Advances in Emulsifying Drug Delivery Systems

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 25 August 2026 | Viewed by 1842

Special Issue Editors


E-Mail Website
Guest Editor
Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2520, South Africa
Interests: physiochemical properties of drugs; formulations; pharmacokinetics and pharmacodynamics; infectious diseases and cancer

E-Mail Website
Guest Editor
Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
Interests: self-emulsifying drug delivery systems; lipophilic drugs; lipophilic systems; natural oils; transdermal drug delivery; oral drug delivery; pseudo ternary phase diagrams; tuberculosis; malaria; tropical diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nearly 40–60% of all newly developed drugs are characteristically lipophilic in nature, rendering aqueous solubility problematic. To solve solubility issues, lipophilic drug delivery systems are a good method to increase the bioavailability of the said lipophilic drugs. Of these systems, self-emulsifying drug delivery systems are superior to other lipid-based formulations in terms of possessing a higher solubilization tendency, having robust formulation advantages, easier scalability in the industrial milieu, providing drug protection against certain environments, such as the gastrointestinal tract, inhibiting drug efflux as mediated by P-glycoprotein, enhancing lymphatic drug uptake, improving control over drug plasma concentration profiles, enhancing stability, and increasing drug loading efficiency.

This Special Issue aims to collect research and review papers on the advances made in emulsifying drug delivery systems in the pharmaceutical field and will summarize the latest findings on emulsifying drug delivery systems published as well as provide direction for future research. We invite researchers and production pharmacists to publish original research and/or review papers with expert opinions and perceptions in the area of therapeutics.

Prof. Dr. Lissinda Hester Du Plessis
Prof. Dr. Joe Viljoen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • characterization
  • dosage form
  • lipophilic drug delivery systems
  • lipophilic drugs
  • permeability
  • emulsifying drug delivery systems
  • self-emulsification
  • solubility

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 15094 KB  
Article
Anemoside B4 Rectal Thermosensitive In Situ Gel to Treat Ulcerative Colitis by Overcoming Oral Bioavailability Barriers with Absorption Enhancer-Assisted Delivery
by Xiaomeng Lei, Canjian Wang, Mingyan Xia, Guansheng Zhang, Tangxun Wang, Yang Chen, Yufang Huang, Tiantian Wang, Dongxun Li, Wenliu Zhang and Guosong Zhang
Pharmaceutics 2025, 17(11), 1400; https://doi.org/10.3390/pharmaceutics17111400 - 29 Oct 2025
Abstract
Background: Anemoside B4 (AB4), the major bioactive saponin from Pulsatilla chinensis, exhibits anti-inflammatory, anti-tumor, anti-apoptotic, and analgesic properties. However, its clinical translation for ulcerative colitis (UC) is constrained by poor epithelial permeability and low oral bioavailability. Objective: This study’s objective was to engineer [...] Read more.
Background: Anemoside B4 (AB4), the major bioactive saponin from Pulsatilla chinensis, exhibits anti-inflammatory, anti-tumor, anti-apoptotic, and analgesic properties. However, its clinical translation for ulcerative colitis (UC) is constrained by poor epithelial permeability and low oral bioavailability. Objective: This study’s objective was to engineer and optimize thermosensitive rectal in situ gels (ISGs) of AB4, incorporating suitable absorption enhancers to improve mucosal permeation, bioavailability, and therapeutic efficacy against UC. Methods: Screening of effective permeation enhancers was conducted using Caco-2 cell monolayers and Franz diffusion cells. Critical formulation variables such as poloxamer 407 (P407), poloxamer 188 (P188), and hydroxypropyl methyl cellulose (HPMC) were optimized, employing single-factor experiments coupled with the Box–Behnken design response surface methodology (BBD-RSM). Comprehensive characterization encompassed in vitro release kinetics, in vivo pharmacokinetics, rectal tissue tolerability, rectal retention time, and pharmacodynamic efficacy in a UC model. Results: We used 2.5% hydroxypropyl-β-cyclodextrin (HP-β-CD) and 1.0% sodium caprate (SC) as the appropriate absorption enhancers, and the amounts of P407, P188, and HPMC were 17.41%, 4.07%, and 0.44%, respectively, to yield the corresponding in situ gels HP-β-CD-AB4-ISG and SC-AB4-ISG. The gel characterization, such as gelation temperature, gelation time, pH, gelation strength, etc., was in accordance with requirements. The ISGs did not stimulate or damage rectal tissue and remained in the rectum for a prolonged period. More importantly, an improvement in bioavailability and alleviation of UC were noted. Conclusion: Absorption enhancer-assisted, poloxamer-based thermosensitive rectal ISGs provide a safe, convenient, and effective platform for targeted delivery of AB4 to the colorectum. This strategy addresses key limitations of oral dosing and warrants further clinical development for UC and related colorectal inflammatory diseases. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Graphical abstract

10 pages, 1043 KB  
Communication
Preliminary In Vivo Ocular Tolerance Assessment of a Cefuroxime Sodium Suspension in Self-Emulsifying Oil
by Katarzyna Krzemińska, Eliza Wolska, Juliusz Chorążewicz and Małgorzata Sznitowska
Pharmaceutics 2025, 17(10), 1320; https://doi.org/10.3390/pharmaceutics17101320 - 11 Oct 2025
Viewed by 341
Abstract
Cefuroxime sodium (CEF) is a second-generation cephalosporin that remains unstable in an aqueous environment. The answer to this low stability may be self-emulsifying oils, which are isotropic mixtures of oil and surfactants, in which the stability of CEF has already been proven. Self-emulsifying [...] Read more.
Cefuroxime sodium (CEF) is a second-generation cephalosporin that remains unstable in an aqueous environment. The answer to this low stability may be self-emulsifying oils, which are isotropic mixtures of oil and surfactants, in which the stability of CEF has already been proven. Self-emulsifying oils are well known for their ability to enhance the solubility and bioavailability of lipophilic drugs. This research presents a preliminary in vivo study of an innovative approach to develop eye drops in the form of a self-emulsifying oil (SEO) containing suspended water-labile antibiotic cefuroxime sodium. Such a concept has never been explored before. Upon contact with tear fluid, the preparation rapidly forms an emulsion, allowing for the rapid dissolution of the antibiotic. The aim of the study was to assess the tolerability of such eye drops. CEF (5% w/w) was suspended in SEO carriers, prepared by dissolving surfactants (Tween 20; 5% w/w) in Miglyol. The in vivo evaluation was conducted on rabbits after two once-a-day applications of the eye drops. The study demonstrated the safety of both the SEO-placebo and the SEO containing suspended CEF. The formulations did not affect the appearance of the cornea and iris. During the observations, only changes in the conjunctiva of the eye were noted, which manifested as conjunctival hyperemia. The result of the Draize test was an average of 3.3 points out of 110 possible points, which classifies the CEF-SEO suspension as minimally irritating. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Figure 1

27 pages, 4484 KB  
Article
Formulation of Self-Emulsifying Microemulsion for Acemetacin Using D-Optimal Design: Enteric-Coated Capsule for Targeted Intestinal Release and Bioavailability Enhancement
by Zaineb Z. Abduljaleel and Khalid K. Al-Kinani
Pharmaceutics 2025, 17(10), 1270; https://doi.org/10.3390/pharmaceutics17101270 - 27 Sep 2025
Viewed by 773
Abstract
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was [...] Read more.
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was performed. Pseudo-ternary phase diagrams were performed to choose the optimal formulation ratio. The ACM-SEME formulation’s composition was optimized using D-optimal design. Oil, Smix, and water percentages were used as independent variables, while globule size, polydispersity index, ACM content, and in vitro ACM release after 90 min were used as dependent variables. Also, thermodynamic stability and transmittance percentage tests were studied. Zeta potential was assessed for the optimized ACM-SEME formulation, which was then subjected to spray drying. The dried ACM-SEME was characterized using field-emission scanning electron microscope, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The dried ACM-SEME formulation was filled into hard gelatin capsules and coated with Eudragit L100 to achieve pH-dependent release. Results: The antinociceptive activity of ACM-SEME was evaluated in vivo using Eddy’s hot plate test in rats, revealing a significant prolongation of the noxious time threshold compared to control groups. Ex vivo permeation studies across rat intestinal tissue confirmed the enhanced permeation potential of the ACM-SEME. Conclusions: It was concluded that the developed ACM-SEME system demonstrated improved physicochemical properties, enhanced release behavior, and superior therapeutic performance, highlighting its potential as a safer and more effective oral delivery platform for ACM. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop