Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = WTAP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9850 KiB  
Article
m6A Methylation Mediated Autophagy and Nucleotide-Binding Oligomerization Domain-like Receptors Signaling Pathway Provides New Insight into the Mitigation of Oxidative Damage by Mulberry Leaf Polysaccharides
by Wenqiang Jiang, Yan Lin, Linjie Qian, Siyue Lu, Zhengyan Gu, Xianping Ge and Linghong Miao
Int. J. Mol. Sci. 2025, 26(9), 4345; https://doi.org/10.3390/ijms26094345 - 2 May 2025
Viewed by 292
Abstract
m6A methylation modification is an important genetic modification involved in biological processes such as sexual maturation, antibacterial, and antiviral in aquatic animals. However, few studies have been conducted in aquatic animals on the relationship between m6A methylation modification and [...] Read more.
m6A methylation modification is an important genetic modification involved in biological processes such as sexual maturation, antibacterial, and antiviral in aquatic animals. However, few studies have been conducted in aquatic animals on the relationship between m6A methylation modification and autophagy-inflammation induced by lipid metabolism disorders. In the present study, a high-fat (HF) group and HF-MLP group (1 g mulberry leaf polysaccharides (MLPs)/1 kg HF diet) were set up. The mid-hind intestines of Megalobrama amblycephala juveniles from the two groups were collected for MeRIP-seq and RNA-seq after an 8-week feeding trial. The m6A peaks in the HF and HF-MLP groups were mainly enriched in the 3′ Untranslated Region (3′UTR), Stop codon, and coding sequence (CDS) region. Compared with the HF group, the m6A peaks in the HF-MLP group were shifted toward the 5′UTR region. ‘RRACH’ was the common m6A methylation motif in the HF and HF-MLP groups. Methyltransferase mettl14 and wtap expression in the intestines of the HF-MLP group were significantly higher compared with the HF group (p < 0.05). A total of 21 differentially expressed genes(DEGs) with different peaks were screened by the combined MeRIP-seq and RNA-seq analysis. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis enriched BCL2 interacting protein 3 (bnip3) to autophagy–animal and mitophagy–animal signaling pathways, etc., and nucleotide-binding domain leucine-rich repeat protein 1 (nlrp1) was enriched to the Nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Combined MeRIP-seq and RNA-seq analysis indicated that the expression pattern of bnip3 was hyper-up and that of nlrp1 was hyper-down. Gene Set Enrichment Analysis (GSEA) analysis confirmed that the intestinal genes of HF-MLP group positively regulate lysosomal and autophagy–animal signaling pathways. In the present study, we demonstrated that m6A methylation modification plays a role in regulating autophagy-inflammatory responses induced by HF diets by MLPs, and further explored the molecular mechanisms by which MLPs work from the epigenetic perspective. Full article
(This article belongs to the Special Issue Fish Nutrition Program and Epigenetic Regulation)
Show Figures

Figure 1

22 pages, 6786 KiB  
Article
Identification and Characterization of the RNA Modifying Factors PUS7 and WTAP as Key Components for the Control of Tumor Biological Processes in Renal Cell Carcinomas
by Tim Hohmann, Urszula Hohmann, Faramarz Dehghani, Olaf Grisk and Simon Jasinski-Bergner
Curr. Issues Mol. Biol. 2025, 47(4), 266; https://doi.org/10.3390/cimb47040266 - 9 Apr 2025
Viewed by 445
Abstract
Current research discusses the putative importance of RNA modification in tumor diseases. These RNA modifications include predominantly pseudouridinylation, ortho-methylations on the ribose residues, as well as methylations on the organic bases. Such chemical modifications directly influence fundamental properties such as transcript stability, alternative [...] Read more.
Current research discusses the putative importance of RNA modification in tumor diseases. These RNA modifications include predominantly pseudouridinylation, ortho-methylations on the ribose residues, as well as methylations on the organic bases. Such chemical modifications directly influence fundamental properties such as transcript stability, alternative splicing, and translation efficiency, all of which are basic requirements for (tumor) cell proliferation, cell metabolism, cell migration, apoptosis resistance, etc. In this comparative study, the two RNA-modifying factors, pseudouridine synthase 7 (PUS7, RNA pseudouridinylation) and WT1-associated protein (WTAP, m6A RNA methylation), were identified using data from human renal cell carcinoma (RCC) tumors. PUS7 and WTAP showed a statistically significant correlation with relevant proliferation and prognosis markers such as CXCR4, TP53, PTEN, and NRAS, as well as with the two tumor immune checkpoints HLA-G and LGALS9 and were directly associated with a statistically significant effect on overall survival. Furthermore, comparative analyses also identified further putative target mRNAs of importance for tumor biology of PUS7 and WTAP. In particular, components with direct relevance for mitosis, the cell cycle, and cell division, as well as the WNT pathway, were identified. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Figure 1

18 pages, 1406 KiB  
Review
Novel Insight of N6-Methyladenosine in Cardiovascular System
by Huan Zhang, Wei Lu, Haoyue Tang, Aiqun Chen, Xiaofei Gao, Congfei Zhu and Junjie Zhang
Medicina 2025, 61(2), 222; https://doi.org/10.3390/medicina61020222 - 26 Jan 2025
Viewed by 978
Abstract
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as “writers”, including METTL3/14 and WTAP, and removed by demethylases, or “erasers”, such as FTO and ALKBH5. It is [...] Read more.
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as “writers”, including METTL3/14 and WTAP, and removed by demethylases, or “erasers”, such as FTO and ALKBH5. It is recognized by m6A-binding proteins, or “readers”, such as YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and HNRNPA2B1. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Recent studies indicate that m6A RNA modification plays a critical role in both the physiological and pathological processes involved in the initiation and progression of CVDs. In this review, we will explore how m6A RNA methylation impacts both the normal and disease states of the cardiovascular system. Our focus will be on recent advancements in understanding the biological functions, molecular mechanisms, and regulatory factors of m6A RNA methylation, along with its downstream target genes in various CVDs, such as atherosclerosis, ischemic diseases, metabolic disorders, and heart failure. We propose that the m6A RNA methylation pathway holds promise as a potential therapeutic target in cardiovascular disease. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis
by Saif Rehman, Mackenzie Parent and Kenneth B. Storey
Animals 2024, 14(22), 3288; https://doi.org/10.3390/ani14223288 - 15 Nov 2024
Cited by 1 | Viewed by 973
Abstract
The African clawed frog, Xenopus laevis, exhibits remarkable adaptations to survive in its arid habitat, including behavioral and metabolic changes during periods of drought. During extreme dehydration, X. laevis undergoes estivation, a state characterized by increased urea and ammonia levels, depression of [...] Read more.
The African clawed frog, Xenopus laevis, exhibits remarkable adaptations to survive in its arid habitat, including behavioral and metabolic changes during periods of drought. During extreme dehydration, X. laevis undergoes estivation, a state characterized by increased urea and ammonia levels, depression of the metabolic rate, and tissue hypoxia. To understand the molecular mechanisms underlying these adaptations, we investigated the potential role of N6-methyladenosine (m6A), a widespread mRNA modification, in X. laevis during extreme dehydration. We analyzed the protein levels of key components in the m6A pathway, including writers (METTL3, METTL14, and WTAP), erasers (ALKBH5 and FTO), and readers (SRSF3, YTHDF1, YTHDF2, YTHDF3, and eIF3a), in the liver and kidneys of control frogs and frogs that had lost 35 ± 0.93% of their total body water. The relative protein levels generally decreased or remained unchanged, with the exception of YTHDF3, which depicted a protein level increase in the liver. Notable changes included eIF3a, which was downregulated by 26 ± 8% and 80 ± 8% in the dehydrated liver and kidney tissues, respectively. Additionally, the total m6A increased by 353 ± 30% and 177 ± 17% in dehydrated liver and kidney RNA samples, respectively. This study highlights the importance of epigenetic mechanisms in stress tolerance and provides a foundation for further exploration of the role of epigenetics in dehydration tolerance. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

18 pages, 6265 KiB  
Article
RNA m6a Methylation Regulator Expression in Castration-Resistant Prostate Cancer Progression and Its Genetic Associations
by Chamikara Liyanage, Achala Fernando, Audrey Chamberlain, Afshin Moradi and Jyotsna Batra
Cancers 2024, 16(7), 1303; https://doi.org/10.3390/cancers16071303 - 27 Mar 2024
Cited by 3 | Viewed by 2432
Abstract
N6-methyladenosine (m6A) methylation, a prevalent epitranscriptomic modification, plays a crucial role in regulating mRNA expression, stability, and translation in mammals. M6A regulators have gained attention for their potential implications in tumorigenesis and clinical applications, such as cancer diagnosis and therapeutics. The existing literature [...] Read more.
N6-methyladenosine (m6A) methylation, a prevalent epitranscriptomic modification, plays a crucial role in regulating mRNA expression, stability, and translation in mammals. M6A regulators have gained attention for their potential implications in tumorigenesis and clinical applications, such as cancer diagnosis and therapeutics. The existing literature predominantly addresses m6A regulators in the context of primary prostate cancer (PCa). However, a notable gap in the knowledge emerges regarding the dynamic expression patterns of these regulators as PCa progresses towards the castration-resistant stage (CRPC). Employing sequential window acquisition of all theoretical mass spectra (SWATH-MS) and RNAseq analysis, we comprehensively profiled the expression of 27 m6A regulators in hormone/androgen-dependent and -independent PCa cell lines, revealing distinct clustering between tumor and adjacent normal prostate tissues. High-grade PCa tumors demonstrated the upregulation of METTL3, RBM15B, and HNRNAPA2B1 and the downregulation of ZC3H13, NUDT21, and FTO. Notably, we identified six m6A regulators associated with PCa survival. Additionally, association analysis of the PCa-associated risk loci in the cancer genome atlas program (TCGA) data unveiled genetic variations near the WTAP, HNRNPA2B1, and FTO genes as significant expression quantitative trait loci. In summary, our study unraveled abnormalities in m6A regulator expression in PCa progression, elucidating their association with PCa risk loci. Considering the heterogeneity within the PCa phenotypes and treatment responses, our findings suggest that prognostic stratification based on m6A regulator expression could enhance PCa diagnosis and prognosis. Full article
Show Figures

Graphical abstract

18 pages, 4337 KiB  
Article
Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss
by Menglong Feng, Xiaoqing Zhou, Yaqin Hu, Juhong Zhang, Ting Yang, Zhiji Chen and Wei Yuan
Biomolecules 2023, 13(10), 1537; https://doi.org/10.3390/biom13101537 - 18 Oct 2023
Cited by 2 | Viewed by 2279
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most common neurodegenerative disorders in elderly individuals and has a prevalence of approximately 70–80% among individuals aged 65 and older. As ARHL is an intricate and multifactorial disease, the exact pathogenesis [...] Read more.
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most common neurodegenerative disorders in elderly individuals and has a prevalence of approximately 70–80% among individuals aged 65 and older. As ARHL is an intricate and multifactorial disease, the exact pathogenesis of ARHL is not fully understood. There is evidence that transcriptional dysregulation mediated by epigenetic modifications is widespread in ARHL. However, the potential role of N6-methyladenosine (m6A) modification, as a crucial component of epigenetics, in ARHL progression remains unclear. In this study, we confirmed that the downregulation of m6A modification in cochlear tissues is related to ARHL and found that the expression of the m6A methylation regulators Wilms tumour suppressor-1-associated protein (WTAP), methyltransferase-like 3 (METTL3), ALKB homologous protein 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) is decreased significantly at the mRNA and protein levels in ARHL mice. Then, we used methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) to identify the differentially m6A-methylated genes in the cochlear tissues of ARHL mice. A total of 3438 genes with differential m6A methylation were identified, of which 1332 genes were m6A-hypermethylated and 2106 genes were m6A-hypomethylated in the ARHL group compared to the control group according to MeRIP-seq. Further joint analysis of RNA-Seq and MeRIP-Seq data showed that 262 genes had significant differences in both mRNA expression and m6A methylation. GO and KEGG analyses indicated that 262 unique genes were enriched mainly in the PI3K-AKT signalling pathway. In conclusion, the results of this study reveal differential m6A methylation patterns in the cochlear tissues of ARHL mice, providing a theoretical basis for further study of the pathogenesis of ARHL and potential therapeutic strategies. Full article
Show Figures

Figure 1

16 pages, 8792 KiB  
Article
An Association between Decreased Small Intestinal RNA Modification and Disturbed Glucagon-like Peptide-1 Secretion under High-Fat Diet Stress
by Jiang Chen, Lin-Ling Deng, Xing-Lin Xiao, Shi-Yuan Long, Yuan Deng, Tong Peng, Jie Xie and Xiao-Yu Zhang
Nutrients 2023, 15(17), 3707; https://doi.org/10.3390/nu15173707 - 24 Aug 2023
Cited by 4 | Viewed by 1939
Abstract
Unhealthy diets rich in fats and/or sugar are considered as the major external cause of the obesity epidemic, which is often accompanied by a significant decrease in gut hormone glucagon-like peptide-1 (GLP1) levels. Numerous studies have demonstrated notable contributions of the gut microbiota [...] Read more.
Unhealthy diets rich in fats and/or sugar are considered as the major external cause of the obesity epidemic, which is often accompanied by a significant decrease in gut hormone glucagon-like peptide-1 (GLP1) levels. Numerous studies have demonstrated notable contributions of the gut microbiota in this process. Nevertheless, the underlying mechanism still needs further investigation. The role of epigenetic modifications in gene expression and metabolism has been well demonstrated, with m6A methylation on RNAs being the most prevalent modification throughout their metabolism. In the present study, we found that the expressions of small intestinal Gcg and Pc3, two key genes regulating GLP1 expression, were significantly downregulated in obese mice, associated with reduced GLP1 level. Immunohistochemistry analysis indicated that a high-fat diet slightly increased the density of enteroendocrine L cells in the small intestine, implying that decreased GLP1 levels were not caused by the changes in L cell intensity. Instead, the small intestinal m6A level as well as the expression of known “writers”, mettl3/14 and wtap, were found to be positively correlated with the expression of Gcg and Pc3. Fecal microbiota transplantation with feces from normal and obese mice daily to antibiotic-treated mice revealed that dysbiosis in diet-induced obesity was sufficient to reduce serum GLP1, small intestinal m6A level, and intestinal expressions of Gcg, Pc3, and writer genes (mettl3/14, wtap). However, as the most direct and universal methyl donor, the production of fecal S-adenosylmethionine was neither affected by the different dietary patterns nor their shaped microbiota. These results suggested that microbial modulation of the epitranscriptome may be involved in regulating GLP1 expression, and highlighted epitranscriptomic modifications as an additional level of interaction between diet and individual health. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

13 pages, 2161 KiB  
Review
The Emerging, Multifaceted Role of WTAP in Cancer and Cancer Therapeutics
by Guomin Ju, Jiangchu Lei, Shuqi Cai, Siyuan Liu, Xinjia Yin and Chuanhui Peng
Cancers 2023, 15(11), 3053; https://doi.org/10.3390/cancers15113053 - 4 Jun 2023
Cited by 13 | Viewed by 3556
Abstract
Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact [...] Read more.
Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyltransferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation, cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP in cancer, and explore the prospects of its application in clinical diagnosis and therapy. Full article
Show Figures

Figure 1

18 pages, 3659 KiB  
Article
Hypericin Ameliorates Depression-like Behaviors via Neurotrophin Signaling Pathway Mediating m6A Epitranscriptome Modification
by Chunguang Lei, Ningning Li, Jianhua Chen and Qingzhong Wang
Molecules 2023, 28(9), 3859; https://doi.org/10.3390/molecules28093859 - 3 May 2023
Cited by 7 | Viewed by 3083
Abstract
Hypericin, one of the major antidepressant constituents of St. John’s wort, was shown to exert antidepressant effects by affecting cerebral CYP enzymes, serotonin homeostasis, and neuroinflammatory signaling pathways. However, its exact mechanisms are unknown. Previous clinical studies reported that the mRNA modification N6-methyladenosine [...] Read more.
Hypericin, one of the major antidepressant constituents of St. John’s wort, was shown to exert antidepressant effects by affecting cerebral CYP enzymes, serotonin homeostasis, and neuroinflammatory signaling pathways. However, its exact mechanisms are unknown. Previous clinical studies reported that the mRNA modification N6-methyladenosine (m6A) interferes with the neurobiological mechanism in depressed patients, and it was also found that the antidepressant efficacy of tricyclic antidepressants (TCAs) is related to m6A modifications. Therefore, we hypothesize that the antidepressant effect of hypericin may relate to the m6A modification of epitranscriptomic regulation. We constructed a UCMS mouse depression model and found that hypericin ameliorated depressive-like behavior in UCMS mice. Molecular pharmacology experiments showed that hypericin treatment upregulated the expression of m6A-modifying enzymes METTL3 and WTAP in the hippocampi of UCMS mice. Next, we performed MeRIP-seq and RNA-seq to study m6A modifications and changes in mRNA expression on a genome-wide scale. The genome-wide m6A assay and MeRIP-qPCR results revealed that the m6A modifications of Akt3, Ntrk2, Braf, and Kidins220 mRNA were significantly altered in the hippocampi of UCMS mice after stress stimulation and were reversed by hypericin treatment. Transcriptome assays and qPCR results showed that the Camk4 and Arhgdig genes might be related to the antidepressant efficacy of hypericin. Further gene enrichment results showed that the differential genes were mainly involved in neurotrophic factor signaling pathways. In conclusion, our results show that hypericin upregulates m6A methyltransferase METTL3 and WTAP in the hippocampi of UCMS mice and stabilizes m6A modifications to exert antidepressant effects via the neurotrophin signaling pathway. This suggests that METTL3 and WTAP-mediated changes in m6A modifications may be a potential mechanism for the pathogenesis of depression and the efficacy of antidepressants, and that the neurotrophin signaling pathway plays a key role in this process. Full article
(This article belongs to the Special Issue Novel Aspects of Molecular Targets for Antidepressant Drugs)
Show Figures

Figure 1

17 pages, 35143 KiB  
Article
Identification of Metabolism-Related Proteins as Biomarkers of Insulin Resistance and Potential Mechanisms of m6A Modification
by Yan-Ling Li, Long Li, Yu-Hong Liu, Li-Kun Hu and Yu-Xiang Yan
Nutrients 2023, 15(8), 1839; https://doi.org/10.3390/nu15081839 - 11 Apr 2023
Cited by 7 | Viewed by 3101
Abstract
Background: Insulin resistance (IR) is a major contributing factor to the pathogenesis of metabolic syndrome and type 2 diabetes mellitus (T2D). Adipocyte metabolism is known to play a crucial role in IR. Therefore, the aims of this study were to identify metabolism-related proteins [...] Read more.
Background: Insulin resistance (IR) is a major contributing factor to the pathogenesis of metabolic syndrome and type 2 diabetes mellitus (T2D). Adipocyte metabolism is known to play a crucial role in IR. Therefore, the aims of this study were to identify metabolism-related proteins that could be used as potential biomarkers of IR and to investigate the role of N6-methyladenosine (m6A) modification in the pathogenesis of this condition. Methods: RNA-seq data on human adipose tissue were retrieved from the Gene Expression Omnibus database. The differentially expressed genes of metabolism-related proteins (MP-DEGs) were screened using protein annotation databases. Biological function and pathway annotations of the MP-DEGs were performed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Key MP-DEGs were screened, and a protein–protein interaction (PPI) network was constructed using STRING, Cytoscape, MCODE, and CytoHubba. LASSO regression analysis was used to select primary hub genes, and their clinical performance was assessed using receiver operating characteristic (ROC) curves. The expression of key MP-DEGs and their relationship with m6A modification were further verified in adipose tissue samples collected from healthy individuals and patients with IR. Results: In total, 69 MP-DEGs were screened and annotated to be enriched in pathways related to hormone metabolism, low-density lipoprotein particle and carboxylic acid transmembrane transporter activity, insulin signaling, and AMPK signaling. The MP-DEG PPI network comprised 69 nodes and 72 edges, from which 10 hub genes (FASN, GCK, FGR, FBP1, GYS2, PNPLA3, MOGAT1, SLC27A2, PNPLA3, and ELOVL6) were identified. FASN was chosen as the key gene because it had the highest maximal clique centrality (MCC) score. GCK, FBP1, and FGR were selected as primary genes by LASSO analysis. According to the ROC curves, GCK, FBP1, FGR, and FASN could be used as potential biomarkers to detect IR with good sensitivity and accuracy (AUC = 0.80, 95% CI: 0.67–0.94; AUC = 0.86, 95% CI: 0.74–0.94; AUC = 0.83, 95% CI: 0.64–0.92; AUC = 0.78, 95% CI: 0.64–0.92). The expression of FASN, GCK, FBP1, and FGR was significantly correlated with that of IGF2BP3, FTO, EIF3A, WTAP, METTL16, and LRPPRC (p < 0.05). In validation clinical samples, the FASN was moderately effective for detecting IR (AUC = 0.78, 95% CI: 0.69–0.80), and its expression was positively correlated with the methylation levels of FASN (r = 0.359, p = 0.001). Conclusion: Metabolism-related proteins play critical roles in IR. Moreover, FASN and GCK are potential biomarkers of IR and may be involved in the development of T2D via their m6A modification. These findings offer reliable biomarkers for the early detection of T2D and promising therapeutic targets. Full article
(This article belongs to the Special Issue Fat Diets, Obesity and Type 2 Diabetes)
Show Figures

