Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Timosaponin A3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5826 KB  
Article
Combination Treatment of Timosaponin BII and Pirfenidone Attenuated Pulmonary Fibrosis Through Anti-Inflammatory and Anti-Fibrotic Process in Rodent Pulmonary Fibrosis Model and Cellular Epithelial–Mesenchymal Transition Model
by Xuebin Shen, Yueyue Zheng, Hui Yang, Li Liu, Lizhen Yu, Yuanxiang Zhang, Xiaojun Song, Yuqing He, Runze Jin, Jianhao Jiao, Zhihui Gu, Kefeng Zhai, Sihui Nian and Limin Liu
Molecules 2025, 30(8), 1821; https://doi.org/10.3390/molecules30081821 - 18 Apr 2025
Viewed by 783
Abstract
Pulmonary fibrosis (PF) is a progressive lung disease with a poor prognosis. Pirfenidone (PFD) can slow down the decline of lung function, but defects in efficacy and accompanying side effects limit its application; hence, implementing methods including combination therapy might be a viable [...] Read more.
Pulmonary fibrosis (PF) is a progressive lung disease with a poor prognosis. Pirfenidone (PFD) can slow down the decline of lung function, but defects in efficacy and accompanying side effects limit its application; hence, implementing methods including combination therapy might be a viable option. Given this, we hypothesized that combining timosaponin BII (TS BII) with PFD might offer a more effective treatment approach. Bleomycin-induced rodent PF model and TGF-β1-induced cellular epithelial–mesenchymal transition (EMT) model were applied in the study. The results showed that the combination of TS BII and PFD was more effective in reducing the production of IL-1β, TNF-α, collagen fibers, hydroxyproline, and MDA. Moreover, the combination treatment could better restore levels SOD and GSH-Px. In addition, TS BII combined with PFD could downregulate the expression of NF-κB and the ratio of p-IκBα/IκBα, and modulate the aberrant expression of epithelial–mesenchymal transition markers. In addition, the combination treatment could regulate the intestinal flora of PF mice. It is worth noting that among the above results, there were significant differences (p < 0.05) between the combination group and either the TS BII or PFD monotherapy group. These findings indicate that the combination of TS BII and PFD has a synergistic effect in the treatment of PF and represents a promising treatment strategy. Full article
Show Figures

Figure 1

16 pages, 2999 KB  
Article
Timosaponin A3 Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo
by Ji-Hyuk Park, Wona Jee, So-Mi Park, Ye-Rin Park, Seok Woo Kim, Hanbit Bae, Won-Suk Chung, Jae-Heung Cho, Hyungsuk Kim, Mi-Yeon Song and Hyeung-Jin Jang
Int. J. Mol. Sci. 2024, 25(5), 2914; https://doi.org/10.3390/ijms25052914 - 2 Mar 2024
Cited by 5 | Viewed by 2464
Abstract
Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), [...] Read more.
Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5′-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention. Full article
(This article belongs to the Special Issue Obesity, Adipose Tissue, and Bioactive Natural Products)
Show Figures

Figure 1

20 pages, 1840 KB  
Review
The Potential Role of Timosaponin-AIII in Cancer Prevention and Treatment
by Zhaowen Liu, Yifan Cao, Xiaohua Guo and Zhixi Chen
Molecules 2023, 28(14), 5500; https://doi.org/10.3390/molecules28145500 - 19 Jul 2023
Cited by 12 | Viewed by 2757
Abstract
Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known [...] Read more.
Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known medicinal plant for more than two thousand years, has demonstrated its effectiveness against cancer. Timosaponin-AIII (TSAIII), as a bioactive steroid saponin isolated from A. asphodeloides, has shown multiple pharmacological activities and has been developed as an anticancer agent. However, the molecular mechanisms of TSAIII in protecting against cancer development are still unclear. In this review article, we provide a comprehensive discussion on the anticancer effects of TSAIII, including proliferation inhibition, cell cycle arrest, apoptosis induction, autophagy mediation, migration and invasion suppression, anti-angiogenesis, anti-inflammation, and antioxidant effects. The pharmacokinetic profiles of TSAII are also discussed. TSAIII exhibits efficacy against cancer development. However, hydrophobicity and low bioavailability may limit the application of TSAIII. Effective delivery systems, particularly those with tissue/cell-targeted properties, can also significantly improve the anticancer effects of TSAIII. Full article
(This article belongs to the Special Issue Natural Products Based Anticancer Drugs)
Show Figures

