Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,846)

Search Parameters:
Keywords = Ti-Al3Ti

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6351 KB  
Article
The Role of La–Ti–Al–O Complex Inclusions in Microstructure Refinement and Toughness Enhancement of the Coarse-Grained Heat-Affected Zone in High-Heat-Input Welding
by Qiuming Wang, Jiangli He, Qingfeng Wang and Riping Liu
Metals 2025, 15(10), 1105; https://doi.org/10.3390/met15101105 - 3 Oct 2025
Abstract
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), [...] Read more.
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), and limited acicular ferrite (AF). This study investigates the effect of lanthanum (La) addition to Nb–Ti steel, leading to the formation of composite inclusions with a LaAlO3·TiN core surrounded by MnS/MnC precipitates. Unlike conventional Al2O3·MnS inclusions in Nb–Ti steel, these La-modified inclusions promote enhanced AF nucleation. This not only refines prior austenite grains but also reduces detrimental microstructural constituents such as GBF and FSP. As a result, the impact energy at −40 °C significantly improves from 23 J (Nb–Ti steel) to 137 J (Nb–Ti–La steel). Moreover, the inclusions exhibit an increase in size but a decrease in number density. The Nb–Ti–La variant demonstrates a higher AF volume fraction and increased AF density within the CGHAZ. The refined grain structure, along with an increased proportion of high-angle grain boundaries, effectively impedes secondary crack propagation. These microstructural modifications contribute to a substantial improvement in the low-temperature impact toughness of welded joints. Full article
Show Figures

Figure 1

16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

22 pages, 8922 KB  
Article
Stress Assessment of Abutment-Free and Three Implant–Abutment Connections Utilizing Various Abutment Materials: A 3D Finite Element Study of Static and Cyclic Static Loading Conditions
by Maryam H. Mugri, Nandalur Kulashekar Reddy, Mohammed E. Sayed, Khurshid Mattoo, Osama Mohammed Qomari, Mousa Mahmoud Alnaji, Waleed Abdu Mshari, Firas K. Alqarawi, Saad Saleh AlResayes and Raghdah M. Alshaibani
J. Funct. Biomater. 2025, 16(10), 372; https://doi.org/10.3390/jfb16100372 - 2 Oct 2025
Abstract
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical [...] Read more.
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical (FEA) study aims to evaluate the distribution of von Mises stress (VMS) in abutment-free and three additional implant abutment connections composed of various titanium alloys. Materials and methods: A three-dimensional implant-supported single-crown prosthesis model was digitally generated on the mandibular section using a combination of microcomputed tomography imaging (microCT), a computer-assisted designing (CAD) program (SolidWorks), Analysis of Systems (ANSYS), and a 3D digital scan (Visual Computing Lab). Four digital models [A (BioHorizons), B (Straumann AG), C abutment-free (Matrix), and D (TRI)] representing three different functional biomaterials [wrought Ti-6Al-4Va ELI, Roxolid (85% Ti, 15% Zr), and Ti-6Al-4V ELI] were subjected to simulated static/cyclic static loading in axial/oblique directions after being restored with highly translucent monolithic zirconia restoration. The stresses generated on the implant fixture, abutment, crown, screw, cortical, and cancellous bones were measured. Results: The highest VMSs were generated by the abutment-free (Model C, Matrix) implant system on the implant fixture [static (32.36 Mpa), cyclic static (83.34 Mpa)], screw [static (16.85 Mpa), cyclic static (30.33 Mpa), oblique (57.46 Mpa)], and cortical bone [static (26.55), cyclic static (108.99 Mpa), oblique (47.8 Mpa)]. The lowest VMSs in the implant fixture, abutment, screw, and crown were associated with the binary alloy Roxolid [83–87% Ti and 13–17% Zr]. Conclusions: Abutment-free implant systems generate twice the stress on cortical bone than other abutment implant systems while producing the highest stresses on the fixture and screw, therefore demanding further clinical investigations. Roxolid, a binary alloy of titanium and zirconia, showed the least overall stresses in different loadings and directions. Full article
(This article belongs to the Special Issue Biomaterials and Biomechanics Modelling in Dental Implantology)
Show Figures

