Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = Tween® stabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2080 KB  
Article
Triacylglycerol Crystallinity and Emulsion Colloidal Acid Stability Influence In Vitro Digestion Lipolysis and Bioaccessibility of Long-Chain Omega-3 Fatty Acid-Rich Nanoemulsions
by Jessica D. Ulbikas, Saeed Mirzaee Ghazani, Alejandro G. Marangoni and Amanda J. Wright
Foods 2025, 14(21), 3631; https://doi.org/10.3390/foods14213631 (registering DOI) - 24 Oct 2025
Viewed by 223
Abstract
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or [...] Read more.
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or olein (PO), and either acid-stable Tween 80 (2.0 wt%; AS) or acid-unstable soy lecithin (2.2 wt%; AU) were fast or slow cooled to 37 °C after microfluidization. Similar particle size distributions and D3,2 (~131–142 nm) and D4,3 (~208–239 nm) values were achieved. All emulsions were highly electronegative (~−45–70 mV) and differences (p < 0.05) were due to emulsifier type, as expected, and cooling rate. Next, emulsions were subjected to INFOGEST in vitro digestion for analysis of intestinal lipolysis by free fatty acid titration and DHA bioaccessibility. As expected, AU emulsions flocculated, forming larger aggregates during the gastric phase. Slower lipolysis was observed for the AU emulsions (p < 0.05), attributed to gastric phase aggregation, and lower 2 h lipolysis was observed for the PS emulsions (~74–77%) based on the presence of crystallinity. DHA bioaccessibility was high (~57–88%), especially for the AS emulsions (p < 0.05). Therefore, emulsion colloidal acid stability and TAG physical state significantly impacted emulsion gastric microstructure, digestion, and bioaccessibility. Full article
Show Figures

Figure 1

29 pages, 3223 KB  
Article
Injectable In Situ Thermoreversible Gel Depot System of Lidocaine Nanoemulsion for Prolonged Anesthetic Activity in Dental and Operative Procedures
by Shery Jacob, Fathima Sheik Kather, Shakta Mani Satyam, Sai H. S. Boddu, Firas Assaf, Tasnem H. Abdelfattah Allam and Anroop B. Nair
Pharmaceutics 2025, 17(10), 1355; https://doi.org/10.3390/pharmaceutics17101355 - 20 Oct 2025
Viewed by 456
Abstract
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit [...] Read more.
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit patient compliance and procedural efficiency. This study aimed to develop and evaluate a novel injectable nanoemulsion-based in situ gel depot system of LD to provide prolonged anesthetic activity. Methods: LD-loaded nanoemulsions were formulated by high-shear homogenization followed by probe sonication, employing Miglyol 812 N (oil phase), a combination of Tween 80 and soy lecithin (surfactant–co-surfactant), glycerin, and deionized water (aqueous phase). The selected nanoemulsion (S1) was dispersed in a thermoreversible poloxamer solution to form a nanoemulgel. The preparation was evaluated for globule diameter and uniformity, zeta potential, surface morphology, pH, drug content, stability, rheological behavior, injectability, and in vitro drug release. Analgesic efficacy was assessed via tail-flick and thermal paw withdrawal latency tests in Wistar rats. Cardiovascular safety was monitored using non-invasive electrocardiography and blood pressure measurements. Results: The developed nanoemulsions demonstrated a spherical shape, nanometer size (206 nm), high zeta-potential (−66.67 mV) and uniform size distribution, with a polydispersity index of approximately 0.40, while the nanoemulgel demonstrated appropriate thixotropic properties for parenteral administration. In vitro release profiles showed steady LD release (5 h), following the Higuchi model. In vivo studies showed significantly prolonged analgesic effects lasting up to 150 min (2.5 h) compared to standard LD-HCl injection (p < 0.001), with no adverse cardiovascular effects observed. Conclusions: The developed injectable LD in situ nanoemulgel offers a promising, patient-friendly alternative for prolonged anesthetic delivery in dental and operative procedures, potentially reducing the need for repeated injections and enhancing procedural comfort. Full article
Show Figures