Graphical abstract

14 pages, 4520 KB  
Article
Functional Axis of PDE5/cGMP Mediates Timosaponin-AIII-Elicited Growth Suppression of Glioblastoma U87MG Cells
by Ya-Fang Liao, Hui-Jun Pan, Nuerziba Abudurezeke, Chun-Lu Yuan, Yan-Li Yuan, Shu-Da Zhao, Dan-Dan Zhang and Shuang Huang
Molecules 2023, 28(9), 3795; https://doi.org/10.3390/molecules28093795 - 28 Apr 2023
Cited by 4 | Viewed by 2624
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, with high mortality. Timosaponin AIII (TIA), a steroidal saponin isolated from the medicinal plant Anemarrhena asphodeloides Bge., has been shown to possess anticancer properties in various cancer types. However, the effect of TIA on GBM [...] Read more.
Glioblastoma (GBM) is the most aggressive brain tumor, with high mortality. Timosaponin AIII (TIA), a steroidal saponin isolated from the medicinal plant Anemarrhena asphodeloides Bge., has been shown to possess anticancer properties in various cancer types. However, the effect of TIA on GBM is unknown. In this study, we reveal that TIA not only inhibited U87MG in vitro cell growth but also in vivo tumor development. Moreover, we found that the cause of TIA-induced cell growth suppression was apoptosis. When seeking to uncover antitumor mechanisms of TIA, we found that TIA diminished the expression of cGMP-specific phosphodiesterase 5(PDE5) while elevating the levels of guanylate cyclases (sGCβ), cellular cGMP, and phosphorylation of VASPser239. Following the knockdown of PDE5, PDE5 inhibitor tadalafil and cGMP analog 8-Bro-cGMP both inhibited cell growth and inactivated β-catenin; we reason that TIA elicited an antitumor effect by suppressing PDE5, leading to the activation of the cGMP signaling pathway, which, in turn, impeded β-catenin expression. As β-catenin is key for cell growth and survival in GBM, this study suggests that TIA elicits its anti-tumorigenic effect by interfering with β-catenin function through the activation of a PDE5/cGMP functional axis. Full article
(This article belongs to the Special Issue Natural Compounds in Modern Therapies)
Show Figures

Figure 1

14 pages, 8664 KB  
Article
Blockage of Autophagy Increases Timosaponin AIII-Induced Apoptosis of Glioma Cells In Vitro and In Vivo
by Chu-Che Lee, Jen-Pi Tsai, Hsiang-Lin Lee, Yung-Jen Chen, Yong-Syuan Chen, Yi-Hsien Hsieh and Jin-Cherng Chen
Cells 2023, 12(1), 168; https://doi.org/10.3390/cells12010168 - 30 Dec 2022
Cited by 9 | Viewed by 2380
Abstract
Timosaponin AIII (TSAIII), a saponin isolated from Anemarrhena asphodeloides and used in traditional Chinese medicine, exerts antitumor, anti-inflammatory, anti-angiogenesis, and pro-apoptotic activity on a variety of tumor cells. This study investigated the antitumor effects of TSAIII and the underlying mechanisms in human glioma [...] Read more.
Timosaponin AIII (TSAIII), a saponin isolated from Anemarrhena asphodeloides and used in traditional Chinese medicine, exerts antitumor, anti-inflammatory, anti-angiogenesis, and pro-apoptotic activity on a variety of tumor cells. This study investigated the antitumor effects of TSAIII and the underlying mechanisms in human glioma cells in vitro and in vivo. TSAIII significantly inhibited glioma cell viability in a dose- and time-dependent manner but did not affect the growth of normal astrocytes. We also observed that in both glioma cell lines, TSAIII induces cell death and mitochondrial dysfunction, consistent with observed increases in the protein expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, cytochrome c, and Mcl-1. TSAIII also activated autophagy, as indicated by increased accumulation of the autophagosome markers p62 and LC3-II and the autolysosome marker LAMP1. LC3 silencing, as well as TSAIII combined with the autophagy inhibitor 3-methyladenine (3MA), increased apoptosis in GBM8401 cells. TSAIII inhibited tumor growth in xenografts and in an orthotopic GBM8401 mice model in vivo. These results demonstrate that TSAIII exhibits antitumor effects and may hold potential as a therapy for glioma. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

14 pages, 4307 KB  
Article
Timosaponin AIII Inhibits Migration and Invasion Abilities in Human Cervical Cancer Cells through Inactivation of p38 MAPK-Mediated uPA Expression In Vitro and In Vivo
by Hung-Ju Chien, Chung-Jung Liu, Tsung-Ho Ying, Pei-Ju Wu, Jiunn-Wei Wang, Yi-Hsuan Ting, Yi-Hsien Hsieh and Shih-Chiang Wang
Cancers 2023, 15(1), 37; https://doi.org/10.3390/cancers15010037 - 21 Dec 2022
Cited by 13 | Viewed by 3082
Abstract
Cervical cancer is one of the most common gynecologic cancers globally that require novel approaches. Timosaponin AIII (TSAIII) is a steroidal saponin that displays beneficial effects in antitumor activities. However, the effect of TSAIII on human cervical cancer remains unknown. In this study, [...] Read more.
Cervical cancer is one of the most common gynecologic cancers globally that require novel approaches. Timosaponin AIII (TSAIII) is a steroidal saponin that displays beneficial effects in antitumor activities. However, the effect of TSAIII on human cervical cancer remains unknown. In this study, we found that TSAIII showed no influence on cell viability, cytotoxicity, cell cycle distribution and apoptosis induction in human cervical cancer cells. TSAIII was revealed to have a significant inhibitory effect on cell migration and invasion through the downregulation of invasion-related uPA expression and p38 MAPK activation in both human cervical cancer cells and cervical cancer stem cells (CCSCs), indicating that the p38 MAPK–uPA axis mediated the TSAIII-inhibited capacity of cellular migration and invasion. In a synergistic inhibition assay, a TSAIII plus p38 siRNA cotreatment revealed a greater inhibition of uPA expression, migration and invasion in human cervical cancer cells. In an immunodeficient mouse model, TSAIII significantly inhibited lung metastases from human cervical cancer SiHa cells without TSAIII-induced toxicity. These findings first revealed the inhibitory effects of TSAIII on the progression of human cervical cancer through its downregulation of p38 MAPK–uPA axis activation. Therefore, TSAIII might provide a potential strategy for auxiliary therapy in human cervical cancer. Full article
(This article belongs to the Special Issue Chemoprevention Advances in Cancer)
Show Figures

Figure 1

13 pages, 2104 KB  
Article
In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp
by Jianying Dai, Yuzhen He, Jiahao Fang, Hui Wang, Liang Chao, Liang Zhao, Zhanying Hong and Yifeng Chai
Molecules 2022, 27(23), 8556; https://doi.org/10.3390/molecules27238556 - 5 Dec 2022
Cited by 3 | Viewed by 2213
Abstract
The efficacy and pharmacokinetics of the biologically active components in Anemarrhenae rhizoma (AR) would be affected by the interaction of P-glycoprotein(P-gp) and effective components in AR. However, little is known about the interaction between them. The goal of this research was to examine [...] Read more.
The efficacy and pharmacokinetics of the biologically active components in Anemarrhenae rhizoma (AR) would be affected by the interaction of P-glycoprotein(P-gp) and effective components in AR. However, little is known about the interaction between them. The goal of this research was to examine the transmembrane absorption of timosaponin AIII(TAIII), timosaponin BII(TBII), sarsasapogenin (SSG), mangiferin(MGF), neomangiferin(NMGF), isomangiferin(IMGF), and baohuosideI(BHI) in AR and their interaction with P-gp. Seven effective components in AR(TAIII, TBII, SSG, MGF, NMGF, IMGF, and BHI) were investigated, and MDCK-MDR1 cells were used as the transport cell model. CCK-8 assays, bidirectional transport assays, and Rhodamine-123 (Rh-123) transport assays were determined in the MDCK-MDR1 cells. LC/MS was applied to the quantitative analysis of TAIII, TBII, MGF, NMGF, IMGF, SSG, and BHI in transport samples. The efflux ratio of MGF, TAIII, TBII, and BHI was greater than 2 and significantly descended with the co-administration of Verapamil, indicating MGF, TAIII, TBII, and BHI as the substrates of P-gp. The efflux ratio of the seven effective components in the extracts (10 mg/mL) of AR decreased from 3.00~1.08 to 1.92~0.48. Compared to the efflux ratio of Rh-123 in the control group (2.46), the efflux ratios of Rh-123 were 1.22, 1.27, 1.25, 1.09, 1.31, and 1.47 by the addition of TAIII, TBII, MGF, IMGF, NMGF, and BHI, respectively, while the efflux ratio of Rh-123 with the co-administration of SSG had no statistical difference compared to the control group. These results indicated that MGF, TAIII, TBII, and BHI could be the substrates of P-gp. TAIII, TBII, MGF, IMGF, NMGF, and BHI show the effect of inhibiting P-gp function, respectively. These findings provide important basic pharmacological data to assist the therapeutic development of AR constituents and extracts. Full article
(This article belongs to the Special Issue Natural Compounds for Disease and Health)
Show Figures

Graphical abstract

12 pages, 3350 KB  
Article
Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions
by Min Yang, Chih-Yao Hou, Hsien-Yi Hsu, Sulfath Hakkim Hazeena, Shella Permatasari Santoso, Cheng-Chia Yu, Chao-Kai Chang, Mohsen Gavahian and Chang-Wei Hsieh
Molecules 2022, 27(23), 8125; https://doi.org/10.3390/molecules27238125 - 22 Nov 2022
Cited by 6 | Viewed by 2635
Abstract
Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production [...] Read more.
Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g−1; 3650 days, 23.11 ± 1.22 mg g−1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g−1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography–mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops. Full article
Show Figures

Figure 1

15 pages, 5714 KB  
Article
The Antitumor Effect of Timosaponin A3 through c-Myc Inhibition in Colorectal Cancer Cells and Combined Treatment Effect with 5-FU or Doxorubicin
by Hyun Min Ko, Wona Jee, Do-il Park, Kwan-Il Kim, Ji Hoon Jung and Hyeung-Jin Jang
Int. J. Mol. Sci. 2022, 23(19), 11900; https://doi.org/10.3390/ijms231911900 - 7 Oct 2022
Cited by 6 | Viewed by 2575
Abstract
Timosaponin A3 (TA3), extracted from the rhizome of Anemarrhenaasphodeloides Bunge, has been reported to affect various diseases, such as cancer, Alzheimer’s disease, and allergies. However, the underlying molecular mechanisms and impacts are largely unknown. In the present study, we hypothesized that TA3 [...] Read more.
Timosaponin A3 (TA3), extracted from the rhizome of Anemarrhenaasphodeloides Bunge, has been reported to affect various diseases, such as cancer, Alzheimer’s disease, and allergies. However, the underlying molecular mechanisms and impacts are largely unknown. In the present study, we hypothesized that TA3 induces apoptosis through the inhibition of c-Myc expression via CNOT2 or MID1IP1 in HCT116. An MTT assay and colony formation assay were used to measure cell viability and proliferation. The protein expression of apoptotic markers and oncogenes was measured using immunoblotting and immunofluorescence assays. The interaction between MID1IP1 and c-Myc was confirmed by performing an immunoprecipitation assay. TA3 markedly inhibited colon cancer cell proliferation. Consistently, TA3 regulated the apoptotic proteins pro-PARP and caspase 3. TA3 inhibited the half-life of c-Myc and suppressed its expression in response to serum stimulation. In addition, TA3 enhanced the apoptotic effects of doxorubicin and 5-FU in colon cancer cells. Altogether, our results reveal a mechanism by which TA3 induces apoptosis through inhibiting c-Myc expression via CNOT2 or MID1IP1 in HCT116, which may help in the development of new therapies for colon cancer based on TA3 in the future. Full article
(This article belongs to the Special Issue Cancer Cell Biology and Drug Discovery)
Show Figures

Figure 1

22 pages, 5099 KB  
Article
Timosaponin A3 Inhibits Palmitate and Stearate through Suppression of SREBP-1 in Pancreatic Cancer
by Yumi Kim, Wona Jee, Eun-Jin An, Hyun Min Ko, Ji Hoon Jung, Yun-Cheol Na and Hyeung-Jin Jang
Pharmaceutics 2022, 14(5), 945; https://doi.org/10.3390/pharmaceutics14050945 - 27 Apr 2022
Cited by 14 | Viewed by 3503
Abstract
Timosaponin A3 (TA3) was demonstrated as a potent anticancer chemical by several studies. Although the effects of inhibiting growth, metastasis, and angiogenesis in various cancer cells were demonstrated through multiple mechanisms, the pharmacological mechanism of TA3 shown in pancreatic cancer (PC) is insufficient [...] Read more.
Timosaponin A3 (TA3) was demonstrated as a potent anticancer chemical by several studies. Although the effects of inhibiting growth, metastasis, and angiogenesis in various cancer cells were demonstrated through multiple mechanisms, the pharmacological mechanism of TA3 shown in pancreatic cancer (PC) is insufficient compared to other cancers. In this study, we aimed to explore the key molecular mechanisms underlying the growth inhibitory effects of TA3 using PC cells and a xenograft model. First, from the microarray results, we found that TA3 regulated INSIG-1 and HMGCR in BxPC-3 cells. Furthermore, we showed that inhibition of sterol regulatory element-binding protein-1 (SREBP-1) by TA3 reduced the fatty acid synthases FASN and ACC, thereby controlling the growth of BxPC-3 cells. We also tried to find mechanisms involved with SREBP-1, such as Akt, Gsk3β, mTOR, and AMPK, but these were not related to SREBP-1 inhibition by TA3. In the BxPC-3 xenograft model, the TA3 group had more reduced tumor formation and lower toxicity than the gemcitabine group. Interestingly, the level of the fatty acid metabolites palmitate and stearate were significantly reduced in the tumor tissue in the TA3 group. Overall, our study demonstrated that SREBP-1 was a key transcription factor involved in pancreatic cancer growth and it remained a precursor form due to TA3, reducing the adipogenesis and growth in BxPC-3 cells. Our results improve our understanding of novel mechanisms of TA3 for the regulation of lipogenesis and provide a new approach to the prevention and treatment of PC. Full article
Show Figures

