Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (953)

Search Parameters:
Keywords = Ti-Nb alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6099 KB  
Article
Influence of B on the Practical Properties of TiAl Alloys for Jet Engine Blades and a Comparison of TiAl4822 and XD Alloys
by Toshimitsu Tetsui and Kazuhiro Mizuta
Metals 2025, 15(10), 1132; https://doi.org/10.3390/met15101132 (registering DOI) - 11 Oct 2025
Abstract
B is considered a valuable additive for TiAl alloys, because it is believed to improve their properties by refining their microstructures. However, the effects of B on the practical properties of TiAl alloys for jet engine blades and the optimal addition amount for [...] Read more.
B is considered a valuable additive for TiAl alloys, because it is believed to improve their properties by refining their microstructures. However, the effects of B on the practical properties of TiAl alloys for jet engine blades and the optimal addition amount for achieving balanced properties remain unclear. Specifically, there have been very few studies to date in which the practical properties of alloys have been evaluated across a wide range of B addition levels. Therefore, we evaluated various reliability, cost, and performance properties of jet engine blade materials using cast Ti-45,47Al-2Nb-2Mn (the same as XD alloys), with varying B addition levels. The results showed that, in some cases, low B addition levels (0.1–0.2 at.%) could enhance the impact resistance and high-cycle fatigue performance. However, even low B addition levels negatively impacted the machinability, castability, and creep strength. Further, adding 0.4 B or more significantly reduced most practical properties. Compared to XD alloys, TiAl4822 exhibited a superior balance, which is attributed to the higher B content (1 at.%) in XD alloys and the greater effectiveness of Cr relative to Mn in improving the alloy’s high-temperature impact resistance. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (3rd Edition))
Show Figures

Figure 1

19 pages, 6231 KB  
Article
Synergistic Effects of Temperature and Cooling Rate on Lamellar Microstructure Evolution and Mechanical Performance in Ti-44.9Al-4.1Nb-1.0Mo-0.1B-0.05Y-0.05Si Alloy
by Fengliang Tan, Yantao Li, Jinbiao Cui, Ning Liu, Kashif Naseem, Zhichao Zhu and Shiwei Tian
Materials 2025, 18(19), 4641; https://doi.org/10.3390/ma18194641 - 9 Oct 2025
Viewed by 151
Abstract
TiAl alloys are ideal candidates to replace nickel-based superalloys in aero-engines due to their low density and high specific strength, yet their industrial application is hindered by narrow heat treatment windows and unbalanced mechanical performance. To address this, this study investigates the microstructure [...] Read more.
TiAl alloys are ideal candidates to replace nickel-based superalloys in aero-engines due to their low density and high specific strength, yet their industrial application is hindered by narrow heat treatment windows and unbalanced mechanical performance. To address this, this study investigates the microstructure and mechanical properties of Ti-44.9Al-4.1Nb-1.0Mo-0.1B-0.05Y-0.05Si (TNM-derived) alloys hot-rolled in the (α2 + γ) two-phase region. The research employs varying heat treatment temperatures (1150–1280 °C) and cooling rates (0.1–2.5 °C/s), combined with XRD, SEM, EBSD characterization, and 800 °C high-temperature tensile tests. Key findings: Discontinuous dynamic recrystallization (DDRX) of γ grains is the primary mechanism refining lamellar colonies during deformation. Higher heat treatment temperatures reduce γ/β phases (which constrain colony growth), increasing the volume fraction of lamellar colonies but exerting minimal impact on interlamellar spacing. Faster cooling shifts γ lamella nucleation from confined to grain boundaries to multi-sites (grain boundaries, γ lamella peripheries, α grains) and changes grain boundaries from jagged and interlocking to smooth and straight, which boosts nucleation sites and refines interlamellar spacing. Fine lamellar colonies and narrow interlamellar spacing enhance tensile strength, while eliminating brittle βo phases and promoting interlocking boundaries with uniform equiaxed γ grains improve plasticity. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 9417 KB  
Article
Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys
by Yicheng Gong, Jiahong Liang, Shoujiang Qu, Guojian Cao, Hao Wang, Aihan Feng and Daolun Chen
Metals 2025, 15(10), 1120; https://doi.org/10.3390/met15101120 - 9 Oct 2025
Viewed by 154
Abstract
Ti2AlNb-based alloys are potential structural materials for high-temperature applications due to their low density and superior specific strength. However, their widespread application is limited by relatively poor oxidation resistance above 700 °C. While Ti2AlNb-based alloys exhibit promising mechanical properties, [...] Read more.
Ti2AlNb-based alloys are potential structural materials for high-temperature applications due to their low density and superior specific strength. However, their widespread application is limited by relatively poor oxidation resistance above 700 °C. While Ti2AlNb-based alloys exhibit promising mechanical properties, their oxidation behavior remains inadequately characterized, particularly concerning the role of Nb content. In this study, the high-temperature oxidation behavior of Ti2AlNb-based alloys with different Nb contents was investigated at 800 °C in air. The results revealed a characteristic double-layered oxide structure consisting of an outer TiO2 layer and inner alternating TiO2-rich and AlNbO4-rich sublayers. Thermodynamic calculations confirmed the favorable formation of TiO2, Al2O3, Nb2O5, and AlNbO4 at high temperatures. However, the reaction between Nb2O5 and Al2O3 hinders the formation of a protective Al2O3 layer. Increasing the Nb content was found to replace Ti atoms, reducing the diffusion rate of oxygen and simultaneously decreasing the thickness of porous TiO2 regions. Nevertheless, the inadequate rate of aluminum diffusion inhibited adequate Al2O3 formation, leading to limited overall oxidation protection. These findings elucidate the composition–oxidation relationship in Ti2AlNb-based alloys and provide valuable insights for tailoring Nb and Al contents to achieve a balanced combination of mechanical properties and high-temperature oxidation resistance. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

13 pages, 10686 KB  
Article
In Situ Observation of the Austenite Grains Growth Behavior in the Austenitizing Process of Nb–Ti Micro-Alloyed Medium Manganese Steel
by Guangpeng Yuan, Yu Du, Chao Sun, Xiuhua Gao, Hongyan Wu and Linxiu Du
Coatings 2025, 15(10), 1144; https://doi.org/10.3390/coatings15101144 - 2 Oct 2025
Viewed by 343
Abstract
In this paper, the austenite grains growth behavior in the austenitizing process of Nb–Ti micro-alloyed medium manganese steel was studied through in situ observation by high temperature laser confocal microscope. The results show that the average austenite grain sizes change from about 3 [...] Read more.
In this paper, the austenite grains growth behavior in the austenitizing process of Nb–Ti micro-alloyed medium manganese steel was studied through in situ observation by high temperature laser confocal microscope. The results show that the average austenite grain sizes change from about 3 μm at 1050 °C to over 50 μm at 1250 °C. When the grain boundary is a small-angle grain boundary, one grain boundary will split into several dislocations. With the extension of heating time, the lattice orientation difference further decreases, and the remaining dislocations may merge into new grain boundaries. The most suitable heating temperature for the medium manganese steel in this paper is from 1100 °C to 1150 °C, taking into account influences such as grain size, grain boundary damage, and deformation resistance. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

16 pages, 3297 KB  
Article
Effect of High-Temperature Isothermal Annealing on the Structure and Properties of Multicomponent Compact Ti-Al(Nb,Mo,B)-Based Materials Fabricated via Free SHS-Compression
by Pavel Bazhin, Ivan Nazarko, Arina Bazhina, Andrey Chizhikov, Alexander Konstantinov, Artem Ivanov, Mikhail Antipov, Pavel Stolin, Svetlana Agasieva and Varvara Avdeeva
Metals 2025, 15(10), 1088; https://doi.org/10.3390/met15101088 - 29 Sep 2025
Viewed by 221
Abstract
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken [...] Read more.
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken in the following ratio (wt%): 51.85Ti–43Al–4Nb–1Mo–0.15B, as well as to determine the effect of high-temperature isothermal annealing at 1000 °C on the structure and properties of the obtained materials. Using free SHS compression (self-propagating high-temperature synthesis), we synthesized compact materials from a 51.85Ti–43Al–4Nb–1Mo–0.15B (wt%) powder blend. Key combustion parameters were optimized to maximize the synthesis temperature, employing a chemical ignition system. The as-fabricated materials exhibit a layered macrostructure with wavy interfaces, aligned parallel to material flow during compression. Post-synthesis isothermal annealing at 1000 °C for 3 h promoted further phase transformations, enhancing mechanical properties including microhardness (up to 7.4 GPa), Young’s modulus (up to 200 GPa) and elastic recovery (up to 31.8%). X-ray powder diffraction, SEM, and EDS analyses confirmed solid-state diffusion as the primary mechanism for element interaction during synthesis and annealing. The developed materials show promise as PVD targets for depositing heat-resistant coatings. Full article
Show Figures