Figure 1

16 pages, 3069 KiB  
Article
Comprehensive Analysis Revealed the Potential Roles of N6-Methyladenosine (m6A) Mediating E. coli F18 Susceptibility in IPEC-J2 Cells
by Zhengchang Wu, Yifu Wang, Tong Li, Li Yang, Jian Jin, Shenglong Wu and Wenbin Bao
Int. J. Mol. Sci. 2022, 23(21), 13602; https://doi.org/10.3390/ijms232113602 - 6 Nov 2022
Cited by 1 | Viewed by 2516
Abstract
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. N6-methyladenosine (m6A) is a highly abundant epitranscriptomic marker that has been found to be involved in regulating the resistance of host [...] Read more.
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. N6-methyladenosine (m6A) is a highly abundant epitranscriptomic marker that has been found to be involved in regulating the resistance of host cells to pathogenic infection, but its potential role in E. coli F18-exposed intestinal porcine epithelial cells (IPEC-J2) remains undetermined. Here, we demonstrated that m6A and its regulators modulate E. coli F18 susceptibility. Briefly, we revealed that the Wilms’ tumor 1-associating protein (WTAP) expressions were markedly elevated in IPEC-J2 cells upon E. coli F18 exposure. WTAP are required for the regulation of E. coli F18 adhesion in IPEC-J2 cells. Additionally, WTAP knockdown significantly suppressed m6A level at N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase (GCNT2) 3′UTR, resulting in the enhancement of TH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated GCNT2 mRNA stability. Subsequently, the altered GCNT2 expressions could inhibit the glycosphingolipid biosynthesis, thus improving resistance to E. coli F18 infection in IPEC-J2. Collectively, our analyses highlighted the mechanism behind the m6A-mediated management of E. coli F18 susceptibility, which will aid in the development of novel approaches that protect against bacterial diarrhea in piglets. Full article
Show Figures

Figure 1

19 pages, 3595 KiB  
Article
Profiling Analysis of N6-Methyladenosine mRNA Methylation Reveals Differential m6A Patterns during the Embryonic Skeletal Muscle Development of Ducks
by Biao Chen, Shuibing Liu, Wentao Zhang, Ting Xiong, Mingfang Zhou, Xiaolong Hu, Huirong Mao and Sanfeng Liu
Animals 2022, 12(19), 2593; https://doi.org/10.3390/ani12192593 - 28 Sep 2022
Cited by 16 | Viewed by 2911
Abstract
N6-Methyladenosine is a reversible epigenetic modification that influences muscle development. However, the m6A modification profile during poultry skeletal muscle development is poorly understood. Here, we utilized m6A-specific methylated RNA immunoprecipitation sequencing to identify m6A sites during two stages of breast muscle development in [...] Read more.
N6-Methyladenosine is a reversible epigenetic modification that influences muscle development. However, the m6A modification profile during poultry skeletal muscle development is poorly understood. Here, we utilized m6A-specific methylated RNA immunoprecipitation sequencing to identify m6A sites during two stages of breast muscle development in ducks: embryonic days 13 (E13) and E19. MeRIP-seq detected 19,024 and 18,081 m6A peaks in the E13 and E19 groups, respectively. Similarly to m6A distribution in mammalian transcripts, our results revealed GGACU as the main m6A motif in duck breast muscle; they also revealed that m6A peaks are mainly enriched near the stop codons. In addition, motif sequence analysis and gene expression analysis demonstrated that m6A modification in duck embryo skeletal muscles may be mediated by the methyltransferase-like 14. GO and KEGG analysis showed that m6A peaks containing genes at E19 were mainly enriched in muscle-differentiation- and muscle-growth-related pathways, whereas m6A peaks containing genes in E13 were mainly enriched in embryonic development and cell proliferation pathways. Combined analysis of MeRIP-seq and RNA-seq showed that the mRNA expression may be affected by m6A modification. Moreover, qRT-PCR analysis of the expression of METTL14 and its cofactors (WTAP, ZC3H13, RBM15 and VIRMA) during duck embryonic skeletal muscle development in breast and leg muscle samples revealed a significant downward trend as the developmental age progressed. Our results demonstrated that m6A mRNA methylation modifications control muscle development in ducks. This is the first study of m6A modification patterns in duck muscle tissue development, and it lays the foundation for the study of the effects of RNA modification on poultry skeletal muscle development. Full article
(This article belongs to the Special Issue RNA-Sequencing Technique in Animals Research)
Show Figures

Figure 1

26 pages, 2098 KiB  
Review
Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential
by Yongfei Fan, Xinwei Li, Huihui Sun, Zhaojia Gao, Zheng Zhu and Kai Yuan
Biomolecules 2022, 12(9), 1224; https://doi.org/10.3390/biom12091224 - 2 Sep 2022
Cited by 34 | Viewed by 4959
Abstract
Wilms’ tumor 1-associating protein (WTAP) is required for N6-methyladenosine (m6A) RNA methylation modifications, which regulate biological processes such as RNA splicing, cell proliferation, cell cycle, and embryonic development. m6A is the predominant form of mRNA modification in [...] Read more.
Wilms’ tumor 1-associating protein (WTAP) is required for N6-methyladenosine (m6A) RNA methylation modifications, which regulate biological processes such as RNA splicing, cell proliferation, cell cycle, and embryonic development. m6A is the predominant form of mRNA modification in eukaryotes. WTAP exerts m6A modification by binding to methyltransferase-like 3 (METTL3) in the nucleus to form the METTL3-methyltransferase-like 14 (METTL14)-WTAP (MMW) complex, a core component of the methyltransferase complex (MTC), and localizing to the nuclear patches. Studies have demonstrated that WTAP plays a critical role in various cancers, both dependent and independent of its role in m6A modification of methyltransferases. Here, we describe the recent findings on the structural features of WTAP, the mechanisms by which WTAP regulates the biological functions, and the molecular mechanisms of its functions in various cancers. By summarizing the latest WTAP research, we expect to provide new directions and insights for oncology research and discover new targets for cancer treatment. Full article
(This article belongs to the Special Issue Advances in DNA Methylation)
Show Figures

Graphical abstract

16 pages, 3697 KiB  
Article
Dynamic Alteration Profile and New Role of RNA m6A Methylation in Replicative and H2O2-Induced Premature Senescence of Human Embryonic Lung Fibroblasts
by Fan Wu, Luyun Zhang, Caiyun Lai, Xinyue Peng, Susu Yu, Cheng Zhou, Bo Zhang and Wenjuan Zhang
Int. J. Mol. Sci. 2022, 23(16), 9271; https://doi.org/10.3390/ijms23169271 - 17 Aug 2022
Cited by 16 | Viewed by 3749
Abstract
N6-methyladenosine (m6A) methylation is one of the most common RNA modifications, regulating RNA fate at the posttranscriptional level, and is closely related to cellular senescence. Both models of replicative and premature senescence induced by hydrogen peroxide (H2O2) were used [...] Read more.
N6-methyladenosine (m6A) methylation is one of the most common RNA modifications, regulating RNA fate at the posttranscriptional level, and is closely related to cellular senescence. Both models of replicative and premature senescence induced by hydrogen peroxide (H2O2) were used to detect m6A regulation during the senescence of human embryonic lung fibroblasts (HEFs). The ROS level accumulated gradually with senescence, leading to normal replicative senescence. H2O2-treated cells had dramatically increased ROS level, inducing the onset of acute premature senescence. Compared with replicative senescence, ROS changed the expression profiles for m6A-related enzymes and binding proteins, including higher levels of METTL3, METTL14, WTAP, KIAA1429, and FTO, and lower levels of METTL16, ALKBH5, YTHDC1, and YTHDF1/2/3 in the premature senescence persistence group, respectively. Meanwhile, senescent cells decreased total m6A content and RNA methylation enzymes activity, regardless of replicative or premature senescence. Moreover, specific m6A methylation levels regulated the expression of SIRT3, IRS2, and E2F3 between replicative and premature senescence separately. Taken together, differential m6A epitranscription microenvironment and the targeted genes can be used as epigenetic biomarkers to cell senescence and the related diseases, offering new clues for the prevention and intervention of cellular senescence. Full article
(This article belongs to the Special Issue Recent Advances in Epigenetics)
Show Figures

Figure 1

11 pages, 7531 KiB  
Communication
Comprehensive Analysis of N6-Methyladenosine (m6A) Writers, Erasers, and Readers in Cervical Cancer
by Mateja Condic, Damian J. Ralser, Niklas Klümper, Jörg Ellinger, Maryam Qureischi, Eva K. Egger, Glen Kristiansen, Alexander Mustea and Thore Thiesler
Int. J. Mol. Sci. 2022, 23(13), 7165; https://doi.org/10.3390/ijms23137165 - 28 Jun 2022
Cited by 19 | Viewed by 3611
Abstract
There is growing scientific evidence for the crucial role of post-transcriptional RNA modifications in carcinogenesis, progression, metastasis, and drug resistance across various cancer entities. N6-methyladenosine (m6A) is the most abundant type of RNA modification. m6A is coordinated by a dynamic interplay of ‘writers’ [...] Read more.
There is growing scientific evidence for the crucial role of post-transcriptional RNA modifications in carcinogenesis, progression, metastasis, and drug resistance across various cancer entities. N6-methyladenosine (m6A) is the most abundant type of RNA modification. m6A is coordinated by a dynamic interplay of ‘writers’ (METTL3, METTL4, METTL14, WTAP, KIAA1429), ‘erasers’ (FTO, ALKBH5), and ‘readers’ (HNRNPA2B1, HNRNPC, YTHDC1, YTHDC1, YTHDF1-3). In this study, we comprehensively examined protein and mRNA expression levels of m6A writers, readers, and erasers in two cervical cancer (CC) cohorts (UHB CC cohort, N = 118; TCGA CC cohort, N = 307) with regard to clinical outcomes. In the UHB CC cohort, high protein expression levels of METTL14 (p = 0.016), WTAP (p = 0.007), KIAA1439 (p < 0.001), ALKBH5 (p < 0.001), HNRNPC (p = 0.012), YTHDC1 (p < 0.001), and YTHDF3 (p = 0.004) were significantly associated with a shorter overall survival (OS). In the TCGA CC cohort, mRNA expression levels of METTL14 (p = 0.012), WTAP (p = 0.041), KIAA1429 (p = 0.016), and YTHDC1 (p = 0.026) showed prognostic values. However, after correction for multiple testing, statistical significance remained only for m6A protein expression levels (q < 0.1). Our study points towards dysregulated m6A modification in CC. Hence, m6A might serve as a promising prognostic biomarker and therapeutical target in CC. Full article
(This article belongs to the Special Issue Altered RNA Processing in Tumor Pathogenesis and Therapy)
Show Figures

Figure 1

Back to TopTop