Graphical abstract

14 pages, 16405 KB  
Article
Influence of Arabic Gum/Gelatin/Ascorbyl Palmitate Coating on Quality Parameters of Hazelnut Kernels Stored in Plastic Boxes
by Dariusz Kowalczyk, Katarzyna Niedźwiadek, Tomasz Skrzypek, Emil Zięba and Jaromir Jarecki
Molecules 2025, 30(20), 4126; https://doi.org/10.3390/molecules30204126 - 19 Oct 2025
Viewed by 251
Abstract
Edible coatings enriched with antioxidants offer a promising approach to prolong the shelf life of oxidation-sensitive foods such as nuts. Nonetheless, not all formulations provide the expected protection, and understanding why is equally important. The aim of this study was to assess the [...] Read more.
Edible coatings enriched with antioxidants offer a promising approach to prolong the shelf life of oxidation-sensitive foods such as nuts. Nonetheless, not all formulations provide the expected protection, and understanding why is equally important. The aim of this study was to assess the effect of an Arabic gum/gelatin/ascorbyl palmitate (GAR/GEL/AP) coating on the quality of hazelnut kernels during storage at 23 °C and ~40% relative humidity. The coating was applied by dipping hazelnuts in a 20% ethanolic solution containing GAR/GEL 75/25 blend (10% w/w), glycerol (1% w/w), Tween 80 (0.25% w/w), and AP (2% w/w), followed by drying. Control (uncoated) and coated hazelnuts were stored in plastic containers and evaluated at 1, 2, 4, 8, and 16 weeks for weight loss, moisture content, hardness, color, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH*) scavenging activity, acid and peroxide values, and thiobarbituric acid reactive substances (TBARS) level. Coated hazelnuts showed higher initial moisture content (8.17%), stabilizing at 4.80% after one week, compared to 3.35% in uncoated samples. This increased moisture led to greater storage-related weight loss. The coating darkened the nuts and reduced their yellow hue. It had no significant effect on hardness, peroxide value, or TBARS index, but notably enhanced the antiradical potential. After 16 weeks, coated nuts had an acid value ~10 mg KOH/g lower than the control. In conclusion, the coating improved antioxidant capacity and reduced hydrolytic, but not oxidative, rancidity in hazelnuts. Therefore, further optimization of the coating formulation or application method is necessary to more effectively improve the shelf life of hazelnuts. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
Show Figures

Figure 1

25 pages, 1726 KB  
Article
Spray-Dried Microcapsules of Lavandin (Lavandula × intermedia) Essential Oil: Formulation and Functional Properties
by Jelena Bajac, Milena Terzić, Branislava Nikolovski, Lidija Petrović, Branimir Bajac, Gökhan Zengin and Ivana Mitrović
Molecules 2025, 30(20), 4098; https://doi.org/10.3390/molecules30204098 - 15 Oct 2025
Viewed by 274
Abstract
Lavandin essential oil (LEO) (Lavandula × intermedia) is a high-yielding aromatic product with broad bioactive potential, but its direct application is hindered by its volatility, rapid oxidation, and environmental sensitivity. In this study, the microencapsulation of LEO by spray drying using [...] Read more.
Lavandin essential oil (LEO) (Lavandula × intermedia) is a high-yielding aromatic product with broad bioactive potential, but its direct application is hindered by its volatility, rapid oxidation, and environmental sensitivity. In this study, the microencapsulation of LEO by spray drying using different wall materials was investigated: Maltodextrin (MD), Gum Arabic (GA), Whey Protein Concentrate (WPC), Inulin (IN), and Modified Starch (Hi-Cap). The resulting formulations exhibited encapsulation efficiencies (EEs) of 55.35–83.29%, oil retention (RE) of 49.07–76.65%, and yields of 41.39–71.47%. The MD/GA blend with Tween 80 performed best, as it offered high EE and RE, low residual moisture, fast reconstitution, and strong protection of the encapsulated oil against thermal and moisture stress. Gas chromatography–mass spectrometry (GC–MS) identified 38 volatile components, with linalyl acetate (30.38%) and linalool (24.65%) being the major components. Biological tests confirmed that the antimicrobial and antifungal activity of lavandin against some pathogens was maintained even when a much lower concentration of the oil (1–5%) was used in encapsulated form. Antioxidant activity decreased after encapsulation, while tyrosinase inhibition increased, indicating cosmetic potential. These results show that spray drying is an effective strategy for stabilizing LEO and expanding its applications in various industries. Full article
Show Figures

Graphical abstract

10 pages, 1043 KB  
Communication
Preliminary In Vivo Ocular Tolerance Assessment of a Cefuroxime Sodium Suspension in Self-Emulsifying Oil
by Katarzyna Krzemińska, Eliza Wolska, Juliusz Chorążewicz and Małgorzata Sznitowska
Pharmaceutics 2025, 17(10), 1320; https://doi.org/10.3390/pharmaceutics17101320 - 11 Oct 2025
Viewed by 335
Abstract
Cefuroxime sodium (CEF) is a second-generation cephalosporin that remains unstable in an aqueous environment. The answer to this low stability may be self-emulsifying oils, which are isotropic mixtures of oil and surfactants, in which the stability of CEF has already been proven. Self-emulsifying [...] Read more.
Cefuroxime sodium (CEF) is a second-generation cephalosporin that remains unstable in an aqueous environment. The answer to this low stability may be self-emulsifying oils, which are isotropic mixtures of oil and surfactants, in which the stability of CEF has already been proven. Self-emulsifying oils are well known for their ability to enhance the solubility and bioavailability of lipophilic drugs. This research presents a preliminary in vivo study of an innovative approach to develop eye drops in the form of a self-emulsifying oil (SEO) containing suspended water-labile antibiotic cefuroxime sodium. Such a concept has never been explored before. Upon contact with tear fluid, the preparation rapidly forms an emulsion, allowing for the rapid dissolution of the antibiotic. The aim of the study was to assess the tolerability of such eye drops. CEF (5% w/w) was suspended in SEO carriers, prepared by dissolving surfactants (Tween 20; 5% w/w) in Miglyol. The in vivo evaluation was conducted on rabbits after two once-a-day applications of the eye drops. The study demonstrated the safety of both the SEO-placebo and the SEO containing suspended CEF. The formulations did not affect the appearance of the cornea and iris. During the observations, only changes in the conjunctiva of the eye were noted, which manifested as conjunctival hyperemia. The result of the Draize test was an average of 3.3 points out of 110 possible points, which classifies the CEF-SEO suspension as minimally irritating. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Figure 1

20 pages, 2545 KB  
Article
Impacts of Tween-20, Glycerol, and Trehalose on Hyaluronidase Activity: Insights from Microscale Thermophoresis and Capillary Electrophoresis
by Rouba Nasreddine, Josipa Cecić Vidoš, Alexandra Launay and Reine Nehmé
Molecules 2025, 30(19), 4008; https://doi.org/10.3390/molecules30194008 - 7 Oct 2025
Viewed by 462
Abstract
Additives such as surfactants (Tween-20) and cryoprotectants (glycerol and trehalose) are often used in enzymatic assays to improve the quality and long-term stabilization of proteins. However, these additives can affect the enzymatic activity and the enzyme’s affinity for active compounds, such as inhibitors, [...] Read more.
Additives such as surfactants (Tween-20) and cryoprotectants (glycerol and trehalose) are often used in enzymatic assays to improve the quality and long-term stabilization of proteins. However, these additives can affect the enzymatic activity and the enzyme’s affinity for active compounds, such as inhibitors, and must be considered during assay design since a slight shift in enzyme behavior may compromise the reliability of the results. In this study, the effects of Tween-20, glycerol, and trehalose on hyaluronidase (Hyal) were systematically evaluated by assessing their influence both directly—through microscale thermophoresis (MST) signals of the labeled enzyme (Hyal*)—and indirectly, by monitoring the formation of the final product of the degradation of hyaluronic acid, tetrasaccharide (Tet), using capillary electrophoresis (CE/UV). Hyal was labeled for the first time with ATTO-647 NHS ester, a commercial dye compatible with MST. Efficient labeling was achieved in a phosphate-based buffer without loss of catalytic activity. Tween-20 showed no impact on MST signals nor on enzymatic performance when used between 0.005 and 0.05% (v/v). Glycerol also did not interfere with MST measurements; however, it significantly reduced catalytic activity at concentrations above 2% (v/v). Trehalose affected Hyal* fluorescence in a concentration-dependent manner and enhanced catalytic activity even at 0.02% (v/v). Full article
(This article belongs to the Special Issue Peptide and Protein-Based Materials: Technology and Applications)
Show Figures

Figure 1

12 pages, 2053 KB  
Article
Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation
by Congnan Cen, Xinxuan Wang, Huan Li, Song Miao, Jian Chen and Yanbo Wang
Foods 2025, 14(19), 3405; https://doi.org/10.3390/foods14193405 - 1 Oct 2025
Viewed by 533
Abstract
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to [...] Read more.
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to their strong volatility and insolubility in aqueous substrates. In this study, we used ultrasonic emulsification, carboxymethyl chitosan, and Tween 80 to formulate tea tree essential oil (TTO) nanoemulsions with high stability. With a minimum diameter of about 51 nm (PDI = 0.236 ± 0.021) post-emulsification, the TTO nanoemulsions disperse effectively in the drainage system and exhibit good stability after 14 days of storage. In addition, the bioactivity (antibacterial and antioxidant) of TTO nanoemulsions was significantly enhanced following emulsification, as evidenced by MIC and DPPH assays, indicating that nano-emulsification is beneficial to the development of various essential oils. TTO nanoemulsions can be used as a new food preservative to control the growth of bacteria and prevent the deterioration of food via oxidation. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 5916 KB  
Article
Construction of Composite Biocontrol Agent (BCA): Developing Effective Strategies for Controlling Postharvest Blue Mold and Patulin in Apples
by Longmei Cong, Limei Li, Qian Zhang, Junyue Hu, Jingting Du and Junfeng Shi
Foods 2025, 14(19), 3378; https://doi.org/10.3390/foods14193378 - 29 Sep 2025
Viewed by 300
Abstract
Postharvest blue mold in apples, caused by Penicillium expansum, leads to fruit decay and patulin (PAT) contamination, incurring major economic and health risks. This study developed a composite biocontrol agent (BCA) by co-cultivating three antagonistic yeasts (Meyerozyma caribbica, Metschnikowia zizyphicola [...] Read more.
Postharvest blue mold in apples, caused by Penicillium expansum, leads to fruit decay and patulin (PAT) contamination, incurring major economic and health risks. This study developed a composite biocontrol agent (BCA) by co-cultivating three antagonistic yeasts (Meyerozyma caribbica, Metschnikowia zizyphicola, and Pichia rarassimilans). Mixed-culture conditions and protective additives formulation were optimized via response surface methodology. Optimal biomass production was achieved with a 1:2:3 (v/v/v) yeast ratio in medium containing sucrose (12.49 g/L), yeast extract powder (13.3 g/L), K2HPO4 (0.88 g/L), and NaCl (0.95 g/L) under pH 7.0, 1% total inoculum concentration, 24 °C, and a 60 h incubation. The liquid BCA formulation, stabilized with 0.27% gum arabic, 0.49% Tween-80, and 0.079% ascorbic acid, maintained high viability (9.15 log10 CFU/mL after 7 days). In vivo/in vitro trials all demonstrated that the composite BCA rapidly colonized, suppressed P. expansum infection, and significantly delayed pathogen spore germination and hyphal growth. Furthermore, the BCA effectively degraded 10 μg/mL PAT within 24–42 h in various fruit juices with minimal adverse effects on juice quality parameters. Storage at −20 °C preserved the highest bioactivity (7.93 × 108 CFU/mL after 5 months). This optimized composite yeast formulation provides an efficient, eco-friendly strategy for integrated apple postharvest blue mold and PAT detoxification. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

23 pages, 3309 KB  
Article
Formulation and Optimization of a Melissa officinalis-Loaded Nanoemulgel for Anti-Inflammatory Therapy Using Design of Experiments (DoE)
by Yetukuri Koushik, Nadendla Rama Rao, Uriti Sri Venkatesh, Gottam Venkata Rami Reddy, Amareswarapu V. Surendra and Thalla Sreenu
Gels 2025, 11(10), 776; https://doi.org/10.3390/gels11100776 - 26 Sep 2025
Viewed by 428
Abstract
This study reports the development and optimization of a Melissa officinalis oil-based nanoemulgel for transdermal delivery using a Design-of-Experiments (DoE) approach. A Central Composite Design (CCD) was applied to optimize Tween 80 concentration and homogenization time, resulting in a nanoemulsion with a droplet [...] Read more.
This study reports the development and optimization of a Melissa officinalis oil-based nanoemulgel for transdermal delivery using a Design-of-Experiments (DoE) approach. A Central Composite Design (CCD) was applied to optimize Tween 80 concentration and homogenization time, resulting in a nanoemulsion with a droplet size of 127.31 nm, PDI of 17.7%, and zeta potential of −25.0 mV, indicating good colloidal stability. FTIR analysis confirmed the presence of functional groups such as O–H, C=O, and C–O–C, supporting the oil’s phytochemical richness and therapeutic potential. DSC analysis revealed enhanced thermal stability and successful encapsulation, while SEM imaging showed a uniform and spherical microstructure. The drug release followed Higuchi kinetics (R2 = 0.900), indicating diffusion-driven release, with the Korsmeyer–Peppas model (n = 0.88) suggesting anomalous transport. Antibacterial studies showed inhibition of Staphylococcus aureus (MIC = 250 µg/mL) and Escherichia coli (MIC = 500 µg/mL). In vivo anti-inflammatory testing demonstrated significant edema reduction (p < 0.05) using a carrageenan-induced rat paw model. These results support the potential of Melissa nanoemulgel as a stable and effective topical therapeutic for inflammatory and microbial skin disorders. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Graphical abstract

36 pages, 4364 KB  
Article
Improving Alzheimer’s Disease and Parkinson’s Disease in Rats with Nanoemulsion and Byproducts Prepared from Cinnamon Leaves
by Bing-Huei Chen, Chen-Te Jen, Chia-Chuan Wang and Min-Hsiung Pan
Pharmaceutics 2025, 17(9), 1200; https://doi.org/10.3390/pharmaceutics17091200 - 15 Sep 2025
Viewed by 670
Abstract
Background/Objectives: Cinnamon leaves, an important source of the functional compound cinnamaldehyde (CA), have been shown to be effective in improving type II diabetes and Parkinson’s disease (PD) in rats following the incorporation of cinnamon leaf extract into a nanoemulsion. However, the effect [...] Read more.
Background/Objectives: Cinnamon leaves, an important source of the functional compound cinnamaldehyde (CA), have been shown to be effective in improving type II diabetes and Parkinson’s disease (PD) in rats following the incorporation of cinnamon leaf extract into a nanoemulsion. However, the effect of a cinnamon leaf extract nanoemulsion (CLEN) on improving Alzheimer’s disease (AD), the most prevalent type of dementia, remains unexplored. The objectives of this study were to determine functional compounds in cinnamon leaves by UPLC-MS/MS, followed by the preparation of a nanoemulsion and its byproducts to study their effects on AD and PD in rats. Methods: Oven-dried (60 °C for 2 h) cinnamon leaf powder and hydrosol, obtained by steam distillation of cinnamon leaf powder, were stored at 4 °C. After determination of basic composition (crude protein, crude fat, carbohydrate, moisture and ash) of cinnamon leaf powder, it was extracted with 80% ethanol with sonication at 60 °C for 2 h and analyzed for bioactive compounds by UPLC-MS/MS. Then, the CLEN was prepared by mixing cinnamon leaf extract rich in CA with lecithin, soybean oil, tween 80 and ethanol in an optimal ratio, followed by evaporation to form thin-film and redissolving in deionized water. For characterization, mean particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, and surface morphology were determined. Animal experiments were done by dividing 90 male rats into 10 groups (n = 9), with groups 2–8 being subjected to mini-osmotic pump implantation surgery in brain to infuse Amyloid-beta 40 (Aβ40) solution in groups 2–8 for induction of AD, while groups 9 and 10 were pre-fed respectively with cinnamon powder in water (0.5 g/10 mL) and in hydrosol for 4 weeks, followed by induction of AD as shown above. Different treatments for a period of 4 weeks included groups 1–9, with group 1 (control) and group 2 feeding with sterilized water, while groups 3, 4 and 5 were fed respectively with high (90 mg/kg), medium (60 mg/kg) and low (30 mg/kg) doses of cinnamon leaf extracts, groups 6, 7 and 8 fed respectively with high (90 mg/kg), medium (60 mg/kg) and low (30 mg/kg) doses of nanoemulsions, groups 9 and 10 fed respectively with 10 mL/kg of cinnamon powder in water and hydrosol (0.5 g/10 mL). Morris water maze test was conducted to determine short-term memory, long-term memory and space probing of rats. After sacrificing of rats, brain and liver tissues were collected for determination of Aβ40, BACE1 and 8-oxodG in hippocampi, and AchE and malondialdehyde (MDA) in cortices, antioxidant enzymes (SOD, CAT, GSH-Px) and MDA in both cortices and livers, and dopamine in brain striata by using commercial kits. Results: The results showed that the highest level of CA (18,250.7 μg/g) was in the cinnamon leaf powder. The CLEN was prepared successfully, with an average particle size of 17.1 nm, a polydispersity index of 0.236, a zeta potential of −42.68 mV, and high stability over a 90-day storage period at 4 °C. The Morris water maze test revealed that the CLEN treatment was the most effective in improving short-term memory, long-term memory, and spatial probe test results in AD rats, followed by the cinnamon leaf extract (CLE), powder in hydrosol (PH), and powder in water (PW). Additionally, both CLEN and CLE treatments indicated a dose-dependent improvement in AD rats, while PH and PW were effective in preventing AD occurrence. Furthermore, AD occurrence accompanied by PD development was demonstrated in this study. With the exception of the induction group, declines in Aβ40, BACE1, and 8-oxodG in the hippocampi and AchE and MDA in the cortices of rats were observed for all the treatments, with the high-dose CLEN (90 mg/kg bw) exhibiting the highest efficiency. The antioxidant enzyme activity, including that of SOD, CAT, and GSH-Px, in the cortices of rats increased. In addition, dopamine content, a vital index of PD, was increased in the striata of rats, accompanied by elevations in SOD, CAT, and GSH-Px and decreased MDA in rat livers. Conclusions: These outcomes suggest that the CLEN possesses significant potential for formulation into a functional food or botanical drug for the prevention and treatment of AD and/or PD in the future. Full article
Show Figures

Graphical abstract

17 pages, 1758 KB  
Article
Evaluation of Permeation Enhancers for Vaginal Delivery of Buserelin Acetate Using a Validated Chromatographic Method and Ex Vivo Porcine Model
by AHM Musleh Uddin, Roy N. Kirkwood, Kiro R. Petrovski, Souha H. Youssef, Baljinder Singh, Songhita Mukhopadhyay, Yunmei Song and Sanjay Garg
Pharmaceutics 2025, 17(9), 1181; https://doi.org/10.3390/pharmaceutics17091181 - 11 Sep 2025
Viewed by 595
Abstract
Background/Objectives: This study aimed to enhance the vaginal permeation of buserelin acetate (BA), a synthetic gonadotropin-releasing hormone (GnRH) analogue, by evaluating various permeation enhancers (PEs) using a validated reversed-phase high-performance liquid chromatography (RP-HPLC) method and an ex vivo porcine vaginal model. Methods [...] Read more.
Background/Objectives: This study aimed to enhance the vaginal permeation of buserelin acetate (BA), a synthetic gonadotropin-releasing hormone (GnRH) analogue, by evaluating various permeation enhancers (PEs) using a validated reversed-phase high-performance liquid chromatography (RP-HPLC) method and an ex vivo porcine vaginal model. Methods: A robust RP-HPLC method was developed and validated according to ICH Q2 (R2) guidelines to enable accurate quantification of BA in permeation samples. The analytical method demonstrated high specificity, linearity (R2 = 0.9999), accuracy (98–102%), precision (%RSD < 2%), robustness, and stability. Using this method, ex vivo permeation studies were conducted with six different PEs: 2-hydroxypropyl-β-cyclodextrin, sodium dodecyl sulfate, poloxamer 188, Span 80, Tween 80, and chitosan. Results: Among all tested PEs, chitosan demonstrated the best enhancement of BA permeation. It achieved the highest flux (J) (0.64 ± 0.03 × 10−2 µg/cm2·h) and apparent permeability coefficient (Papp) (16.20 ± 0.84 × 10−5 cm/h), both of which were statistically significantly higher (p < 0.05) than those of all other enhancer groups. Kinetic modelling indicated a non-Fickian, biphasic permeation mechanism best described by the Makoid–Banakar model. Conclusions: These findings highlight chitosan’s potential as an effective intravaginal delivery vehicle for peptide therapeutics and establish the validated HPLC method as a reliable platform for future formulation development and translational studies in mucosal drug delivery. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Graphical abstract

23 pages, 1712 KB  
Article
Effect of Storage Conditions on the Composition and Bioactivity of Freeze-Dried Lemongrass Oil Nanoemulsions Stabilized by Salt-Sensitive Cellulose Nanocrystals and Tween 80
by Kaleb D. Fisher and Lingling Liu
Processes 2025, 13(9), 2752; https://doi.org/10.3390/pr13092752 - 28 Aug 2025
Viewed by 774
Abstract
Oil-in-water emulsions are widely used to enhance the solubility, stability, and bioactivity of essential oils in aqueous systems. Advancing the functionality and sustainability of these emulsions using renewable, eco-friendly ingredients remains an important research focus. This study developed and evaluated a lemongrass essential [...] Read more.
Oil-in-water emulsions are widely used to enhance the solubility, stability, and bioactivity of essential oils in aqueous systems. Advancing the functionality and sustainability of these emulsions using renewable, eco-friendly ingredients remains an important research focus. This study developed and evaluated a lemongrass essential oil nanoemulsion stabilized by Tween 80, NaCl, and soybean stover-derived cellulose nanocrystals. After freeze-drying, the nanoemulsion was redispersed in water and analyzed for particle size, zeta potential, polydispersity index, and essential oil recovery. Freeze-drying led to significant bioactivity losses, with antifungal and antioxidant activities reduced by 77% and 31%, respectively. Antioxidant activity declined rapidly within the first two weeks of storage at room temperature but was not significantly impacted by light exposure. Storage conditions also altered the sample composition, with one new compound detected in samples stored without light exposure and eleven new peaks observed in light-exposed samples. This study provides insights into the effects of freeze-drying and storage on lemongrass essential oil-loaded nanoemulsion stabilized by Tween 80, NaCl, and cellulose nanocrystals. The findings highlight the challenges of preserving bioactivity and composition in lyophilized essential oil-loaded emulsions and suggest avenues for optimizing drying processes and formulations to improve storage stability and efficacy. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanomaterials)
Show Figures

Graphical abstract

10 pages, 1168 KB  
Article
Gas-Binding Studies of Class 1 Sugar Beet Phytoglobin and C86A Mutant Using Isothermal Spectral Shifts in High-Precision Microliter Assay
by Leonard Groth and Leif Bülow
Int. J. Mol. Sci. 2025, 26(17), 8240; https://doi.org/10.3390/ijms26178240 - 25 Aug 2025
Cited by 1 | Viewed by 705
Abstract
Phytoglobins (Pgbs) are plant hemoglobin-like proteins with key roles in nitric oxide (NO) scavenging, oxygen sensing, and hypoxic stress responses. Their typical hexacoordination results in unusually high affinities for gaseous ligands such as NO and carbon monoxide (CO), complicating measurement using conventional methods. [...] Read more.
Phytoglobins (Pgbs) are plant hemoglobin-like proteins with key roles in nitric oxide (NO) scavenging, oxygen sensing, and hypoxic stress responses. Their typical hexacoordination results in unusually high affinities for gaseous ligands such as NO and carbon monoxide (CO), complicating measurement using conventional methods. Standard assays often require large sample volumes and lack sensitivity for high-affinity, low-abundance proteins like hexacoordinated Pgbs. Here, we present a microscale capillary-based fluorescence assay for the high-precision measurement of protein–gas binding. Fluorophore-labeled proteins are loaded into gas-saturated capillaries and analyzed via dual-wavelength fluorescence to monitor isothermal spectral shifts upon ligand binding. Phosphate-buffered saline with Tween20 (PBS-T20) ensures gas stability and minimizes nonspecific adsorption. Using this approach, we characterized CO and NO binding to the recombinant wildtype (rWT) of Beta vulgaris Pgb 1.2 (BvPgb 1.2) and its C86A mutant. CO titrations revealed biphasic binding, with EC50 ~400 nM and ~700 μM (rWT) and ~500 nM and ~400 μM (C86A). NO binding showed KD values of ~1600 nM (rWT) and ~400 nM (C86A), implicating Cys86 in ligand affinity. This assay provides a robust, low-volume method for high-affinity protein–gas studies and shows biphasic dynamics in BvPgbs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 1108 KB  
Article
Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability
by Pengcheng Zhu, Zilong Guo, Yulin Sha, Yonghang Li, Xiaoyu Zhang, Yandong Han, Wensheng Yang and Xiaonan Ma
Inorganics 2025, 13(9), 279; https://doi.org/10.3390/inorganics13090279 - 22 Aug 2025
Viewed by 587
Abstract
Aqueous singlet oxygen (1O2) sensitization is of high interest due to its wide application in bio-imaging and photodynamic therapy. For organic photosensitizers like porphyrin derivatives, surfactant-assisted micelles have been intensively explored for dispersing hydrophobic sensitizers in aqueous phase; however, [...] Read more.
Aqueous singlet oxygen (1O2) sensitization is of high interest due to its wide application in bio-imaging and photodynamic therapy. For organic photosensitizers like porphyrin derivatives, surfactant-assisted micelles have been intensively explored for dispersing hydrophobic sensitizers in aqueous phase; however, they can suffer from poor long-term stability. In this work, palladium octaethylporphyrin (PdOEP)-embedded silica particles were prepared with assistance from Tween micelles, and their corresponding application in aqueous 1O2 sensitization was explored. With assistance from Tween 80 at a >3 mg/mL concentration, superior (>95%) solubilization of PdOEP was observed in aqueous solution, leading to a high 1O2 quantum yield (ΦΔ ≈ 93%). By optimizing the synthesis conditions, >95% of micellar PdOEP was embedded into silica particles, exhibiting comparable ΦΔ (up to 70%) to micellar systems by effectively suppressing PdOEP aggregation in particles. The PdOEP-embedded silica particles exhibited dramatically enhanced long-term stability (more than one year) compared to corresponding micelles with a half-life of ~38 days. In addition, aqueous 1O2 sensitization by PdOEP-embedded silica particles was demonstrated upon two-photon excitation in a near-infrared regime (λex = 1030 nm), highlighting the great potential of this method for future biological applications. Full article
Show Figures

Graphical abstract

14 pages, 1111 KB  
Article
Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions
by Anastasiia M. Petrova, Guzel R. Farrahova, Artur V. Duryagin, Ruslan Ya. Bajbulatov and Oleg S. Sutormin
Processes 2025, 13(8), 2651; https://doi.org/10.3390/pr13082651 - 21 Aug 2025
Viewed by 615
Abstract
Surfactant-enhanced remediation is a promising approach for treating petroleum-contaminated soils, particularly in areas where conventional methods are limited by environmental constraints. This study investigates the application of Tween 80, a non-ionic surfactant, for remediating diesel-contaminated Albic Podzolic soils typical of boreal regions. Laboratory [...] Read more.
Surfactant-enhanced remediation is a promising approach for treating petroleum-contaminated soils, particularly in areas where conventional methods are limited by environmental constraints. This study investigates the application of Tween 80, a non-ionic surfactant, for remediating diesel-contaminated Albic Podzolic soils typical of boreal regions. Laboratory experiments were conducted over 90 days, using two surfactant concentrations (3.0 × 10−4 and 1.5 × 10−4 mol L−1) and two temperature regimes (22–24 °C and 2–3 °C), simulating seasonal variability in cold-climate contaminated sites. The lower Tween 80 concentration—below the critical micelle concentration—proved more effective, achieving up to 21% total petroleum hydrocarbon (TPH) reduction at ambient temperature and 17% under refrigerated conditions. Treated soils also exhibited pH neutralization, indicating improved chemical stability. Acute toxicity bioassays (Vibrio fischeri and Ceriodaphnia affinis) confirmed the environmental safety of the applied concentrations (≤0.3 mol L−1). These results support the practical use of Tween 80 in the remediation of petroleum-contaminated soils under boreal constraints, providing transferable data for designing safe and efficient field-scale treatment strategies. This work also offers insights that are relevant to remediation policies in cold climates and to the adaptation of surfactant-assisted technologies for diverse field conditions. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 3rd Edition)
Show Figures

Figure 1

Back to TopTop