Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = Vibrio parahaemolyticus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7228 KB  
Article
Transcriptomic Analysis of Tachypleus tridentatus Larval Response to Vibrio parahaemolyticus Infection
by Lei Yan, Jinxia Liu, Boyu Chen, Fanxi Gao, Zizhuo Liu, Zhenwen Zhang, Shimiao Li, Yan Zhang, Jiuman Jia, Peng Zhu and Yongyan Liao
Animals 2025, 15(17), 2556; https://doi.org/10.3390/ani15172556 - 30 Aug 2025
Viewed by 88
Abstract
Tachypleus tridentatus is a rare and endangered marine organism with considerable scientific and economic value. It has existed on Earth for about 450 million years and its continuation to the present day may be related to its unique immune system. Owing to its [...] Read more.
Tachypleus tridentatus is a rare and endangered marine organism with considerable scientific and economic value. It has existed on Earth for about 450 million years and its continuation to the present day may be related to its unique immune system. Owing to its drastic population decline, diverse technical approaches are required for its recovery, and the development and growth of its larvae are crucial in this context. Vibrio parahaemolyticus is a common marine pathogen that impairs the healthy growth of marine organisms. The peak period of V. parahaemolyticus occurrence is from May to November, which significantly overlaps with the T. tridentatus spawning period from April to September. However, the response mechanisms of juvenile T. tridentatus to V. parahaemolyticus stress remain unknown. Hence, in this study, we aimed to investigate these response mechanisms through acute toxicity assays, histological observations, and transcriptome analysis. The results showed that the 48 h LD50 of V. parahaemolyticus-infected T. tridentatus larvae was determined to be 1.31 × 108 CFU/g. Histological analysis showed that V. parahaemolyticus damaged the larval tissue. In addition, RNA sequencing (RNA-Seq) identified 2347 differentially expressed genes (DEGs; 1440 upregulated and 907 downregulated genes) and 243 enriched signaling pathways. Functional enrichment analysis revealed the enrichment of immunoregulatory pathways, including the Wnt signaling pathway, ECM-receptor interaction, aminoacyl-tRNA biosynthesis, and Toll and Imd signaling pathways. Seventeen DEGs were randomly selected for real-time RT-PCR (RT-qPCR) validation, and their expression patterns were consistent with those obtained via RNA-Seq. The study of the response mechanism of T. tridentatus larvae to V. parahaemolyticus stress provides scientific references for the protection of T. tridentatus habitats and the recovery of its population size. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals: 2nd Edition)
Show Figures

Figure 1

23 pages, 1084 KB  
Review
Antimicrobial Efficacy of Curcumin Nanoparticles Against Aquatic Bacterial Pathogens
by Edith Dube and Grace Emily Okuthe
Future Pharmacol. 2025, 5(3), 44; https://doi.org/10.3390/futurepharmacol5030044 - 19 Aug 2025
Viewed by 286
Abstract
Bacterial diseases are a major constraint to aquaculture productivity, driving extensive antibiotic use and raising concerns over antimicrobial resistance, environmental contamination, and food safety. Curcumin, a polyphenolic compound from Curcuma longa, exhibits broad-spectrum antimicrobial and immunomodulatory activities but is limited by poor [...] Read more.
Bacterial diseases are a major constraint to aquaculture productivity, driving extensive antibiotic use and raising concerns over antimicrobial resistance, environmental contamination, and food safety. Curcumin, a polyphenolic compound from Curcuma longa, exhibits broad-spectrum antimicrobial and immunomodulatory activities but is limited by poor water solubility, instability, and low bioavailability. This review was conducted through a literature search of Scopus, PubMed, Web of Science, and Google Scholar using targeted keywords, including curcumin nanoparticles, antibacterial, aquatic pathogens, nanotechnology, synthesis, and disease control. Titles and abstracts were screened for relevance, followed by full-text evaluation of selected studies. Key findings were critically analyzed and incorporated into the review. Findings from the literature indicate that curcumin nanoparticles, synthesized via milling, anti-solvent precipitation, ionic gelation, emulsification, spray drying, and metal/polymer nanocomposite formation, exhibit enhanced antibacterial activity against aquatic pathogens, including Aeromonas hydrophila, Vibrio parahaemolyticus, Escherichia coli, and Staphylococcus aureus. Optimally engineered curcumin nanoparticles (<100 nm, being mostly spherical, highly negatively charged) can penetrate bacterial membranes, disrupt biofilms, lower minimum inhibitory concentrations, and improve in vivo fish survival. Practical applications include dietary supplementation to boost fish immunity and growth, water disinfection to reduce pathogen loads, immersion therapy for external infections, and antimicrobial coatings for aquaculture equipment and surfaces, resulting in reduced infections and outbreaks, reduced mortality, improved water quality, and decreased antibiotic dependence. In conclusion, curcumin nanoparticles and curcumin-based nanocomposites present a versatile, eco-friendly approach to sustainable aquaculture disease management. However, further field-scale validation, safety assessment, and cost-effective production methods are necessary to enable commercial adoption. Full article
Show Figures

Figure 1

28 pages, 2314 KB  
Article
Identifying Key Drivers of Foodborne Diseases in Zhejiang, China: A Machine Learning Approach
by Cangyu Jin, Xiaojuan Qi, Jikai Wang, Lili Chen, Jiang Chen and Han Yin
Foods 2025, 14(16), 2857; https://doi.org/10.3390/foods14162857 - 18 Aug 2025
Viewed by 313
Abstract
Foodborne diseases represent a significant public health challenge worldwide. This study systematically analyzed the temporal dynamics, key predictors, and seasonal patterns of pathogen-specific foodborne diseases using a dataset of 56,970 cases from Zhejiang Province, China, spanning 2014 to 2023. A comprehensive set of [...] Read more.
Foodborne diseases represent a significant public health challenge worldwide. This study systematically analyzed the temporal dynamics, key predictors, and seasonal patterns of pathogen-specific foodborne diseases using a dataset of 56,970 cases from Zhejiang Province, China, spanning 2014 to 2023. A comprehensive set of 91 candidate variables was constructed by integrating epidemiological, environmental, socioeconomic, and agricultural data. Lasso regression was employed to identify 41 important predictors. Based on these variables, supervised machine learning models (Random Forest and XGBoost) were trained and evaluated, achieving training set classification accuracies of 86% and 87%, respectively, demonstrating robust performance. Feature importance analysis revealed that patient age, food type, climate policy, and processing methods were the most influential determinants, highlighting the combined impact of host, exposure, and environmental factors on disease risk. The results demonstrated significant shifts in the pathogen spectrum over the past decade, including a steady decline in Vibrio parahaemolyticus, an increase in Salmonella after 2016, and persistent seasonal peaks in Norovirus and Vibrio parahaemolyticus during warmer months. Seasonal ARIMA modeling and time-series decomposition further confirmed the critical role of seasonal and trend components in bacterial incidence. Overall, this study demonstrates the value of integrating machine learning and time-series analysis for pathogen-specific surveillance, risk prediction, and targeted public health interventions. Full article
(This article belongs to the Special Issue Emerging Challenges in the Management of Food Safety and Authenticity)
Show Figures

Figure 1

10 pages, 391 KB  
Article
Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds
by Sidney Wilson and Mahasweta Saha
Phycology 2025, 5(3), 38; https://doi.org/10.3390/phycology5030038 - 14 Aug 2025
Viewed by 255
Abstract
Anthropogenic warming of the world’s oceans is not just an environmental crisis, but may result in a significant threat to human health. The combination of a warming ocean and increased human activity in coastal waters sets the stage for increased pathogenic Vibrio–human [...] Read more.
Anthropogenic warming of the world’s oceans is not just an environmental crisis, but may result in a significant threat to human health. The combination of a warming ocean and increased human activity in coastal waters sets the stage for increased pathogenic Vibrio–human interaction. Warming patterns due to climate change have already been related to the emergence of Vibrio outbreaks in temperate and cold regions. Seafoods, including seaweeds, are uniquely poised to contribute to global food and nutrition security. In recent years there has been a resurgence of interest in seaweeds due to their many uses, high nutritional value, and ability to provide ecosystem services such as habitat provision, carbon and nutrient uptake, and coastal protection. However, some seaweed species can be a reservoir for harbouring pathogenic Vibrio, and illnesses like gastroenteritis have recently been associated with foods prepared with seaweeds. In this study, we investigated the impact of elevated water temperatures on abundances of the major human pathogens Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio vulnificus/cholerae on seaweed and in coastal waters. Three seaweed species, Fucus serratus, Palmaria palmata, and Ulva spp., were exposed to temperature treatments (16 °C and 20 °C) to assess the effects of mean-temperature rise on Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio vulnificus/cholerae colonisation. Colony-forming units (CFUs) on seaweed surfaces and in surrounding water were counted. F. serratus and P. palmata showed significantly higher Vibrio abundances at higher temperatures compared with Ulva spp.; however, temperature did not significantly affect abundances of tested Vibrio species in surrounding waters. These results indicate that certain seaweed species may serve as major hotspots for human pathogenic bacteria in warmer conditions, with implications for human health. Full article
Show Figures

Figure 1

15 pages, 1328 KB  
Article
Climate Change-Related Temperature Impact on Human Health Risks of Vibrio Species in Bathing and Surface Water
by Franciska M. Schets, Irene E. Pol-Hofstad, Harold H. J. L. van den Berg and Jack F. Schijven
Microorganisms 2025, 13(8), 1893; https://doi.org/10.3390/microorganisms13081893 - 14 Aug 2025
Viewed by 568
Abstract
Vibrio species are part of the indigenous microbial flora in marine, brackish and fresh water in moderate and tropical climates that thrive and multiply in water at elevated water temperatures. The number of human non-cholera Vibrio infections due to exposure to contaminated surface [...] Read more.
Vibrio species are part of the indigenous microbial flora in marine, brackish and fresh water in moderate and tropical climates that thrive and multiply in water at elevated water temperatures. The number of human non-cholera Vibrio infections due to exposure to contaminated surface water increases worldwide. To study possible climate change-related changes in Vibrio concentrations, prevalent species, and risks of illness, water samples from coastal and inland water bodies in the Netherlands were tested in 2019–2021. Data were combined with data from previous studies in 2009–2012 in order to develop a regression model to predict current and future risks of Vibrio illness. Year-to-year and site-specific variations in Vibrio concentrations and water temperature were observed, but there was no trend of increasing Vibrio concentrations or water temperature over time. In 2019–2021, Vibrio species distribution had not changed since 2009–2012; V. alginolyticus and V. parahaemolyticus were still the dominant species. Statistical analysis demonstrated a significant effect of water temperature on Vibrio concentrations. The model predicted a concentration increase of a factor of 1.5 for each degree Celsius temperature increase. Predicted risks of illness were higher at higher water temperatures, and higher for children than for adults. Based on the most recent climate change scenarios for the Netherlands, the risks of Vibrio illness will increase with factors ranging from 1.6 to 7.6 in 2050 and 2100. These outcomes warrant adequate information about Vibrio risks to water managers, public health workers and the general public. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health, 2nd Edition)
Show Figures

Figure 1

20 pages, 3024 KB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 329
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

21 pages, 2807 KB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 602
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