Figure 1

47 pages, 17754 KB  
Review
Wire-Based Additive Manufacturing of Multi-Material Structures: A Review
by Xing Kang, Guangyu Li, Wenming Jiang, Yuejia Wang, Xiaoqiong Wang, Qiantong Zeng, Fafa Li and Xiuru Fan
J. Compos. Sci. 2025, 9(10), 534; https://doi.org/10.3390/jcs9100534 - 2 Oct 2025
Abstract
Multi-material structures have great potential in high-end fields such as aerospace and energy. Which integrate the advantages of various metals and meet the demands of complex working conditions. Among additive manufacturing technologies for multi-material structures, wire-based processes have become a research hotspot due [...] Read more.
Multi-material structures have great potential in high-end fields such as aerospace and energy. Which integrate the advantages of various metals and meet the demands of complex working conditions. Among additive manufacturing technologies for multi-material structures, wire-based processes have become a research hotspot due to their high material utilization, low cost, and high efficiency. This article systematically reviews the progress of research on this technology. The working principles and characteristics of common heat sources (WAAM, LWAM, EBAM) are introduced. Furthermore, the advantages and limitations of these heat sources for manufacturing multi-material structures are critically analyzed. Moreover, various metal wire combination systems (such as steel/Ni, Al/steel, Ti/Al, and Cu/Ti, etc.) were reviewed, and the differences and influences of different wire feeding methods and directions were discussed. The review highlights research findings on microstructure regulation, interfacial bonding mechanisms, and the mechanical property optimization of polymetallic structures. The influence laws of critical process parameters on structural properties are also elucidated. The existing problems in the current research were pointed out, and the future development trends were prospected. Unlike previous articles, this review establishes a more comprehensive process–structure–performance framework through the discussion of integrated heat source characteristics, wire feeding systems, and interface adjustment strategies. It aims to provide references for promoting the development and engineering application of additive manufacturing technology for wire-based multi-metal structures. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

19 pages, 9405 KB  
Article
Gleeble-Simulated Ultra-Fast Cooling Unlocks Strength–Ductility Synergy in Fully Martensitic Ti-6Al-4V
by Yaohong Xiao, Hongling Zhou, Pengwei Liu and Lei Chen
Materials 2025, 18(19), 4572; https://doi.org/10.3390/ma18194572 - 1 Oct 2025
Abstract
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble [...] Read more.
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble thermal simulator, which enables precisely controllable cooling rates while simultaneously achieving ultra-fast quenching comparable to AM (up to ~7000 °C/s). By varying the cooling rate only, three distinct microstructures were obtained: α/β, αm/α′, and fully α′. Compression tests revealed that the ultra-fast-cooled fully martensitic Ti-6Al-4V attained both higher strength and larger fracture strain, with densely distributed elongated dimples indicative of ductile failure. Three-dimensional microstructures reconstructed from microscopy, analyzed using an EVP-FFT crystal plasticity model, demonstrated that refined α′ laths and abundant high-angle boundaries promote more homogeneous strain partitioning and reduce stress triaxiality, thereby delaying fracture. These results provide potential evidence that extreme-rate martensitic transformation can overcome the conventional strength–ductility trade-off in Ti-6Al-4V, offering a new paradigm for processing titanium alloys and AM components with superior performance. Full article
Show Figures

