiem, Henrik Balslev, Pimonrat Tiensawat, Oratai Neamsuvan and Angkhana Inta
Plants 2025, 14(7), 1066; https://doi.org/10.3390/plants14071066 - 30 Mar 2025
Viewed by 1444
Abstract
The incidence of hypertension (HT) is rapidly increasing globally, and it is considered to be a critical public health problem. Due to the demand for medication and because various side effects of anti-hypertensive drugs have been reported, complementary and alternative therapies, including Thai [...] Read more.
The incidence of hypertension (HT) is rapidly increasing globally, and it is considered to be a critical public health problem. Due to the demand for medication and because various side effects of anti-hypertensive drugs have been reported, complementary and alternative therapies, including Thai Indigenous medicine (TIM), should be explored for treating HT. Medicinal plants traditionally used by multiple cultures over long time periods in HT treatment are more likely to be pharmacologically active and might provide useful data, leading to anti-hypertensive drug discovery. Ethnomedicinal field observations were undertaken with 41 key informants in eleven villages in Chiang Mai province from December 2022 to November 2023. In addition, we gathered data on traditional plants used for treating HT among 12 ethnic groups from 41 original references published between 1987 and 2023, covering nine provinces in northern Thailand. Important species among plants used for treating hypertension were identified by calculating their relative frequency of citation (RFC). In total, we found 237 plant species that were used for treating HT. Of these, 173 species had already been reported in the literature, and 96 species were documented in our fieldwork. There were 30 plant species from our field survey that overlapped with species accounted for in the literature. Fabaceae was the plant family with the most species (23 sp, 10%) used for treating HT. The most commonly used species was Blumea balsamifera (L.) DC. (Asteraceae), and it had the highest recorded RFC value of 0.1979. There were 64 plant species that were reported for the first time for HT treatment among ethnic groups in northern Thailand. Of the recorded species, 24 were particularly promising in the treatment of HT, and their efficacy was confirmed by comparing our results to previous studies of plants with anti-hypertensive properties. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 4906 KB  
Article
Mammea siamensis Flower Extract-Induced Cell Death Apoptosis in HCT116 Colon Cancer Cells via Vacuolar-Type H+-ATPase Inhibition Associated with GSK-3β/β-Catenin, PI3K/Akt/NF-κB, and MAPK Signaling Pathway
by Pornnapa Sitthisuk, Watcharaporn Poorahong, Sukanda Innajak, Aungkana Krajarng, Siritron Samosorn and Ramida Watanapokasin
Pharmaceuticals 2025, 18(4), 441; https://doi.org/10.3390/ph18040441 - 21 Mar 2025
Viewed by 835
Abstract
Background and Objective: Mammea siamensis (MS) is a Thai herb used in traditional medicine. Previous studies have reported the antiproliferative effects of its constituents in various cancer cell lines. However, the effects of MS extract on cytotoxicity and molecular mechanisms of apoptosis [...] Read more.
Background and Objective: Mammea siamensis (MS) is a Thai herb used in traditional medicine. Previous studies have reported the antiproliferative effects of its constituents in various cancer cell lines. However, the effects of MS extract on cytotoxicity and molecular mechanisms of apoptosis induction in HCT116 colon cancer cells have not been fully explored. Methods and Results: The cytotoxic effect of MS extract on HCT116 cells was assessed using the MTT assay. MS extract increased cytotoxicity in a concentration-dependent manner. It also induced nuclear morphological changes and disrupted the mitochondrial membrane potential (ΔΨm), as assessed by Hoechst 33342 and JC-1 staining, respectively. These findings indicated that MS extract induced apoptosis, which was further confirmed by flow cytometry showing an increase in the sub-G1 phase. To investigate the expression of signaling proteins, Western blot analysis was conducted. The results showed that MS extract activated caspase activity (caspase-8, -9, and -7) and inhibited PARP activity. Additionally, MS extract upregulated pro-apoptotic proteins (tBid, Bak, and cytochrome c) while downregulating anti-apoptotic proteins (Bcl-2 and Bcl-xL). Mechanistic studies revealed that MS extract activated MAPK pathways while inactivating the PI3K/Akt/NF-κB and GSK-3β/β-catenin pathways. Notably, MS extract also inhibited V-ATPases, as evaluated by acridine orange staining and Western blot analysis. Conclusions: Our findings suggest that MS extract induces apoptosis via the activation of both intrinsic and extrinsic pathways associated with the key signaling pathways. Therefore, MS extract shows potential as a therapeutic agent for colon cancer. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

11 pages, 1367 KB  
Article
In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts
by Kamonlak Insumrong, Neti Waranuch, Kornkanok Ingkaninan, Nutchaninad Tanuphol, Abhay Prakash Mishra, Wudtichai Wisuitiprot, Eakkaluk Wongwad, Ngamrayu Ngamdokmai and Nungruthai Suphrom
Molecules 2025, 30(5), 1151; https://doi.org/10.3390/molecules30051151 - 4 Mar 2025
Cited by 1 | Viewed by 1223
Abstract
The leaf extract of Tectona grandis L.f. has shown potential as a 5α-reductase inhibitor, with two bioactive markers, namely (+)-eperua-8,13-dien-15-oic acid (1) and (+)-eperua-7,13-dien-15-oic acid (2), used for extract standardization. The purpose of this research was to investigate the [...] Read more.
The leaf extract of Tectona grandis L.f. has shown potential as a 5α-reductase inhibitor, with two bioactive markers, namely (+)-eperua-8,13-dien-15-oic acid (1) and (+)-eperua-7,13-dien-15-oic acid (2), used for extract standardization. The purpose of this research was to investigate the in vitro skin penetration behavior of 1 and 2 in T. grandis leaf ethanolic extract solution and ready-to-use extract in propylene glycol (PG), and secondly, to determine their physicochemical properties, including partition coefficients and solubility. The appropriate vehicle for the in vitro skin penetration study was evaluated using the shake-flask method. The in vitro skin penetration study was conducted using the Franz diffusion cell model, and the amounts of the two active compounds in the extracts were analyzed using the HPLC method. Compounds 1 and 2 showed poor solubility in distilled water, whereas their solubility in HEPES buffer with 2% w/v of Tween 20 was significantly greater. The partition coefficient (log Po/w) value for 1 was 5.77 ± 0.07, and for 2, it was 5.66 ± 0.02, indicating that both compounds are hydrophobic. After 24 h of an in vitro skin penetration study, 1 in both extracts showed significantly higher cumulative amounts (%) compared to 2. These findings suggest that 1 is more hydrophobic and readily penetrates the stratum corneum. When a PG enhancer was added, high cumulative amount trends of 1 and 2 in the ethanolic extract and extract in PG in the receiver compartment were detected after 24 h. These studies provide important insights that will guide the further development of products with T. grandis extracts for treating hair loss. Full article
Show Figures

Graphical abstract

Back to TopTop