Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = VNP46A4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 23129 KB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 - 1 Aug 2025
Viewed by 423
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

29 pages, 5028 KB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Cited by 1 | Viewed by 964
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

11 pages, 3920 KB  
Article
Energetics of Intrinsic Point Defects in NpO2 from DFT + U Calculations
by Huilong Yu, Shuaipeng Wang, Laiyang Li, Ruizhi Qiu, Shijun Qian and Suolong Yang
Materials 2025, 18(11), 2487; https://doi.org/10.3390/ma18112487 - 26 May 2025
Viewed by 570
Abstract
Intrinsic point defects in NpO2 significantly impact its chemical properties, but their formation mechanisms are not fully understood. Using first-principles plane-wave pseudopotential methods, this study systematically investigates the formation processes of Schottky, Frenkel, and substitutional impurity defects under various oxygen environments. Results [...] Read more.
Intrinsic point defects in NpO2 significantly impact its chemical properties, but their formation mechanisms are not fully understood. Using first-principles plane-wave pseudopotential methods, this study systematically investigates the formation processes of Schottky, Frenkel, and substitutional impurity defects under various oxygen environments. Results show that formation energies vary with valence states, oxygen environments, and Fermi energy, and reveal the presence of antisite defects. Schottky, Frenkel, and antisite defects are rare in oxygen-rich conditions, but new defect pairs emerge in anoxic environments, including Schottky defect {2VNp3−: 3VO2+}, Np-Frenkel defects {VNp3−: Npi3+} and {VNp4+: Npi4+}, and pairs {ONp5+: NpO5−} and {ONp6+: NpO6−}. These findings provide new perspectives for understanding the intrinsic point defects in NpO2. Full article
Show Figures

Figure 1

21 pages, 4967 KB  
Article
Evaluation of MODIS and VIIRS BRDF Parameter Differences and Their Impacts on the Derived Indices
by Chenxia Wang, Ziti Jiao, Yaowei Feng, Jing Guo, Zhilong Li, Ge Gao, Zheyou Tan, Fangwen Yang, Sizhe Chen and Xin Dong
Remote Sens. 2025, 17(11), 1803; https://doi.org/10.3390/rs17111803 - 22 May 2025
Cited by 1 | Viewed by 837
Abstract
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution [...] Read more.
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution function (BRDF) model to integrate multi-angle observations to produce long time series BRDF model parameter products (MCD43 and VNP43), which can be used for the inversion of various surface parameters and the angle correction of remote sensing data. Even though the MODIS and VIIRS BRDF products originate from sensors and algorithms with similar designs, the consistency between BRDF parameters for different sensors is still unknown, and this likely affects the consistency and accuracy of various downstream parameter inversions. In this study, we applied BRDF model parameter time-series data from the overlapping period of the MODIS and VIIRS services to systematically analyze the temporal and spatial differences between the BRDF parameters and derived indices of the two sensors from the site scale to the region scale in the red band and NIR band, respectively. Then, we analyzed the sensitivity of the BRDF parameters to variations in Normalized Difference Hotspot–Darkspot (NDHD) and examined the spatiotemporal distribution of zero-valued pixels in the BRDF parameter products generated by the constraint method in the Ross–Li model from both sensors, assessing their potential impact on NDHD derivation. The results confirm that among the three BRDF parameters, the isotropic scattering parameters of MODIS and VIIRS are more consistent, whereas the volumetric and geometric-optical scattering parameters are more sensitive and variable; this performance is more pronounced in the red band. The indices derived from the MODIS and VIIRS BRDF parameters were compared, revealing increasing discrepancies between the albedo and typical directional reflectance and the NDHD. The isotropic scattering parameter and the volumetric scattering parameter show responses that are very sensitive to increases in the equal interval of the NDHD, indicating that the differences between the MODIS and VIIRS products may strongly influence the consistency of NDHD estimation. In addition, both MODIS and VIIRS have a large proportion of zero-valued pixels (volumetric and geometric-optical parameter layers), whereas the spatiotemporal distribution of zero-valued pixels in VIIRS is more widespread. While the zero-valued pixels have a minor influence on reflectance and albedo estimation, such pixels should be considered with attention to the estimation accuracy of the vegetation angular index, which relies heavily on anisotropic characteristics, e.g., the NDHD. This study reveals the need in optimizing the Clumping Index (CI)-NDHD algorithm to produce VIIRS CI product and highlights the importance of considering BRDF product quality flags for users in their specific applications. The method used in this study also helps improve the theoretical framework for cross-sensor product consistency assessment and clarify the uncertainty in high-precision ecological monitoring and various remote sensing applications. Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

32 pages, 12440 KB  
Article
Intercomparison of Leaf Area Index Products Derived from Satellite Data over the Heihe River Basin
by Pan Zhou, Liying Geng, Jun Li and Haibo Wang
Remote Sens. 2025, 17(7), 1233; https://doi.org/10.3390/rs17071233 - 31 Mar 2025
Cited by 1 | Viewed by 892
Abstract
The leaf area index (LAI) is a crucial parameter for climate change research, agricultural management, and ecosystem monitoring. Despite extensive use of remote sensing data to estimate the LAI, comprehensive evaluations of product consistency and uncertainty remain limited. This study evaluated the uncertainties [...] Read more.
The leaf area index (LAI) is a crucial parameter for climate change research, agricultural management, and ecosystem monitoring. Despite extensive use of remote sensing data to estimate the LAI, comprehensive evaluations of product consistency and uncertainty remain limited. This study evaluated the uncertainties of four LAI products—GLASS, MCD15A2H, VNP15A2H, and CLMS—across diverse land cover types in the Heihe River Basin through two triple collocation approaches, innovatively. Each approach, respectively, focused on achieving more precise temporal characteristics and spatial characteristics of product uncertainties. The results indicate that all products generally met the Global Climate Observing System’s precision requirement (±0.5) for most biomes during the growing season. When comparing monthly uncertainties within grid cells, GLASS demonstrates superior performance, particularly in grasslands and croplands, whereas CLMS exhibits a slightly weaker ability to represent the spatial distribution of the LAI, especially in regions with high LAI values. When time series data are used to analyze the seasonal uncertainties of the products, MCD15A2H and VNP15A2H show more pronounced distortions, indicating their limited capability in capturing the temporal dynamics of the LAI. Correlation analyses revealed strong product agreement in regions with a low LAI, but discrepancies increased during the growing season and in heterogeneous land covers like croplands. These findings provide critical insights into the reliability of LAI products, offering a robust reference for validating their performance and ensuring their alignment with user requirements across diverse applications. The study highlights the importance of addressing spatial and temporal variability in uncertainties to improve the practical utility of LAI datasets in ecological and climate-related research. Full article
Show Figures

Figure 1

24 pages, 3898 KB  
Systematic Review
A Systematic Review of Spironolactone Nano-Formulations for Topical Treatment of Skin Hyperandrogenic Disorders and Chronic Wounds
by Saedah Dereiah, Muhammad Usman Ghori and Barbara R. Conway
Pharmaceutics 2025, 17(1), 27; https://doi.org/10.3390/pharmaceutics17010027 - 27 Dec 2024
Cited by 1 | Viewed by 3276
Abstract
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP’s low solubility and poor bioavailability in conventional formulations have driven the development of [...] Read more.
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP’s low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs). Methods: A search strategy was developed, and the relevant literature was systematically searched using databases such as Scopus, PubMed, and Google Scholar. The review process, including screening, inclusion, and exclusion criteria, adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A comprehensive analysis of 13 eligible research articles, corresponding to 15 studies, highlights key aspects such as encapsulation efficiency, stability, particle size, and in vitro and in vivo efficacy. Six studies focused on lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which were found to improve SP’s bioavailability and skin permeation. Another six studies investigated vesicular nanoparticles (VNPs), such as ethosomes and niosomes, demonstrating superior skin targeting and penetration capabilities. Two studies on polymeric nanoparticles (PNPs) showed effectiveness in delivering SP to hair follicles for the treatment of alopecia and acne. Additionally, one study on SP-loaded nanofibers indicated significant potential for topical rosacea therapy. Conclusions: SP-loaded nanocarrier systems represent promising advancements in targeted topical therapy. However, further clinical studies are required to optimize their safety, efficacy, and delivery mechanisms. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

27 pages, 12629 KB  
Article
Mamba-VNPS: A Visual Navigation and Positioning System with State-Selection Space
by Longyang Huang, Zhiyuan Wang, Qiankai Xiong, Ruokun Qu, Chenghao Yao and Chenglong Li
Drones 2024, 8(11), 663; https://doi.org/10.3390/drones8110663 - 10 Nov 2024
Cited by 2 | Viewed by 2784
Abstract
This study was designed to address the challenges of autonomous navigation facing UAVs in urban air mobility environments without GPS. Unlike traditional localization methods that rely heavily on GPS and pre-mapped routes, Mamba-VNPS leverages a self-supervised learning framework and advanced feature extraction techniques [...] Read more.
This study was designed to address the challenges of autonomous navigation facing UAVs in urban air mobility environments without GPS. Unlike traditional localization methods that rely heavily on GPS and pre-mapped routes, Mamba-VNPS leverages a self-supervised learning framework and advanced feature extraction techniques to achieve robust real-time localization without external signal dependence. The results show that Mamba-VNPS significantly outperforms traditional methods across multiple aspects, including localization error. These innovations provide a scalable and effective solution for UAV navigation, enhancing operational efficiency in complex spaces. This study highlights the urgent need for adaptive positioning systems in urban air mobility (UAM) and provides a methodology for future research on autonomous navigation technologies in both aerial and ground applications. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

21 pages, 5767 KB  
Article
Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS
by Xinjie He, Qiting Huang, Dewei Yang, Yingpin Yang, Guoxue Xie, Shaoe Yang, Cunsui Liang and Zelin Qin
Fire 2024, 7(10), 370; https://doi.org/10.3390/fire7100370 - 18 Oct 2024
Cited by 1 | Viewed by 1466
Abstract
Open biomass burning has significant adverse effects on regional air quality, climate change, and human health. Extensive open biomass burning is detected in most regions of China, and capturing the characteristics of open biomass burning and understanding its influencing factors are important prerequisites [...] Read more.
Open biomass burning has significant adverse effects on regional air quality, climate change, and human health. Extensive open biomass burning is detected in most regions of China, and capturing the characteristics of open biomass burning and understanding its influencing factors are important prerequisites for regulating open biomass burning. The characteristics of open biomass burning have been widely investigated at the national scale, with regional studies often focusing on northeast China, but few studies have examined regional discrepancies in spatiotemporal variations over a long timescale in Guangxi province. In this study, we used the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m active fire product (VNP14IMG), combined with land cover data and high-resolution remote sensing images, to extract open biomass burning (crop residue burning and forest fire) fire points in Guangxi province from 2012 to 2023. We explored the spatial density distribution and temporal variation of open biomass burning using spatial analysis methods and statistical methods, respectively. Furthermore, we analyzed the driving forces of open biomass burning in Guangxi province from natural (topography, climate, and plant schedule), policy, and social (crop production and cultural customs) perspectives. The results show that open biomass burning is concentrated in the central, eastern, and southern parts of the study area, where there are frequent agricultural activities and abundant forests. At the city level, the highest numbers of fire points were found in Baise, Yulin, Wuzhou, and Nanning. The open biomass burning fire points exhibited large annual variation, with high levels from 2013 to 2015 and a remarkable decrease from 2016 to 2020 under strict control measures; however, inconsistent enforcement led to a significant rebound in fire points from 2021 to 2023. Forest fires are the predominant type of open biomass burning in the region, with forest fires and crop residue burning accounting for 76.82% and 23.18% of the total, respectively. The peak period for crop residue burning occurs in the winter, influenced mainly by topography, planting schedules, crop production, and policies, while forest fires predominantly occur in the winter and spring, primarily influenced by topography, climate, and cultural customs. The results indicate that identifying the driving forces behind spatiotemporal variations is essential for the effective management of open biomass burning. Full article
(This article belongs to the Special Issue Vegetation Fires and Biomass Burning in Asia)
Show Figures

Figure 1

12 pages, 3145 KB  
Communication
Comparison of the NASA Standard MODerate-Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite Snow-Cover Products for Creation of a Climate Data Record: A Case Study in the Great Basin of the Western United States
by Dorothy K. Hall, George A. Riggs and Nicolo E. DiGirolamo
Remote Sens. 2024, 16(16), 3029; https://doi.org/10.3390/rs16163029 - 18 Aug 2024
Cited by 2 | Viewed by 1274
Abstract
A nearly continuous daily, global Environmental Science Data Record of NASA Standard MODerate-resolution Imaging Spectroradiometer (MODIS) snow-cover extent (SCE) data products has been available since 2000. When the MODIS record ends, the ‘moderate resolution’ SCE record will continue with NASA Standard Visible Infrared [...] Read more.
A nearly continuous daily, global Environmental Science Data Record of NASA Standard MODerate-resolution Imaging Spectroradiometer (MODIS) snow-cover extent (SCE) data products has been available since 2000. When the MODIS record ends, the ‘moderate resolution’ SCE record will continue with NASA Standard Visible Infrared Imaging Radiometer Suite (VIIRS) SCE data products. The objective of this work is to evaluate and quantify the continuity between the MODIS and VIIRS SCE data products to enable the merging of the data product records. A climate data record (CDR) could be developed when 30 years of daily global moderate-resolution SCE become available if the continuity of the MODIS and VIIRS records can be established. Here, we focus on the daily cloud-gap-filled MODIS and VIIRS SCE NASA standard data products, MOD10A1F and VNP10A1F, respectively, for a case study in the Great Basin of the western United States during a period of sensor overlap. Using the methodologies described herein (daily percent of snow cover, duration of snow cover, average monthly number of days (Ndays) of snow cover, and trends in Ndays of snow cover, we show that the snow maps display excellent agreement. For example, the average monthly number of days of snow cover in the Great Basin calculated using MOD10A1F and VNP10A1F agrees with a Pearson’s correlation coefficient of r = 0.99 for our 11-year study period from WY 2013 to 2023. Additionally, the SCE derived from each data product agrees very well with meteorological station data, with a Pearson’s correlation coefficient of r = 0.91 and r = 0.92 for MOD10A1F and VNP10A1F, respectively. Our results support the eventual creation of a CDR. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Figure 1

23 pages, 2223 KB  
Article
Macropinocytosis Is the Principal Uptake Mechanism of Antigen-Presenting Cells for Allergen-Specific Virus-like Nanoparticles
by Armin Kraus, Bernhard Kratzer, Al Nasar Ahmed Sehgal, Doris Trapin, Matarr Khan, Nicole Boucheron and Winfried F. Pickl
Vaccines 2024, 12(7), 797; https://doi.org/10.3390/vaccines12070797 - 18 Jul 2024
Cited by 3 | Viewed by 2745
Abstract
Virus-like nanoparticles (VNP) are regarded as efficient vaccination platforms and have proven to be useful for the non-anaphylactogenic delivery of allergen-specific immunotherapy in preclinical models previously. Herein, we sought to determine the mode of VNP uptake by antigen presenting cells (APC). Accordingly, we [...] Read more.
Virus-like nanoparticles (VNP) are regarded as efficient vaccination platforms and have proven to be useful for the non-anaphylactogenic delivery of allergen-specific immunotherapy in preclinical models previously. Herein, we sought to determine the mode of VNP uptake by antigen presenting cells (APC). Accordingly, we screened a collection of substances known to inhibit different uptake pathways by APC. The human leukemia monocytic cell line THP-1 and the murine dendritic cell line DC 2.4 were examined for the uptake of fluorescently labelled VNP in the presence or absence of inhibitors. The inhibitory effect of candidate substances that blocked VNP uptake in APC lines was subsequently evaluated in studies with primary APC present in splenocyte and lung cell homogenates in vitro and upon intratracheal application of VNP in vivo. The uptake of allergen-specific VNP in vitro and in vivo was mainly observed by macrophages and CD103+ dendritic cells and was sensitive to inhibitors that block macropinocytosis, such as hyperosmolarity induced by sucrose or the polyphenol compound Rottlerin at low micromolar concentrations but not by other inhibitors. Also, T-cell proliferation induced by allergen-specific VNP was significantly reduced by both substances. In contrast, substances that stimulate macropinocytosis, such as Heparin and phorbol myristate acetate (PMA), increased VNP-uptake and may, thus, help modulate allergen-specific T-cell responses. We have identified macropinocytosis as the principal uptake mechanism of APC for allergen-specific VNP in vitro and in vivo, paving the way for further improvement of VNP-based therapies, especially those that can be used for tolerance induction in allergy, in the future. Full article
Show Figures

Figure 1

15 pages, 3074 KB  
Article
A Multifunctionalized Potyvirus-Derived Nanoparticle That Targets and Internalizes into Cancer Cells
by Daniel A. Truchado, María Juárez-Molina, Sara Rincón, Lucía Zurita, Jaime Tomé-Amat, Corina Lorz and Fernando Ponz
Int. J. Mol. Sci. 2024, 25(8), 4327; https://doi.org/10.3390/ijms25084327 - 13 Apr 2024
Cited by 5 | Viewed by 2183
Abstract
Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a [...] Read more.
Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP–cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research. Full article
(This article belongs to the Special Issue Recent Advances in Nanoparticles in Molecular Biology)
Show Figures

Figure 1

16 pages, 2816 KB  
Article
The W195 Residue of the Newcastle Disease Virus V Protein Is Critical for Multiple Aspects of Viral Self-Regulation through Interactions between V and Nucleoproteins
by Qiaolin Wei, Wenbin Wang, Fanxing Meng, Ying Wang, Ning Wei, Jianxia Tian, Hanlue Li, Qiqi Hao, Zijie Zhou, Haijin Liu, Zengqi Yang and Sa Xiao
Viruses 2024, 16(4), 584; https://doi.org/10.3390/v16040584 - 10 Apr 2024
Cited by 5 | Viewed by 1930
Abstract
The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for [...] Read more.
The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V–NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V–NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

14 pages, 2258 KB  
Article
Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering
by Christian Sator, Chiara Lico, Elisa Pannucci, Luca Marchetti, Selene Baschieri, Heribert Warzecha and Luca Santi
Plants 2024, 13(4), 503; https://doi.org/10.3390/plants13040503 - 11 Feb 2024
Cited by 2 | Viewed by 2165
Abstract
Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a [...] Read more.
Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a functionalization strategy to display different enzymes on the outer surface of three different VNPs produced in plants. Tomato bushy stunt virus (TBSV) and Potato virus X (PVX) plant viruses were functionalized by the genetic fusion of the E-coil peptide coding sequence to their respective coat proteins genes, while the enzyme lichenase was tagged with the K-coil peptide. Immobilized E-coil VNPs were able to interact in vitro with the plant-produced functionalized lichenase, and catalysis was demonstrated by employing a lichenase assay. To prove this concept in planta, the Hepatitis B core (HBc) virus-like particles (VLPs) were similarly functionalized by genetic fusion with the E-coil sequence, while acyl-activating enzyme 1, olivetolic acid synthase, and olivetolic acid cyclase enzymes were tagged with the K-coil. The transient co-expression of the K-coil-enzymes together with E-coil-VLPs allowed the establishment of the heterologous cannabinoid precursor biosynthetic pathway. Noteworthy, a significantly higher yield of olivetolic acid glucoside was achieved when the scaffold E-coil-VLPs were employed. Full article
(This article belongs to the Special Issue Plant Metabolic Engineering)
Show Figures