Figure 1

12 pages, 2508 KB  
Article
Osseodensification Versus Subtractive Drilling in Cortical Bone: An Evaluation of Implant Surface Characteristics and Their Effects on Osseointegration
by Sara E. Munkwitz, Albert Ting, Hana Shah, Nicholas J. Iglesias, Vasudev Vivekanand Nayak, Arthur Castellano, Lukasz Witek and Paulo G. Coelho
Biomimetics 2025, 10(10), 662; https://doi.org/10.3390/biomimetics10100662 - 1 Oct 2025
Abstract
Osseodensification (OD) has emerged as a favorable osteotomy preparation technique that preserves and compacts autogenous bone along the osteotomy walls during site preparation, enhancing primary stability and implant osseointegration. While OD has demonstrated promising results in low-density trabecular bone, especially when used in [...] Read more.
Osseodensification (OD) has emerged as a favorable osteotomy preparation technique that preserves and compacts autogenous bone along the osteotomy walls during site preparation, enhancing primary stability and implant osseointegration. While OD has demonstrated promising results in low-density trabecular bone, especially when used in conjunction with acid-etched (AE) implant surfaces, its efficacy in high-density cortical bone remains unclear—particularly in the context of varying implant surface characteristics. In this study, Grade V titanium alloy implants (Ti-6Al-4V, 4 mm × 10 mm) with deep threads, designated bone chambers and either as-machined (Mach) or AE surfaces were placed in 3.8 mm diameter osteotomies in the submandibular region of 16 adult sheep using either OD or conventional (Reg) drilling protocols. Insertion torque values (N·cm) were measured at the time of implant placement to evaluate primary stability. Mandibles were harvested at 3-, 6-, 12-, or 24-weeks post-implantation (n = 4 sheep/time point), and histologic sections were analyzed to quantify bone-to-implant contact (BIC) and bone area fractional occupancy (BAFO). Qualitative histological analysis confirmed successful osseointegration among all groups at each of the healing time points. No statistically significant differences were observed between OD and conventional drilling techniques in insertion torque (p > 0.628), BIC (p > 0.135), or BAFO (p > 0.060) values, regardless of implant surface type or healing interval. The findings indicate that neither drilling technique nor implant surface treatment significantly influences osseointegration in high density cortical bone. Furthermore, as the osteotomy was not considerably undersized, the use of OD instrumentation showed no signs of necrosis, inflammation, microfractures, or impaired osseointegration in dense cortical bone. Both OD and Reg techniques appear to be suitable for implant placement in dense bone, allowing flexibility based on surgeon preference and clinical circumstances. Full article
Show Figures

Figure 1

13 pages, 1307 KB  
Article
Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles
by Yasin Akbulut and Serhat Ozdemir
Biomimetics 2025, 10(10), 650; https://doi.org/10.3390/biomimetics10100650 - 1 Oct 2025
Abstract
This study aimed to evaluate how different insertion angles of titanium orthodontic miniscrews (30°, 45°, and 90°) influence stress distribution and displacement in surrounding alveolar bone using three-dimensional finite element analysis (FEA), with a focus on biomechanical outcomes at the titanium–bone interface. The [...] Read more.
This study aimed to evaluate how different insertion angles of titanium orthodontic miniscrews (30°, 45°, and 90°) influence stress distribution and displacement in surrounding alveolar bone using three-dimensional finite element analysis (FEA), with a focus on biomechanical outcomes at the titanium–bone interface. The 90° insertion angle generated the highest stress in cortical bone (58.2 MPa) but the lowest displacement (0.023 mm), while the 30° angle produced lower stress (36.4 MPa) but greater displacement (0.052 mm). The 45° angle represented a compromise, combining moderate stress (42.7 MPa) and displacement (0.035 mm). This simulation-based study was conducted between January and April 2025 at the Department of Orthodontics, Kocaeli Health and Technology University. A standardized 3D mandibular bone model (2 mm cortical and 13 mm cancellous layers) was constructed, and Ti-6Al-4V miniscrews (1.6 mm × 8 mm) were virtually inserted at 30°, 45°, and 90°. A horizontal orthodontic load of 2 N was applied, and von Mises stress and displacement values were calculated in ANSYS Workbench. Stress patterns were visualized using color-coded maps. The 90° insertion angle generated the highest von Mises stress in cortical bone (50.6 MPa), with a total maximum stress of 58.2 MPa, followed by 45° (42.7 MPa) and 30° (36.4 MPa) insertions (p < 0.001). Stress was predominantly concentrated at the cortical entry point, especially in the 90° model. In terms of displacement, the 90° group exhibited the lowest mean displacement (0.023 ± 0.002 mm), followed by 45° (0.035 ± 0.003 mm) and 30° (0.052 ± 0.004 mm), with statistically significant differences among all groups (p < 0.001). The 45° angle showed a balanced biomechanical profile, combining moderate stress and displacement values, as confirmed by post hoc analysis. From a biomimetics perspective, understanding how insertion angle affects bone response provides insights for designing bio-inspired anchorage systems. By simulating natural stress dissipation, this study demonstrates that insertion angle strongly modulates miniscrew performance. Vertical placement (90°) ensures rigidity but concentrates cortical stress, whereas oblique placement, particularly at 45°, offers a balanced compromise with adequate stability and reduced stress. These results emphasize that beyond material properties, surgical parameters such as insertion angle are critical for clinical success. Full article
(This article belongs to the Special Issue Biomimetic Approach to Dental Implants: 2nd Edition)
Show Figures

Figure 1

41 pages, 2466 KB  
Article
Impact of Reaction System Turbulence on the Dispersity and Activity of Heterogeneous Ziegler–Natta Catalytic Systems for Polydiene Production: Insights from Kinetic and CFD Analyses
by Konstantin A. Tereshchenko, Nikolai V. Ulitin, Rustem T. Ismagilov and Alexander S. Novikov
Compounds 2025, 5(4), 39; https://doi.org/10.3390/compounds5040039 - 29 Sep 2025
Abstract
An analysis was conducted to investigate how reaction system turbulence affects the butadiene-isoprene copolymerization in the presence of the TiCl4 + Al(i-Bu)3 catalytic system. A model was developed, which integrates CFD simulations of TiCl4 + Al(i-Bu) [...] Read more.
An analysis was conducted to investigate how reaction system turbulence affects the butadiene-isoprene copolymerization in the presence of the TiCl4 + Al(i-Bu)3 catalytic system. A model was developed, which integrates CFD simulations of TiCl4 + Al(i-Bu)3 particle breakage based on population balance equations with the kinetic modeling of the butadiene-isoprene copolymerization. It was established that an increase in turbulent kinetic energy leads to a reduction in catalyst particle size, an increase in active site concentration, an acceleration of the copolymerization process, and a decrease in the average molecular weights of the copolymer. Furthermore, catalytic activity correlates with both the average and maximum values of turbulent kinetic energy in the reaction system, whereas the effect of the average residence time of catalytic particles under turbulent conditions is insignificant. Based on these results, recommendations were provided for optimizing the impact of reaction system turbulence on TiCl4 + Al(i-Bu)3 particles to enhance the butadiene-isoprene copolymerization rate and achieve precise control over the molecular weight characteristics of the copolymer. The findings of this study can be applied to optimize the synthesis technology of the cis-1,4 butadiene-isoprene copolymer, which is used in the production of frost-resistant rubber. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

16 pages, 3297 KB  
Article
Effect of High-Temperature Isothermal Annealing on the Structure and Properties of Multicomponent Compact Ti-Al(Nb,Mo,B)-Based Materials Fabricated via Free SHS-Compression
by Pavel Bazhin, Ivan Nazarko, Arina Bazhina, Andrey Chizhikov, Alexander Konstantinov, Artem Ivanov, Mikhail Antipov, Pavel Stolin, Svetlana Agasieva and Varvara Avdeeva
Metals 2025, 15(10), 1088; https://doi.org/10.3390/met15101088 - 29 Sep 2025
Abstract
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken [...] Read more.
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken in the following ratio (wt%): 51.85Ti–43Al–4Nb–1Mo–0.15B, as well as to determine the effect of high-temperature isothermal annealing at 1000 °C on the structure and properties of the obtained materials. Using free SHS compression (self-propagating high-temperature synthesis), we synthesized compact materials from a 51.85Ti–43Al–4Nb–1Mo–0.15B (wt%) powder blend. Key combustion parameters were optimized to maximize the synthesis temperature, employing a chemical ignition system. The as-fabricated materials exhibit a layered macrostructure with wavy interfaces, aligned parallel to material flow during compression. Post-synthesis isothermal annealing at 1000 °C for 3 h promoted further phase transformations, enhancing mechanical properties including microhardness (up to 7.4 GPa), Young’s modulus (up to 200 GPa) and elastic recovery (up to 31.8%). X-ray powder diffraction, SEM, and EDS analyses confirmed solid-state diffusion as the primary mechanism for element interaction during synthesis and annealing. The developed materials show promise as PVD targets for depositing heat-resistant coatings. Full article
Show Figures

Figure 1

16 pages, 3608 KB  
Article
Study on Electrochemical Corrosion Behavior of Plasma Sprayed Al2O3-3%TiO2 Coatings Doped with CeO2 for Long-Term Immersion
by Jiahang Yan, Yu Zhang, Pengyu Dai, Lin Zhao, Xin Wang and Xiaohong Yi
Materials 2025, 18(19), 4532; https://doi.org/10.3390/ma18194532 - 29 Sep 2025
Abstract
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was [...] Read more.
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was significantly higher than that of undoped coatings, primarily due to the reduction in coating porosity caused by the addition of rare-earth elements. Among the doped coatings, the 5% CeO2-doped coating exhibited the best protective performance. The addition of rare-earth oxides CeO2 reduced the content of γ-Al2O3 in the coating, but when the concentration of CeO2 increased to 8%, the Ce element was rich in the gap of the coating. Excessive CeO2 enriched in the gaps and coexisted more with Ti, and prevented the formation of the AlTi phase, which affected the performance of the coating. Electrochemical and XPS results revealed that an appropriate amount of Ce atoms or CeO2 particles could fill the pores of the coating. During long-term immersion, Ce (IV) was converted to Ce (III), which demonstrated that Ce atoms have high chemical activity in coatings. The thermodynamic calculation results show that more CeO2 particles improved the adsorption of corrosive ions. It indicated that the content of doped rare-earth oxides exceeding 5% would be utilized as an active material in the corrosive process. Full article
Show Figures

Figure 1

14 pages, 5326 KB  
Article
Microstructure, Hardness, and Corrosion Behavior of Oxidized AA6061 Using Potentiostatic Plasma Electrolytic Oxidation
by Salvacion B. Orgen and Eden May B. Dela Peña
Coatings 2025, 15(10), 1129; https://doi.org/10.3390/coatings15101129 - 29 Sep 2025
Abstract
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and [...] Read more.
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and anodizing have been used to enhance surface properties. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), has emerged as a promising technique for producing durable ceramic coatings on light metals like Al, Mg, and Ti alloys. In this study, PEO was applied to AA6061 aluminum alloy using an AC power source in potentiostatic mode at 350 V and 400 V, 1000 Hz, and 80% duty cycle for 30 min in a silicate-based electrolyte (5 g/L Na2SiO3 + 5 g/L KOH) maintained at 25–40 °C. The effect of voltage on the coating morphology, thickness, and corrosion resistance was investigated. The coatings exhibited porous structures with pancake-like, crater, and nodular features, and thicknesses ranged from 0.053 to 83.64 µm. XRD analysis confirmed the presence of Al, α-Al2O3, Ƴ-Al2O3, and mullite. The 400 V-coated sample showed superior corrosion resistance ( Ecorr= 0.77 V; icorr=0.28 μA/cm2) and improved hardness (up to 233 HV), compared to 89 HV for the bare AA6061. Full article
Show Figures

Figure 1

26 pages, 3787 KB  
Article
Experimental and Numerical Investigation of the Effects of Passive Radiative Cooling-Air Layer Composite Envelope Structure on Building Energy Consumption for Data Center Rooms
by Rong Gao, Weijin Sun, Yuxin Hao, Zhonglu He, Chunmei Guo, Xi Chen and Chong Meng
Energies 2025, 18(19), 5176; https://doi.org/10.3390/en18195176 - 29 Sep 2025
Abstract
The energy consumption of data centers has become increasingly prominent. To address the conflict between the characteristic of inhibiting heat dissipation for traditional insulated building envelopes and the cooling demands of data center rooms all year, this study proposes a novel composite envelope [...] Read more.
The energy consumption of data centers has become increasingly prominent. To address the conflict between the characteristic of inhibiting heat dissipation for traditional insulated building envelopes and the cooling demands of data center rooms all year, this study proposes a novel composite envelope structure for data center rooms that integrates passive radiative cooling with air-layer insulation (PRC-AL). The results demonstrate that under internal heat source power densities of 300–1000 W/m2 without additional cooling measures, the PRC-AL composite envelope structure reduces indoor air temperatures by 16.16–30.81% compared to the traditional insulation structure (TIS). Meanwhile, the application of the PRC-AL composite envelope structure leads to significant reductions in annual cumulative cooling load per unit area: 1617.69 kWh/m2 in Harbin, 1359.49 kWh/m2 in Tianjin, 1135.25 kWh/m2 in Shanghai, 994.97 kWh/m2 in Guiyang, and 918.70 kWh/m2 in Guangzhou. These findings indicate that the proposed PRC-AL composite envelope structure not only effectively lowers indoor air temperatures but also reduces cooling loads in data center rooms, providing an efficient pathway for energy conservation in data centers. This research offers a theoretical foundation for optimizing the design of building envelopes in data centers and contributes to sustainable development in the digital infrastructure sector. Full article
(This article belongs to the Special Issue Towards Sustainable Buildings and Built Environments)
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

22 pages, 5662 KB  
Article
Physical Vapor Deposited TiN and TiAlN on Biomedical β-Type Ti-29Nb-13Ta-4.6Zr: Microstructural Characteristics, Surface Hardness Enhancement, and Antibacterial Activity
by Hakan Yilmazer
Coatings 2025, 15(10), 1126; https://doi.org/10.3390/coatings15101126 - 29 Sep 2025
Abstract
Beta (β)-type Ti-29Nb-13Ta-4.6Zr (TNTZ) alloys combine low modulus with biocompatibility but require improved surface properties for long-term implantation. This study aimed to enhance the surface mechanical strength and antibacterial performance of TNTZ by applying TiN and TiAlN coatings via PVD. Notably, TiAlN was [...] Read more.
Beta (β)-type Ti-29Nb-13Ta-4.6Zr (TNTZ) alloys combine low modulus with biocompatibility but require improved surface properties for long-term implantation. This study aimed to enhance the surface mechanical strength and antibacterial performance of TNTZ by applying TiN and TiAlN coatings via PVD. Notably, TiAlN was deposited on TNTZ for the first time, enabling a direct side-by-side comparison with TiN under identical deposition conditions. Dense TiN (~1.06 μm) and TiAlN (~1.73 μm) coatings were deposited onto solution-treated TNTZ and characterized by X-ray diffraction, scanning probe microscopy, Vickers microhardness, Rockwell indentation test (VDI 3198), static water contact angle measurements, and a Kirby–Bauer disk-diffusion antibacterial assay against Escherichia coli (E. coli). Both coatings formed face-centered cubic (FCC) structures with smooth interfaces (Ra ≤ 5.3 nm) while preserving the single-phase β matrix of the substrate. The hardness increased from 192 HV (uncoated) to 1059 HV (TiN) and 1468 HV (TiAlN), and the adhesion quality was rated as HF2 and HF1, respectively. The surface wettability changed from hydrophilic (48°) to moderately hydrophobic (82°) with TiN and highly hydrophobic (103°) with TiAlN. Similarly, the diameter of the no-growth zones increased to 18.02 mm (TiN) and 19.09 mm (TiAlN) compared to 17.65 mm for uncoated TNTZ. The findings indicate that TiAlN, in particular, provided improved hardness, adhesion, and hydrophobicity. Preliminary bacteriostatic screening under diffusion conditions suggested a modest relative antibacterial response, though the effect was not statistically significant between coated and uncoated TNTZ. Statistical analysis confirmed no significant difference between the groups (p > 0.05), indicating that only a preliminary bacteriostatic trend— rather than a definitive antibacterial effect—was observed. Both nitride coatings strengthened TNTZ without compromising its structural integrity, making TiAlN-coated TNTZ a promising candidate for next-generation orthopedic implants. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

25 pages, 4563 KB  
Article
Metal Ion Release from PEO-Coated Ti6Al4V DMLS Alloy for Orthopedic Implants
by Shaghayegh Javadi, Laura Castro, Raúl Arrabal and Endzhe Matykina
J. Funct. Biomater. 2025, 16(10), 362; https://doi.org/10.3390/jfb16100362 - 28 Sep 2025
Abstract
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied [...] Read more.
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied on both DMLS and wrought Ti6Al4V alloys. Samples, coated and uncoated, were characterized for microstructure, morphology and composition. Electrochemical behaviour was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) at 37 °C. Ion release was quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES). DMLS alloy was more passive than wrought Ti6Al4V, releasing ~60% less Ti and ~25% less Al, but ~900% more V. For both alloys, correlation of corrosion current and ion release indicated that 98–99% of oxidized Ti remained in the passive layer. Flash-PEO produced uniform porous coatings composed of anatase and rutile with ~50% amorphous phase, while PEO yielded heterogeneous layers due to soft sparking. In both cases, coatings were the main source of ions. For the DMLS alloy, the best protection was afforded by flash-PEO, releasing 0.01 μg cm−2 d−1 Ti, 26 μg cm−2 d−1 Al, and 0.25 μg cm−2 d−1 V over 30 days. Full article
(This article belongs to the Special Issue Advances in Biomedical Alloys and Surface Modification)
Show Figures

Figure 1

Back to TopTop