Figure 1

22 pages, 5662 KB  
Article
Physical Vapor Deposited TiN and TiAlN on Biomedical β-Type Ti-29Nb-13Ta-4.6Zr: Microstructural Characteristics, Surface Hardness Enhancement, and Antibacterial Activity
by Hakan Yilmazer
Coatings 2025, 15(10), 1126; https://doi.org/10.3390/coatings15101126 - 29 Sep 2025
Viewed by 492
Abstract
Beta (β)-type Ti-29Nb-13Ta-4.6Zr (TNTZ) alloys combine low modulus with biocompatibility but require improved surface properties for long-term implantation. This study aimed to enhance the surface mechanical strength and antibacterial performance of TNTZ by applying TiN and TiAlN coatings via PVD. Notably, TiAlN was [...] Read more.
Beta (β)-type Ti-29Nb-13Ta-4.6Zr (TNTZ) alloys combine low modulus with biocompatibility but require improved surface properties for long-term implantation. This study aimed to enhance the surface mechanical strength and antibacterial performance of TNTZ by applying TiN and TiAlN coatings via PVD. Notably, TiAlN was deposited on TNTZ for the first time, enabling a direct side-by-side comparison with TiN under identical deposition conditions. Dense TiN (~1.06 μm) and TiAlN (~1.73 μm) coatings were deposited onto solution-treated TNTZ and characterized by X-ray diffraction, scanning probe microscopy, Vickers microhardness, Rockwell indentation test (VDI 3198), static water contact angle measurements, and a Kirby–Bauer disk-diffusion antibacterial assay against Escherichia coli (E. coli). Both coatings formed face-centered cubic (FCC) structures with smooth interfaces (Ra ≤ 5.3 nm) while preserving the single-phase β matrix of the substrate. The hardness increased from 192 HV (uncoated) to 1059 HV (TiN) and 1468 HV (TiAlN), and the adhesion quality was rated as HF2 and HF1, respectively. The surface wettability changed from hydrophilic (48°) to moderately hydrophobic (82°) with TiN and highly hydrophobic (103°) with TiAlN. Similarly, the diameter of the no-growth zones increased to 18.02 mm (TiN) and 19.09 mm (TiAlN) compared to 17.65 mm for uncoated TNTZ. The findings indicate that TiAlN, in particular, provided improved hardness, adhesion, and hydrophobicity. Preliminary bacteriostatic screening under diffusion conditions suggested a modest relative antibacterial response, though the effect was not statistically significant between coated and uncoated TNTZ. Statistical analysis confirmed no significant difference between the groups (p > 0.05), indicating that only a preliminary bacteriostatic trend— rather than a definitive antibacterial effect—was observed. Both nitride coatings strengthened TNTZ without compromising its structural integrity, making TiAlN-coated TNTZ a promising candidate for next-generation orthopedic implants. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

16 pages, 10468 KB  
Article
Effect of Heat Treatment on In Vitro Cytotoxicity of Ti-Nb-Zr Gum Metal Alloy
by Arash Etemad, Saeed Hasani, Alireza Mashreghi, Fariba Heidari, Parinaz Salehikahrizsangi, Sabine Schwarz, Katarzyna Bloch and Marcin Nabialek
Materials 2025, 18(19), 4473; https://doi.org/10.3390/ma18194473 - 25 Sep 2025
Viewed by 284
Abstract
Strain-induced deformations and phase evolutions are two hidden factors that may influence cytocompatibility of Gum Metal alloys during processing for relevant implant applications. In the present research, changes in cell viability of a new Gum Metal Ti-Nb-Zr alloy in its cold-rolled state and [...] Read more.
Strain-induced deformations and phase evolutions are two hidden factors that may influence cytocompatibility of Gum Metal alloys during processing for relevant implant applications. In the present research, changes in cell viability of a new Gum Metal Ti-Nb-Zr alloy in its cold-rolled state and after heat treatments (at 700, 850, and 900 °C) were investigated by a comprehensive study of microstructural phases and their role in deformation mechanisms as well as mechanical properties. In its cold-rolled state, the alloy showed a lamellar microstructure along with stress-induced α″ martensite and ω phases, as confirmed by optical microscopy (OM) and X-ray diffractometry (XRD) analysis. The instability in the β phase led to a strain-induced martensitic (SIM) transformation from β to α′/α″ phases, causing lower viability of MG-63 cells compared with commercially pure titanium. MG-63 cell viability was significantly higher (p < 0.0001) in the alloy heat-treated at 900 °C compared with those heat-treated at 700 and 850 °C. This can be directly attributed to the increased portion of the stable and dominant β phase. The stabilized β phase greatly improved the alloy’s cellular response by reducing harmful phase interactions and maintaining mechanical compatibility with bone (admissible strain of 1.3%). Importantly, heat treatment at high temperatures (between 850 and 900 °C) effectively converted the stress-induced α″ and ω phases back into a stable β phase matrix as the dominant phase. Full article
Show Figures