18 pages, 7222 KB  
Article
Assessing Risks and Innovating Traceability in Campania’s Illegal Mussel Sale: A One Health Perspective
by Valeria Vuoso, Attilio Mondelli, Carlotta Ceniti, Iolanda Venuti, Giorgio Ciardella, Yolande Thérèse Rose Proroga, Bruna Nisci, Rosa Luisa Ambrosio and Aniello Anastasio
Foods 2025, 14(15), 2672; https://doi.org/10.3390/foods14152672 - 29 Jul 2025
Viewed by 545
Abstract
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed [...] Read more.
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed to evaluate their microbiological safety and trace their geographical origin. High loads of Escherichia coli, exceeding European regulatory limits (Regulation (EC) No 2073/2005), were detected in all samples. In addition, Salmonella Infantis strains resistant to trimethoprim-sulfamethoxazole and azithromycin were isolated, raising further concerns about antimicrobial resistance. Of the 93 Vibrio isolates, identified as V. alginolyticus and V. parahaemolyticus, 37.63% showed multidrug resistance. Approximately 68.57% of the isolates were resistant to tetracyclines and cephalosporins. The presence of resistance to last-resort antibiotics such as carbapenems (11.43%) is particularly alarming. Near-infrared spectroscopy, combined with chemometric models, was used to obtain traceability information, attributing a presumed origin to the seized mussel samples. Of the ten samples, seven were attributed to the Phlegraean area. These findings have provided valuable insights, reinforcing the need for continuous and rigorous surveillance and the integration of innovative tools to ensure seafood safety and support One Health approaches. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 2146 KB  
Article
Isolation and Characterization of a Cold-Adapted Bacteriophage for Biocontrol of Vibrio parahaemolyticus in Seafood
by Zhixiang Nie, Xiangyu Cheng, Shengshi Jiang, Zhibin Zhang, Diwei Zhang, Hanfang Chen, Na Ling and Yingwang Ye
Foods 2025, 14(15), 2660; https://doi.org/10.3390/foods14152660 - 29 Jul 2025
Viewed by 453
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was isolated and biologically characterized to establish an effective control against V. parahaemolyticus. XY75 exhibited remarkable specificity toward V. parahaemolyticus, effectively lysing 46.2% of the target strains while showing no lytic activity against non-target bacterial species. Morphological characterization confirmed its taxonomic assignment to the Myoviridae family, featuring an icosahedral head (40 ± 2 nm) and contractile tail (60 ± 2 nm). XY75 demonstrated strong environmental tolerance, remaining stable at pH 4–11 and temperatures as high as 50 °C. At an optimal multiplicity of infection (MOI = 0.01), XY75 achieved a peak titer of 8.1 × 1010 PFU/mL, a 5 min latent period, and burst size of 118 PFU/cell. Critically, XY75 reduced V. parahaemolyticus in salmon by more than 5.98 log CFU/g (99.9%) within 6 h at 4 °C, demonstrating exceptional cold tolerance and lytic activity. Genomic analysis confirmed that no virulence or antibiotic resistance genes were present. These results establish XY75 as a safe and efficacious biocontrol candidate for seafood preservation, with particular utility under refrigerated storage conditions. Full article
Show Figures

Figure 1

20 pages, 6490 KB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 802
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

17 pages, 646 KB  
Article
Screening of Potential Drug Targets Based on the Genome-Scale Metabolic Network Model of Vibrio parahaemolyticus
by Lingrui Zhang, Bin Wang, Ruiqi Zhang, Zhen He, Mingzhi Zhang, Tong Hao and Jinsheng Sun
Curr. Issues Mol. Biol. 2025, 47(7), 575; https://doi.org/10.3390/cimb47070575 - 21 Jul 2025
Viewed by 477
Abstract
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need [...] Read more.
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need for novel antibacterial therapies with innovative mechanisms of action. In this work, a genome-scale metabolic network model (GMSN) of V. parahaemolyticus, named VPA2061, was reconstructed to predict the metabolites that can be explored as potential drug targets for eliminating V. parahaemolyticus infections. The model comprises 2061 reactions and 1812 metabolites. Through essential metabolite analysis and pathogen–host association screening with VPA2061, 10 essential metabolites critical for the survival of V. parahaemolyticus were identified, which may serve as key candidates for developing new antimicrobial strategies. Additionally, 39 structural analogs were found for these essential metabolites. The molecular docking analysis of the essential metabolites and structural analogs further investigated the potential value of these metabolites for drug design. The GSMN reconstructed in this work provides a new tool for understanding the pathogenic mechanisms of V. parahaemolyticus. Furthermore, the analysis results regarding the essential metabolites hold profound implications for the development of novel antibacterial therapies for V. parahaemolyticus-related disease. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 2450 KB  
Article
Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
by James Ziemah, Matthias S. Ullrich and Nikolai Kuhnert
Foods 2025, 14(14), 2496; https://doi.org/10.3390/foods14142496 - 16 Jul 2025
Viewed by 481
Abstract
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for [...] Read more.
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for use in sustainable aerosol hygiene technology as an electrostatic bio-disinfectant. The investigation was performed through wipe tests and airborne microbial collection techniques. The upgraded coffee silverskin phytoextract demonstrated superior disinfection potential for various surfaces and airborne microbes compared to the hot trub phytoextract, with an industrial disinfectant serving as the control. Log reduction analyses revealed a more significant killing efficacy (p ≤ 0.05, using the ANOVA test) against Gram-positive organisms (Bacillus subtilis and Listeria monocytogenes) than against Gram-negative organisms (Escherichia coli and Vibrio parahaemolyticus), with the log reductions ranging from 3.08 to 5.56 and 3.72 to 5.81, respectively. Chemical characterization by LC-ESI-QTOF-MS, 1H NMR, and FTIR showed that CGAs and chalcones are the most bioactive compounds in CSS and HT, respectively. The innovation in this work involves an integrated approach that combines waste-derived phytoextracts, advanced chemical profiling, and scalable aerosol disinfection. Furthermore, this research offers a greener, cost-effective, and industrially relevant alternative to synthetic chemical disinfectants. The interdisciplinary approach contributes to the development of bio-based disinfectants for use in the food industry, hospitals, and public health settings. This investigation supports a paradigm shift toward sustainable disinfection practices, thereby improving food and environmental safety. Full article
Show Figures

Figure 1

15 pages, 4418 KB  
Article
Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China
by Wei Yan, Liping Chen, Lei Ji, Rui Yuan, Fenfen Dong and Peng Zhang
Foods 2025, 14(14), 2481; https://doi.org/10.3390/foods14142481 - 15 Jul 2025
Viewed by 502
Abstract
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of [...] Read more.
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of the strains. A total of 306 isolates were detected from 1314 aquatic food samples from 2022 to 2024. The results indicated that the most prevalent serotypes were O1:KUT (17.0%), O2:K28 (13.7%), and O2:KUT (13.1%). Multilocus sequence typing analysis divided the 306 isolates into 175 sequence types (STs), and the predominant sequence type was ST864 (3.3%). Antimicrobial susceptibility tests showed that 2.6% of isolates were multidrug resistant. High resistance was observed to ampicillin (64.7%) and streptomycin (44.4%). A total of seven antimicrobial categories of resistance genes were identified, and the resistance gene blaCARB was detected in all isolates. The virulence genes tdh and trh were found in 16 (5.2%) and 12 (3.9%) isolates, respectively. In addition, we observed that all the 306 V. parahaemolyticus isolates encode type III secretion systems 1. The phylogenomic analysis based on the whole-genome sequence revealed that the 306 isolates were divided into four clusters. Our findings broaden perspectives on V. parahaemolyticus genetic diversity and enhance our ability to assess the potential risks of its spread. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1362 KB  
Article
The Role of Natural Antimicrobials in Reducing the Virulence of Vibrio parahaemolyticus TPD in Shrimp Gut and Hepatopancreas Primary Cells and in a Post-Larvae Challenge Trial
by Lavinia Stef, Ioan Pet, Cosmin Alin Popescu, Gabi Dumitrescu, Liliana Petculescu Ciochina, Tiberiu Iancu, Iuliana Cretescu, Nicolae Corcionivoschi and Igori Balta
Int. J. Mol. Sci. 2025, 26(14), 6557; https://doi.org/10.3390/ijms26146557 - 8 Jul 2025
Viewed by 588
Abstract
Some Vibrio parahaemolyticus strains cause translucent post-larvae disease (VpTPD), leading to significant economic losses in shrimp farming. We aimed to identify whether a mixture of natural antimicrobials, AuraAqua (Aq), can protect white-leg shrimp (Penaeus vannamei) against the lethal [...] Read more.
Some Vibrio parahaemolyticus strains cause translucent post-larvae disease (VpTPD), leading to significant economic losses in shrimp farming. We aimed to identify whether a mixture of natural antimicrobials, AuraAqua (Aq), can protect white-leg shrimp (Penaeus vannamei) against the lethal effects of VpTPD and to understand its biological mode of action. Herein, we demonstrate that Aq, an antimicrobial mixture composed of a blend of organic acids, citrus, and olive extracts, suppressed VpTPD virulence at sub-inhibitory concentrations and conferred robust protection to shrimp. The minimum inhibitory and bactericidal concentrations against the VpTPD isolate were at 0.05% and 0.2%, respectively. At 0.05–0.1%, Aq reduced bacterial growth and downregulated six major virulence genes (vhvp-1, vhvp-2, vhvp-3, pirAVp, pirBVp, pirABVp), while leaving metabolic ldh expression unaltered. Parallel in vitro assays revealed diminished adhesion of VpTPD to primary shrimp gut and hepatopancreas epithelial cells and a ≈50% reduction in infection-induced extracellular H2O2, indicating an antioxidant effect. The treatment also triggered a time-dependent surge in extracellular alkaline phosphatase (ALP) activity, consistent with membrane permeabilization. In vivo, a challenge of post-larvae with 104 CFU/mL VpTPD resulted in 91% mortality after 45 h; co-treatment with 0.1% and 0.2% Aq reduced mortality to ≈12% and ≈6%, respectively, while 1% Aq achieved ≈98% survival. The clinical protection test confirmed that 0.1% Aq preserved high survival across four pathogen inocula (101–104 CFU/mL). Conclusively, Aq destabilized the pathogen and therefore transcriptionally silenced multiple virulence determinants, translating into significant in-pond protection for controlling VpTPD for shrimp aquaculture. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

17 pages, 343 KB  
Article
Antibiotic Resistance and Characteristics of Vibrio parahaemolyticus Isolated from Seafood Distributed in South Korea from 2021 to 2022
by Jonghoon Lee, Hansol Kim, Haiseong Kang, Yongchjun Park, Insun Joo and Hyochin Kim
Microorganisms 2025, 13(7), 1566; https://doi.org/10.3390/microorganisms13071566 - 3 Jul 2025
Viewed by 575
Abstract
This study aimed to investigate the prevalence, antimicrobial resistance (AMR), and virulence characteristics of Vibrio parahaemolyticus (V. parahaemolyticus) isolated from olive flounder (Paralichthys olivaceus) and rockfish (Sebastes schlegelii) sashimi samples sold in South Korea from 2021 to [...] Read more.
This study aimed to investigate the prevalence, antimicrobial resistance (AMR), and virulence characteristics of Vibrio parahaemolyticus (V. parahaemolyticus) isolated from olive flounder (Paralichthys olivaceus) and rockfish (Sebastes schlegelii) sashimi samples sold in South Korea from 2021 to 2022. A total of 500 fish samples were analyzed, from which 17 V. parahaemolyticus isolates were obtained. Antibiotic susceptibility testing using the minimum inhibitory concentration method revealed that 58.8% (10/17) of the isolates exhibited resistance to ampicillin, indicating the potential for AMR transmission in seafood-associated pathogens. Whole-genome sequencing (WGS) and a polymerase chain reaction detected the presence of tlh and trh virulence genes in all isolates, suggesting their pathogenic potential. Although the overall isolation rate of V. parahaemolyticus was low, the presence of virulence and AMR genes indicates public health relevance associated with raw seafood consumption. The increasing consumer demand for raw fish, coupled with environmental changes such as rising ocean temperatures, underscores the necessity of continuous surveillance to prevent foodborne outbreaks. These findings emphasize the need for targeted AMR monitoring and further research to mitigate the dissemination of resistant V. parahaemolyticus strains and enhance seafood safety. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop