Newcastle Disease and Other Avian Orthoavulaviruses 1

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 7871

Special Issue Editors


E-Mail Website
Guest Editor
Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
Interests: newcastle disease; avian influenza; pathogenesis; vaccine

E-Mail Website
Guest Editor
Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
Interests: newcastle disease; avian influenza; host-virus interactions; non-coding RNAs; next generation sequencing; point of care assays

Special Issue Information

Dear Colleagues,

Newcastle disease (ND) is one of the most important poultry diseases worldwide that is caused by virulent avian orthoavulavirus 1 (AOAV-1), which is commonly known as avian paramyxovirus 1 (APMV-1) or Newcastle disease virus (NDV). In spite of the routine immunization with live and killed vaccines that is incorporated into vaccination programs, ND and low-virulence AOAV-1-related problems remain a considerable cause of economic loss to the poultry industry. Although AOAV-1 primarily affects birds, the virus can infect non-avian hosts including humans, where fatal cases have been reported. The control of Newcastle disease and other AOAV-1 infections requires multifaceted approaches with a better understanding of the causative agents, epidemiology, pathogenesis, and immunity.

For this Special Issue entitled “Newcastle Disease and Other Avian Orthoavulaviruses 1”, we invite the submission of original research articles and reviews focusing on both fundamental and applied aspects of AOAV-1 research.

Dr. Chang-Won Lee
Dr. Abhijeet Bakre
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Newcastle disease
  • avian orthoavulaviruses 1
  • epidemiology
  • pathogenesis
  • immunity
 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 4834 KiB  
Article
Assessment of PPMV-1 Genotype VI Virulence in Pigeons and Chickens and Protective Effectiveness of Paramyxovirus Vaccines in Pigeons
by Esraa E. Hamouda, Amal A. M. Eid, Hagar F. Gouda, Amina A. Dessouki, Ayman H. El-Deeb, Rebecca Daines, Munir Iqbal and Reham M. ElBakrey
Viruses 2024, 16(10), 1585; https://doi.org/10.3390/v16101585 - 9 Oct 2024
Viewed by 639
Abstract
Pigeon paramyxovirus serotype 1 (PPMV-1), an antigenic and host variant of avian paramyxovirus Newcastle disease virus (NDV), primarily originating from racing pigeons, has become a global panzootic. Egypt uses both inactivated PPMV-1 and conventional NDV vaccines to protect pigeons from disease and mortality. [...] Read more.
Pigeon paramyxovirus serotype 1 (PPMV-1), an antigenic and host variant of avian paramyxovirus Newcastle disease virus (NDV), primarily originating from racing pigeons, has become a global panzootic. Egypt uses both inactivated PPMV-1 and conventional NDV vaccines to protect pigeons from disease and mortality. However, the impact of prevalent strains and the effectiveness of available vaccines in pigeons in Egypt are unclear. This study investigates the virulence of PPMV-1 (Pigeon/Egypt/Sharkia-19/2015/KX580988) and evaluates available paramyxovirus vaccines in protecting pigeons against a PPMV-1 challenge. Ten-day-old specific-pathogen-free (SPF) embryonated chicken eggs infected with this strain exhibited a mean death time (MDT) of 86.4 ± 5.88 h. The intracerebral pathogenicity index (ICPI) in day-old chickens was 0.8, while pigeons experienced an ICPI of 0.96 and an intravenous pathogenicity index (IVPI) of 2.11. These findings classify the strain as virulent and velogenic. Experimental infection of pigeons with this PPMV-1 strain at 106 EID50/0.1 mL resulted in a 62.5% mortality rate, displaying nervous and enteric distress. The virus caused extensive lesions in visceral organs, with strong immunohistochemistry signals in all examined organs, indicating the systemic spread of the virus concurrent to its neurotropic and viscerotropic tropism. Furthermore, vaccination using an inactivated PPMV-1 and live NDV LaSota vaccine regimen protected 100% of pigeons against mortality, while with a single NDV LaSota vaccine, it was 62.5%. The PPMV alone or combined with NDV LaSota induced protective levels of haemagglutination inhibition (HI) antibody titres and reduced virus shedding from buccal and cloacal cavities. Based on generalised linear gamma model analysis, both PPMV-1 and NDV LaSota are antigenically comparable by HI. These findings suggest that using both inactivated PPMV-1 (G-VI) and live attenuated NDV (LaSota) vaccines is an effective prophylactic regimen for preventing and controlling PPMV-1 and NDV in pigeons, thereby reducing the risk of interspecies transmission. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

16 pages, 1603 KiB  
Article
Genomic Diversity and Evolutionary Insights of Avian Paramyxovirus-1 in Avian Populations in Pakistan
by Muhammad Zubair Shabbir, Sahar Mahmood, Aziz Ul-Rahman, Ashley C. Banyard and Craig S. Ross
Viruses 2024, 16(9), 1414; https://doi.org/10.3390/v16091414 - 5 Sep 2024
Viewed by 605
Abstract
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges [...] Read more.
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges to the poultry industry. Extensive surveillance in Pakistan over 20 years has demonstrated a dynamic genetic diversity among circulating APMV-1 strains, emphasizing the potential necessity for customized vaccination strategies and continuous surveillance. In this study, 13 APMV-1-positive isolates harboring four different APMV-1 genotypes circulating throughout Pakistan were identified. These included the highly virulent genotypes VII and XIII, genotype XXI, commonly associated with Columbiformes, and genotype II, hypothesized to have been detected following vaccination. These findings underscore the intricate interplay of mutational events and host-immune interactions shaping the evolving NDV landscape. This study advances our understanding of the evolutionary dynamics of APMV-1 in Pakistan, highlighting the need for tailored vaccination strategies and continuous surveillance to enable effective APMV-1 management in avian populations, further emphasizing the importance of globally coordinated strategies to tackle APMV-1, given its profound impact on wild and domestic birds. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

16 pages, 2561 KiB  
Article
Isolation and Genetic Characterization of Genotype VII Velogenic Pathotype Newcastle Disease Virus from Commercial Chicken Farms in Central Ethiopia, Distinct from the Local Vaccine Strains
by Waktole Yadeta, Elizabeth Amosun, Hawa Mohammed, Wubet Woldemedhin, Kedir Sherefa, Abinet Legesse, Getaw Deresse, Kenaw Birhanu, Takele Abayneh, Belayneh Getachew, Omar Farnós, Amine A. Kamen and Esayas Gelaye
Viruses 2024, 16(8), 1249; https://doi.org/10.3390/v16081249 - 3 Aug 2024
Viewed by 1909
Abstract
Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in [...] Read more.
Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in six commercial chicken farms across areas of central Ethiopia to identify the circulating NDV strains. Thirty pooled tissue specimens were collected from chickens suspected of being infected with NDV. A questionnaire survey of farm owners and veterinarians was also carried out to collect information on the farms and the outbreak status. NDV was isolated using specific-pathogen-free (SPF)-embryonated chicken eggs and detected using haemagglutination and the reverse transcriptase–polymerase chain reaction (RT–PCR). The genotype and virulence of field NDV isolates were determined using phylogenetic analysis of fusion (F) protein gene sequences and the mean death time (MDT) test in SPF-embryonated chicken eggs. The questionnaire results revealed that ND caused morbidity (23.1%), mortality (16.3%), case fatality (70.8%), and significant economic losses. Eleven of thirty tissue specimens tested positive for NDV using haemagglutination and RT–PCR. The MDT testing and sequence analysis revealed the presence of virulent NDV classified as genotype VII of class II velogenic pathotype and distinct from locally used vaccine strains (genotype II). The amino acid sequences of the current virulent NDV fusion protein cleavage site motif revealed 112RRQKR↓F117, unlike the locally used avirulent vaccine strains (112GRQGR↓L117). The epidemiological data, MDT results, cleavage site sequence, and phylogenetic analysis all indicated that the present NDV isolates were virulent. The four NDV sequences were deposited in GenBank with accession numbers F gene (PP726912-15) and M gene (PP726916-19). The genetic difference between avirulent vaccine strains and circulating virulent NDV could explain the low level of protection provided by locally used vaccines. Further studies are needed to better understand the circulating NDV genotypes in different production systems. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

16 pages, 2816 KiB  
Article
The W195 Residue of the Newcastle Disease Virus V Protein Is Critical for Multiple Aspects of Viral Self-Regulation through Interactions between V and Nucleoproteins
by Qiaolin Wei, Wenbin Wang, Fanxing Meng, Ying Wang, Ning Wei, Jianxia Tian, Hanlue Li, Qiqi Hao, Zijie Zhou, Haijin Liu, Zengqi Yang and Sa Xiao
Viruses 2024, 16(4), 584; https://doi.org/10.3390/v16040584 - 10 Apr 2024
Viewed by 1055
Abstract
The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for [...] Read more.
The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V–NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V–NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2434 KiB  
Review
The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy
by Huiming Yang, Jiaxin Tian, Jing Zhao, Ye Zhao and Guozhong Zhang
Viruses 2024, 16(6), 886; https://doi.org/10.3390/v16060886 - 30 May 2024
Viewed by 1392
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research [...] Read more.
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

22 pages, 3491 KiB  
Review
Genomic Diversity and Geographic Distribution of Newcastle Disease Virus Genotypes in Africa: Implications for Diagnosis, Vaccination, and Regional Collaboration
by Charlie F. Amoia, Jean N. Hakizimana, Augustino A. Chengula, Muhammad Munir, Gerald Misinzo and James Weger-Lucarelli
Viruses 2024, 16(5), 795; https://doi.org/10.3390/v16050795 - 16 May 2024
Viewed by 1655
Abstract
The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding [...] Read more.
The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

Back to TopTop