Graphical abstract

14 pages, 1860 KB  
Article
Biotransformation of Timosaponin BII into Seven Characteristic Metabolites by the Gut Microbiota
by Guo-Ming Dong, Hang Yu, Li-Bin Pan, Shu-Rong Ma, Hui Xu, Zheng-Wei Zhang, Pei Han, Jie Fu, Xin-Yu Yang, Adili Keranmu, Hai-Tao Niu, Jian-Dong Jiang and Yan Wang
Molecules 2021, 26(13), 3861; https://doi.org/10.3390/molecules26133861 - 24 Jun 2021
Cited by 15 | Viewed by 3542
Abstract
Timosaponin BII is one of the most abundant Anemarrhena saponins and is in a phase II clinical trial for the treatment of dementia. However, the pharmacological activity of timosaponin BII does not match its low bioavailability. In this study, we aimed to determine [...] Read more.
Timosaponin BII is one of the most abundant Anemarrhena saponins and is in a phase II clinical trial for the treatment of dementia. However, the pharmacological activity of timosaponin BII does not match its low bioavailability. In this study, we aimed to determine the effects of gut microbiota on timosaponin BII metabolism. We found that intestinal flora had a strong metabolic effect on timosaponin BII by HPLC-MS/MS. At the same time, seven potential metabolites (M1-M7) produced by rat intestinal flora were identified using HPLC/MS-Q-TOF. Among them, three structures identified are reported in gut microbiota for the first time. A comparison of rat liver homogenate and a rat liver microsome incubation system revealed that the metabolic behavior of timosaponin BII was unique to the gut microbiota system. Finally, a quantitative method for the three representative metabolites was established by HPLC-MS/MS, and the temporal relationship among the metabolites was initially clarified. In summary, it is suggested that the metabolic characteristics of gut microbiota may be an important indicator of the pharmacological activity of timosaponin BII, which can be applied to guide its application and clinical use in the future. Full article
(This article belongs to the Special Issue Microbial Biotransformation of Natural Products)
Show Figures

Figure 1

17 pages, 3699 KB  
Article
Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products
by Oscar Salvador Barrera-Vázquez, Juan Carlos Gómez-Verjan and Gil Alfonso Magos-Guerrero
Biomolecules 2021, 11(3), 467; https://doi.org/10.3390/biom11030467 - 22 Mar 2021
Cited by 16 | Viewed by 5574
Abstract
Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes [...] Read more.
Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases. Full article
Show Figures

Graphical abstract

14 pages, 4629 KB  
Article
Potential Antimetastatic Effect of Timosaponin AIII against Human Osteosarcoma Cells through Regulating the Integrin/FAK/Cofilin Axis
by Yi-Hsien Hsieh, Wen-Hung Hsu, Shun-Fa Yang, Chung-Jung Liu, Ko-Hsiu Lu, Pei-Han Wang and Renn-Chia Lin
Pharmaceuticals 2021, 14(3), 260; https://doi.org/10.3390/ph14030260 - 14 Mar 2021
Cited by 15 | Viewed by 2983
Abstract
Timosaponin AIII (TSAIII) is a steroidal saponin which demonstrates anti-tumour activities. However, the effect of TSAIII on human osteosarcoma cells remains largely unknown. In this study, we demonstrated that TSAIII exerted a significant inhibitory effect on the distribution of cytoskeletal F-actin and cytoskeletal-related [...] Read more.
Timosaponin AIII (TSAIII) is a steroidal saponin which demonstrates anti-tumour activities. However, the effect of TSAIII on human osteosarcoma cells remains largely unknown. In this study, we demonstrated that TSAIII exerted a significant inhibitory effect on the distribution of cytoskeletal F-actin and cytoskeletal-related proteins, which contributed to the suppression of cell migration and invasion, without inhibiting cell growth or apoptosis. In the synergistic inhibitory analysis, cotreatment of TSAIII with αVβ3 integrin inhibitor [Cyclo(RGDyK)] or focal adhesion kinase (FAK) inhibitor (PF-573228) exerted greater synergistic inhibitory effects on the expression of Intergin αVβ3/FAK/cofilin axis, thus inhibiting the migration and invasion capacities of human osteosarcoma cells. TSAIII was demonstrated to significantly inhibit the pulmonary metastasis formation of human osteosarcoma cells in vivo in metastasis animal models. These findings reveal the inhibitory effects of TSAIII on the metastasis progression of human osteosarcoma cells and the regulation of integrin-αVβ3-FAK-Src and TESK1/p-cofilin mediated cytoskeletal F-actin pathway. Therefore, TSAIII might represent a novel strategy for the auxiliary treatment of human osteosarcoma cells. Full article
(This article belongs to the Special Issue Osteosarcomas: Treatment Strategies)
Show Figures

Figure 1

21 pages, 3481 KB  
Review
Recent Advances in Biotransformation of Saponins
by Yi He, Zhuoyu Hu, Aoran Li, Zhenzhou Zhu, Ning Yang, Zixuan Ying, Jingren He, Chengtao Wang, Sheng Yin and Shuiyuan Cheng
Molecules 2019, 24(13), 2365; https://doi.org/10.3390/molecules24132365 - 26 Jun 2019
Cited by 122 | Viewed by 10053
Abstract
Saponins are a class of glycosides whose aglycones can be either triterpenes or helical spirostanes. It is commonly recognized that these active ingredients are widely found in various kinds of advanced plants. Rare saponins, a special type of the saponins class, are able [...] Read more.
Saponins are a class of glycosides whose aglycones can be either triterpenes or helical spirostanes. It is commonly recognized that these active ingredients are widely found in various kinds of advanced plants. Rare saponins, a special type of the saponins class, are able to enhance bidirectional immune regulation and memory, and have anti-lipid oxidation, anticancer, and antifatigue capabilities, but they are infrequent in nature. Moreover, the in vivo absorption rate of saponins is exceedingly low, which restricts their functions. Under such circumstances, the biotransformation of these ingredients from normal saponins—which are not be easily adsorbed by human bodies—is preferred nowadays. This process has multiple advantages, including strong specificity, mild conditions, and fewer byproducts. In this paper, the biotransformation of natural saponins—such as ginsenoside, gypenoside, glycyrrhizin, saikosaponin, dioscin, timosaponin, astragaloside and ardipusilloside—through microorganisms (Aspergillus sp., lactic acid bacteria, bacilli, and intestinal microbes) will be reviewed and prospected. Full article
(This article belongs to the Special Issue Investigation of Transformation Products of Organic Compounds)
Show Figures

Figure 1

15 pages, 2622 KB  
Article
Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena asphodeloides
by Zeyuan Wang, Jianfeng Cai, Qing Fu, Lingping Cheng, Lehao Wu, Weiyue Zhang, Yan Zhang, Yu Jin and Chunzhi Zhang
Molecules 2018, 23(10), 2631; https://doi.org/10.3390/molecules23102631 - 13 Oct 2018
Cited by 33 | Viewed by 4917
Abstract
Fifteen unreported compounds in Anemarrhena asphodeloides, iriflophene (3), hostaplantagineoside C (7), tuberoside G (8), spicatoside B (9), platycodin D (14), platycoside A (15), platycodin D2 (16), polygalacin D2 [...] Read more.
Fifteen unreported compounds in Anemarrhena asphodeloides, iriflophene (3), hostaplantagineoside C (7), tuberoside G (8), spicatoside B (9), platycodin D (14), platycoside A (15), platycodin D2 (16), polygalacin D2 (17), platycodin D3 (18), isovitexin (20), vitexin (21), 3,4-dihydroxyallylbenzene-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside (22), iryptophan (24), adenosine (25), α-d-Glucose monoallyl ether (26), together with eleven known compounds (1, 2, 46, 1013, 19 and 23), were isolated from the rhizomes of Anemarrhena asphodeloides. The chemical structures of these compounds were characterized using HRMS and NMR. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit LPS-induced NO production in N9 microglial cells. Timosaponin BIII (TBIII) and trans-hinokiresinol (t-HL) exhibited significant inhibitory effects on the NO production in a dose-dependent manner with IC50 values of 11.91 and 39.08 μM, respectively. Immunoblotting demonstrated that TBIII and t-HL suppressed NO production by inhibiting the expressions of iNOS in LPS-stimulated N9 microglial cells. Further results revealed that pretreatment of N9 microglial cells with TBIII and t-HL attenuated the LPS-induced expression tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at mRNAs and protein levels. Moreover, the activation of nuclear factor-κB (NF-κB) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were inhibited by TBIII and t-HL, respectively. Our findings indicate that the therapeutic implication of TBIII and t-HL for neurogenerative disease associated with neuroinflammation. Full article
Show Figures

Figure 1

Back to TopTop