Figure 1

15 pages, 3894 KB  
Article
FoxO3 Modulates Circadian Rhythms in Neural Stem Cells
by Swip Draijer, Raissa Timmerman, Jesse Pannekeet, Alexandra van Harten, Elham Aida Farshadi, Julius Kemmer, Demy van Gilst, Inês Chaves and Marco F. M. Hoekman
Int. J. Mol. Sci. 2023, 24(17), 13662; https://doi.org/10.3390/ijms241713662 - 4 Sep 2023
Cited by 4 | Viewed by 2305
Abstract
Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and [...] Read more.
Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis. Full article
(This article belongs to the Special Issue Metabolic Oscillations Controlled by the Biological Clock)
Show Figures

Figure 1

27 pages, 7803 KB  
Article
Bringing to Light the Potential of Angular Nighttime Composites for Monitoring Human Activities in the Brazilian Legal Amazon
by Gabriel da Rocha Bragion, Ana Paula Dal’Asta and Silvana Amaral
Remote Sens. 2023, 15(14), 3515; https://doi.org/10.3390/rs15143515 - 12 Jul 2023
Cited by 1 | Viewed by 2203
Abstract
The Brazilian Legal Amazon (BLA) is the largest administrative unit in Brazil. The region has undergone a series of territorial policies that have led to specific conditions of occupation of the land and particular urban environments. This plurality expresses specific physical relations with [...] Read more.
The Brazilian Legal Amazon (BLA) is the largest administrative unit in Brazil. The region has undergone a series of territorial policies that have led to specific conditions of occupation of the land and particular urban environments. This plurality expresses specific physical relations with the environment and infrastructure, which require innovative methods for detecting and profiling human settlements in this region. The aim of this work is to demonstrate how angular composites of nighttime lights can be associated with specific profiles of urban infrastructure, sociodemographic parameters, and mining sites present in the BLA. We make use of sets of yearly VNP46A4 angular composites specifically associated with the narrowest ranges of observations across the year, i.e., observations right below the sensor’s pathway (near-nadir range) and observations in between the oblique range (off-nadir), to identify urban typologies that expose the presence of structures such as vertical buildings, industrial sites, and areas with different income levels. Through a non-parametric evaluation of the simple difference in radiance values ranging from 2012 to 2021, followed by an ordinary least squares regression (OLS), we find that off-nadir values are persistently higher than near-nadir values except in areas where obstructing structures and particular anisotropic characteristics are present, generally changing trends of the so-called angular effect. We advocate that relational metrics can be extracted from the angular annual composites to provide additional information on the current urban structural state. By calculating the simple difference (DIF), the relative difference (REL), and the residual values of the linear regression formula estimated for the off-nadir and near-nadir composites (RES), it is possible to differentiate urban environments by their physical aspects, such as high-mid income areas, low-income settlements with different levels of density, industrial sites, and verticalized areas. Moreover, pixels that were exclusively found in one of the angular composites could be spatially associated with phenomena such as the overglow effect for the exclusive off-nadir samples and with the wetlands of the northwest portion of the Amazon Forest for the near-nadir samples. This work deepens our current understanding of how to optimize the use of the VNP46A4 angular series for monitoring human activities in the Amazon biome and provides further directions on research possibilities concerning nighttime light angular composites. Full article
(This article belongs to the Special Issue Remote Sensing in the Amazon Biome)
Show Figures

Graphical abstract

Back to TopTop