Graphical abstract

19 pages, 8320 KB  
Article
Insights into Optimizing Heat Treatment for Hot Isostatic Pressing of Ti-48Al-3Nb-1.5Ta Alloy Powder
by Zhenbo Zuo, Rui Hu, Shaoqiang Li, Chengpeng Liu, Qingxiang Wang, Xiangyu Gao, Yunjin Lai, Xian Luo, Cheng Luo, Zonghong Qu and Lu Kang
Metals 2025, 15(9), 1050; https://doi.org/10.3390/met15091050 - 20 Sep 2025
Viewed by 247
Abstract
In this study, various characterization techniques were utilized to investigate the effects of heat treatments on the microstructure and mechanical properties of Ti-48Al-3Nb-1.5Ta (at. %) alloy prepared by the supreme-speed plasma rotating electrode process and hot isostatic pressing. By comparing the microstructures of [...] Read more.
In this study, various characterization techniques were utilized to investigate the effects of heat treatments on the microstructure and mechanical properties of Ti-48Al-3Nb-1.5Ta (at. %) alloy prepared by the supreme-speed plasma rotating electrode process and hot isostatic pressing. By comparing the microstructures of the alloy under different heat treatments conditions, it was found that the nearly lamellar structure with a size of about 145 μm is formed by a simple heat treatment (1400 °C/10 min, FC to 1300 °C, AC, 850 °C/3 h/FC). Under this heat treatment condition, the alloy exhibited satisfied mechanical properties, with a tensile fracture strain of 1.2% at room temperature and a tensile fracture strain of 7.5% at 750 °C. No fracture occurred after 225 h when creeping at 750 °C/250 MPa. Ta inhibited the growth of lamellae and the expansion of pores, thereby improving creep performance. In summary, the TiAl alloy with satisfied performance was obtained through a simple heat treatment process, which provides a significant idea for engineering application. Full article
Show Figures

Figure 1

18 pages, 2876 KB  
Article
Theoretical Approach of Stability and Mechanical Properties in (TiZrHf)1−x(AB)x (AB = NbTa, NbMo, MoTa) Refractory High-Entropy Alloys
by Heng Luo, Yuanyuan Zhang, Zixiong Ruan, Touwen Fan, Te Hu and Hongge Yan
Coatings 2025, 15(9), 1092; https://doi.org/10.3390/coatings15091092 - 17 Sep 2025
Viewed by 540
Abstract
The stability and mechanical properties of (TiZrHf)1−x(AB)x (AB = NbTa, NbMo, MoTa) refractory high-entropy alloys have been investigated by combining the first-principles with special quasi-random structure (SQS) method. It is found that with the increase in solute concentration x, [...] Read more.
The stability and mechanical properties of (TiZrHf)1−x(AB)x (AB = NbTa, NbMo, MoTa) refractory high-entropy alloys have been investigated by combining the first-principles with special quasi-random structure (SQS) method. It is found that with the increase in solute concentration x, the ΔHmix of (TiZrHf)1−x(AB)x (AB = NbMo, MoTa) linearly decreases, whereas both ΔHmix and ΔSmix of (TiZrHf)1−x(NbTa)x increase initially and subsequently decrease, with the crossover occurring at x = 0.56. The ΔHmix of (TiZrHf)1−x(NbTa)x and (TiZrHf)1−x(AB)x (AB = NbMo, MoTa) alloys are larger and lower than that of TiZrHf, respectively, while the ΔSmix of all (TiZrHf)1−x(AB)x is larger than that of TiZrHf. The formation possibility parameter Ω of all (TiZrHf)1−x(AB)x (AB = NbMo, MoTa) first decreases sharply, followed by a gradual decrease. And the local lattice distortion (LLD) parameter δ remains relatively stable around x = 0.56 for all cases, after which it decreases sharply until x = 0.89. The δ value of (TiZrHf)1−x(AB)x is higher than that of TiZrHf for x < 0.56 but becomes lower beyond this composition. The valence electron concentration (VEC), a possible indicator for a single-phase solution, of (TiZrHf)1−x(AB)x increases nearly linearly, while the formation energy ΔHf of (TiZrHf)1−x(AB)x shows the opposite tendency, except for (TiZrHf)0.67(NbTa)0.33. Furthermore, the VEC of all (TiZrHf)1−x(AB)x alloys increases, whereas their ΔHf decreases compared to that of TiZrHf. The ideal strength σp of (TiZrHf)1−x(AB)x increases linearly, reaching approximately 2.12 GPa. The bulk modulus (B), elastic modulus (E), and shear modulus (G) also exhibit linear increases, and their values in all (TiZrHf)1−x(AB)x alloys are higher than those of TiZrHf, with some exceptions. The Cauchy pressure (C12C44) and Pugh’s ratio G/B of all (TiZrHf)1−x(AB)x alloys increase, whereas the Poisson’s ratio ν exhibits the opposite trend. Moreover, the C12C44 and G/B ratio of TiZrHf are lower and higher, respectively, than those of (TiZrHf)1−x(AB)x, and the ν of TiZrHf is lower than that of (TiZrHf)1−x(AB)x. This study provides valuable insights for the design of high-performance TiZrHf-based refractory high-entropy alloys. Full article
(This article belongs to the Special Issue Innovations, Applications and Advances of High-Entropy Alloy Coatings)
Show Figures

Graphical abstract

15 pages, 1432 KB  
Article
Elastic Anisotropy in BCC Ti-X Alloys (X = V, Nb, Ta) Determined from First Principles
by Cyprian Sobczak, Piotr Kwasniak, Pawel Strak, Marek Muzyk and Stanislaw Krukowski
Materials 2025, 18(18), 4294; https://doi.org/10.3390/ma18184294 (registering DOI) - 12 Sep 2025
Viewed by 479
Abstract
Elastic isotropy is a phenomenon in which a material responds uniformly to stress, regardless of its direction. In the case of cubic crystals, which possess distinct crystallographic directions, this represents a remarkable manifestation of quantum mechanics in macroscopic objects. Such behavior of a [...] Read more.
Elastic isotropy is a phenomenon in which a material responds uniformly to stress, regardless of its direction. In the case of cubic crystals, which possess distinct crystallographic directions, this represents a remarkable manifestation of quantum mechanics in macroscopic objects. Such behavior of a crystal cannot be explained within the framework of classical physics. The phenomenon is closely related to the balancing of internal forces resulting from Coulomb interactions, Pauli repulsion, and the overlap in the bands when stress is applied to the crystal. On the macroscopic level, this corresponds to the relationship between elastic constants given by 2 C44/(C11 − C12) = 1. The subject of the present work is to demonstrate the influence of the number of valence electrons per atom in binary titanium alloys with vanadium, niobium, and tantalum on the shape of the anisotropy curve. The result of the work is the identification of a new Ti-53Nb alloy exhibiting elastic isotropy, and the demonstration that this phenomenon cannot occur for TiTa alloys, in the range of mechanical stability of these alloys. This study includes a summary of the main trends exhibited by the elastic constants, Young’s modulus, and bulk modulus of the discussed Ti-based alloys, based on ab initio methods. Additionally, the work addresses the well-known difficulty in determining the elastic constants of vanadium and niobium, along with a proposed solution that offers significant improvement in reproducing experimental results compared to the conventional use of the PBE (Perdew–Burke–Ernzerhof) functional. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

26 pages, 7608 KB  
Article
High-Pressure Torsion and Anodic Oxidation as a Method for Surface Engineering of Ti-13Nb-13Zr Biomedical Alloy
by Dragana R. Mihajlović, Bojan I. Medjo, Jelena B. Bajat and Veljko R. Djokić
Metals 2025, 15(9), 997; https://doi.org/10.3390/met15090997 - 8 Sep 2025
Viewed by 396
Abstract
The anodic oxidation technique was used for surface modification, resulting in the creation of a titanium-based nanotube oxide layer on a coarse-grained and ultrafine-grained Ti-13Nb-13Zr alloy. The modified surface morphology was analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray [...] Read more.
The anodic oxidation technique was used for surface modification, resulting in the creation of a titanium-based nanotube oxide layer on a coarse-grained and ultrafine-grained Ti-13Nb-13Zr alloy. The modified surface morphology was analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The electrochemical impedance spectroscopy (EIS) method was employed to evaluate the corrosion stability of the Ti-13Nb-13Zr alloy before and after anodic oxidation. Corrosion stability was determined by exposing the examined alloy to a solution that simulates environment in the human organism (Ringer’s solution). To examine the titanium-based nanotube oxide layer adhesion on the Ti-13Nb-13Zr alloy’s surface, a scratch test was performed. The hydrophilicity of the modified surface was measured using the contact angle between a drop of Ringer’s solution and the modified surface. The anodic oxidation led to the creation of a nanotube oxide layer on the surface of the Ti-13Nb-13Zr (wt.%) alloy. The impact of the ultrafine-grained structure on the homogeneity of the nanotube oxide layer obtained using anodic oxidation was observed. The ultrafine-grained structure contributed to the increased diameter of the nanotubes, while the combined effect of anodic oxidation and high-pressure torsion significantly increased the roughness of the Ti-13Nb-13Zr alloy’s surface, which is expected to enhance biomechanical compatibility by reducing cytotoxicity, providing a more adaptable modulus of elasticity for human body conditions and ensuring adequate corrosion resistance and hydrophilicity. In this study, it was established that the examined alloy had suitable corrosion resistance for utilization in medicine as a metallic implant in the human body. The scratch test showed acceptable adhesion from the titanium-based nanotube oxide layer created using anodic oxidation. Also, the determination of the surface contact angle showed that the surface after anodic oxidation was more hydrophilic than the surface before anodic oxidation. Full article
(This article belongs to the Special Issue Surface Modification of Alloys)
Show Figures

Graphical abstract

14 pages, 4178 KB  
Article
Improving Anti-Corrosion and Conductivity of NiTi Alloy Bipolar Plate Used for PEMFCs via Nb Alloying
by Ziyang Niu, Yingping Li, Yuanyuan Li, Xiaofen Wang, Yumin Pan, Zhuo He, Guohong Zhang, Zhen Wang and Qiongyu Zhou
Molecules 2025, 30(17), 3658; https://doi.org/10.3390/molecules30173658 - 8 Sep 2025
Viewed by 592
Abstract
NiTi alloy has emerged as a promising bipolar plate (BP) material for proton exchange membrane fuel cells (PEMFCs), combining Ti-like corrosion resistance with Ni-like electrical conductivity through its intermetallic characteristics. However, its performance faces greater challenges under aggressive operating conditions (70 °C, F [...] Read more.
NiTi alloy has emerged as a promising bipolar plate (BP) material for proton exchange membrane fuel cells (PEMFCs), combining Ti-like corrosion resistance with Ni-like electrical conductivity through its intermetallic characteristics. However, its performance faces greater challenges under aggressive operating conditions (70 °C, F-containing acidic solution with air bubbling). This study demonstrates that Nb alloying effectively enhances NiTi while preserving its balanced properties. The developed NiTiNb alloy exhibits improved performance with 26% lower corrosion current density (ic) and 29% reduced interfacial contact resistance (ICR) compared to conventional NiTi, effectively overcoming the conventional corrosion–conductivity trade-off in metallic BPs. The alloy also shows superior electrochemical stability and microhardness relative to pure Ti and Ni. These enhancements stem from a unique dual-phase microstructure comprising a NiTi (B2) matrix with continuous β-Nb grain boundary networks. During operation, this structure enables in situ formation of protective TiO2-Nb2O5 films while maintaining conductive Nb/Nb2O5 pathways and metallic Ni domains. The findings establish Nb alloying as a viable optimization strategy for NiTi-based BP substrate in demanding PEMFC applications. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

15 pages, 8787 KB  
Article
Point Defects in MoNbTi-Based Refractory Multi-Principal-Element Alloys
by Thai hang Chung, Maciej Oskar Liedke, Saikumaran Ayyappan, Maik Butterling, Riley Craig Ferguson, Adric C. L. Jones, Andreas Wagner, Khalid Hattar, Djamel Kaoumi and Farida A. Selim
Metals 2025, 15(9), 989; https://doi.org/10.3390/met15090989 - 6 Sep 2025
Viewed by 490
Abstract
As emergent material candidates for extreme environments, refractory high-entropy alloys (HEAs) or refractory multi-principal-element alloys (RMPEAs) comprising refractory metals feature qualities such as high radiation tolerance, corrosion resistance, and mechanical strength. A set of MoNbTi-based RMPEA samples with Al, Cr, V, and Zr [...] Read more.
As emergent material candidates for extreme environments, refractory high-entropy alloys (HEAs) or refractory multi-principal-element alloys (RMPEAs) comprising refractory metals feature qualities such as high radiation tolerance, corrosion resistance, and mechanical strength. A set of MoNbTi-based RMPEA samples with Al, Cr, V, and Zr additions are prepared by spark plasma sintering and investigated for their response to irradiation using 10 MeV Si+ ions with a dose of 1.43×1015 ions/cm2. Positron annihilation spectroscopy and transmission electron microscopy are employed as atomic- and meso- scale techniques to reveal how chemical complexity, nanotwinning, and phase fractions play an important role in radiation-induced defect accumulation and damage tolerance. The study provides experimental evidence of nanotwinning acting as an effective sink for radiation-induced point defects. Full article
Show Figures

Figure 1

19 pages, 10755 KB  
Article
Corrosion Performance of (TiAlZrTaNb)Nx High-Entropy Nitrides Thin Films Deposited on 304 Stainless Steel via HiPIMS
by Maria-Camila Castañeda, Oscar Piamba and Jhon Olaya
Metals 2025, 15(9), 988; https://doi.org/10.3390/met15090988 - 6 Sep 2025
Viewed by 463
Abstract
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical [...] Read more.
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. Corrosion resistance was evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests, employing tap water, acetic acid, and citric acid solutions at room temperature as electrolytes. The results demonstrated that the TiAlZrTaNbN coating exhibits a dense and homogeneous structure with a uniform elemental distribution. XRD analysis revealed the presence of face-centered cubic (FCC) crystalline phases, which significantly contribute to the coating’s corrosion resistance. Furthermore, the coating displayed exceptional corrosion performance in both acetic acid and citric acid electrolytes—simulating food environments with a pH ≤ 4.5—as revealed by a substantial reduction in corrosion current density and a positive shift in corrosion potential. These findings provide valuable insights into the properties of TiAlZrTaNbN coatings and underscore their potential for enhancing the durability of mechanical components employed in the food industry. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

22 pages, 11364 KB  
Article
Effect of Laser Scanning Speed on Microstructure and Properties of Laser Cladding NiAlNbTiV High-Entropy Coatings
by Huan Yan, Shuangli Lu, Lei Li, Wen Huang and Chen Liang
Materials 2025, 18(17), 4076; https://doi.org/10.3390/ma18174076 - 31 Aug 2025
Viewed by 490
Abstract
High-entropy alloys (HEAs) exhibit superior properties for extreme environments, yet the effects of laser scanning speed on the microstructure and performance of laser-clad NiAlNbTiV HEA coatings remain unclear. This study systematically investigates NiAlNbTiV coatings on 316 stainless steel fabricated at scanning speeds of [...] Read more.
High-entropy alloys (HEAs) exhibit superior properties for extreme environments, yet the effects of laser scanning speed on the microstructure and performance of laser-clad NiAlNbTiV HEA coatings remain unclear. This study systematically investigates NiAlNbTiV coatings on 316 stainless steel fabricated at scanning speeds of 800–1100 mm/min via laser cladding. Characterizations via XRD, SEM/EDS, microhardness testing, high-temperature wear testing, and electrochemical measurements reveal that increasing scanning speed enhances the cooling rate, promoting γ-(Ni, Fe) solid solution formation, intensifying TiV peaks, and reducing Fe-Nb intermetallics. Higher speeds refine grains and needle-like crystal distributions but introduce point defects and cracks at 1100 mm/min. Microhardness decreases from 606.2 HV (800 mm/min) to 522.4 HV (1100 mm/min). The 800 mm/min coating shows optimal wear resistance (wear volume: 0.0117 mm3) due to dense eutectic hard phases, while higher speeds degrade wear performance via increased defects. Corrosion resistance follows a non-linear trend, with the 900 mm/min coating achieving the lowest corrosion current density (1.656 μA·cm−2) due to fine grains and minimal defects. This work provides parametric optimization guidance for laser-clad HEA coatings in extreme-condition engineering applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop