Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (487)

Search Parameters:
Keywords = Web-GIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4703 KB  
Article
A Web-Based National-Scale Coastal Tidal Flat Extraction System Using Multi-Algorithm Integration on AI Earth Platform
by Shiqi Shen, Qianqian Su, Hui Lei, Zhifeng Yu, Pengyu Cheng, Wenxuan Gu and Bin Zhou
Remote Sens. 2025, 17(16), 2911; https://doi.org/10.3390/rs17162911 - 21 Aug 2025
Viewed by 233
Abstract
As coastal tidal flats—ecosystems of high ecological significance and socio-economic value—face accelerating degradation driven by climate change and intensified anthropogenic disturbances, there is an urgent need for efficient, automated, and scalable monitoring solutions. Traditional monitoring approaches are constrained by high implementation costs and [...] Read more.
As coastal tidal flats—ecosystems of high ecological significance and socio-economic value—face accelerating degradation driven by climate change and intensified anthropogenic disturbances, there is an urgent need for efficient, automated, and scalable monitoring solutions. Traditional monitoring approaches are constrained by high implementation costs and limited spatial coverage, whereas remote sensing—particularly multispectral satellite imagery such as Sentinel-2—has emerged as a primary and widely adopted tool for large-scale environmental observation. Building upon recent advancements in cloud computing and WebGIS technologies, this study presents a web-based, interactive tidal flat extraction system implemented on Alibaba’s AI Earth platform. The system integrates multiple water indices (NDWI, mNDWI, and IWI) with a machine learning algorithm (Random Forest), and is deployed through a user-friendly interface developed using Vue.js and Leaflet, enabling flexible parameter configuration and real-time visualization of extraction results. Its front-end/back-end decoupled architecture enables non-programming users to conduct large-scale tidal flat mapping, thereby substantially lowering the technical barriers to coastal tidal flat monitoring and management in China. Full article
Show Figures

Figure 1

39 pages, 35445 KB  
Article
A GIS-Based Common Data Environment for Integrated Preventive Conservation of Built Heritage Systems
by Francisco M. Hidalgo-Sánchez, Ignacio Ruiz-Moreno, Jacinto Canivell, Cristina Soriano-Cuesta and Martin Kada
Buildings 2025, 15(16), 2962; https://doi.org/10.3390/buildings15162962 - 21 Aug 2025
Viewed by 272
Abstract
Preventive conservation (PC) of built heritage has proved to be one of the most efficient and sustainable approaches to ensure its long-term preservation. Nevertheless, the management of all the areas involved in a PC project is complex, often resulting in poor interaction between [...] Read more.
Preventive conservation (PC) of built heritage has proved to be one of the most efficient and sustainable approaches to ensure its long-term preservation. Nevertheless, the management of all the areas involved in a PC project is complex, often resulting in poor interaction between them. This research proposes a GIS-based methodology for integrating data from different PC areas into a centralised digital model, establishing a Common Data Environment (CDE) to optimise PC strategies for heritage systems in complex contexts. Applying this method to the pavilions of the 1929 Ibero-American Exhibition in Seville (Spain), the study addresses five key PC areas: active follow-up, damage detection and assessment, risk analysis, maintenance, and dissemination and valorisation. The approach involved designing a robust relational database structure—using PostgreSQL—tailored for heritage management, defining several data standardisation criteria, and testing semi-automated procedures for generating multi-scale 2D and 3D GIS (LOD2 and LOD4) entities using remote sensing data sources. The proposed spatial database has been designed to function seamlessly with major GIS platforms (QGIS and ArcGIS Pro), demonstrating successful integration and interoperability for data management, analysis, and decision-making. Geographic web services derived from the database content were created and uploaded to a WebGIS platform. While limitations exist, this research demonstrates that simplified GIS models are sufficient for managing PC data across various working scales, offering a resource-efficient alternative compared to more demanding existing methods. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 2715 KB  
Systematic Review
Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review
by Ziyue Wang, Md Ali Akber and Ammar Abdul Aziz
Remote Sens. 2025, 17(16), 2827; https://doi.org/10.3390/rs17162827 - 14 Aug 2025
Viewed by 351
Abstract
Chili (Capsicum sp.) is a high-value crop cultivated by farmers, but its production is vulnerable to weather extremes (such as irregular rainfall, high temperatures, and storms), pest and disease outbreaks, and spatially fragmented cultivation, resulting in unstable yields and income. Remote sensing [...] Read more.
Chili (Capsicum sp.) is a high-value crop cultivated by farmers, but its production is vulnerable to weather extremes (such as irregular rainfall, high temperatures, and storms), pest and disease outbreaks, and spatially fragmented cultivation, resulting in unstable yields and income. Remote sensing (RS) and geographic information systems (GIS) offer promising tools for the timely, spatially explicit monitoring of chili crops. Despite growing interest in agricultural applications of these technologies, no systematic review has yet synthesized how RS and GIS have been used in chili production. This systematic review addresses this gap by evaluating existing literature on methodological approaches and thematic trends in the use of RS and GIS in chili crop monitoring and management. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines a comprehensive literature search was conducted using predefined keywords across Scopus, Web of Science, and Google Scholar. Sixty-five peer-reviewed articles published through January 2025 were identified and grouped into different thematic areas: crop mapping, biotic stress, abiotic stress, land suitability, crop health, soil and fertilizer management, and others. The findings indicate RS predominantly serves as the primary analytical method (82% of studies), while GIS primarily supports spatial integration and visualization. Key research gaps identified include limitations in spatial resolution, insufficient integration of intelligent predictive models, and limited scalability for smallholder farming contexts. The review highlights the need for future research incorporating high-resolution RS data, advanced modelling techniques, and spatial decision-support frameworks. These insights aim to guide researchers, agronomists, and policymakers toward enhanced precision monitoring and digital innovation in chili crop production. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

24 pages, 14222 KB  
Article
Integrated Assessment of Groundwater Quality Using Water Quality Indices, Geospatial Analysis, and Neural Networks in a Rural Hungarian Settlement
by Dániel Balla, Levente Tari, András Hajdu, Emőke Kiss, Marianna Zichar and Tamás Mester
Water 2025, 17(16), 2371; https://doi.org/10.3390/w17162371 - 10 Aug 2025
Viewed by 530
Abstract
In the present study, the changes in the groundwater quality in a Hungarian settlement, Báránd, were examined, nine years after the construction of a sewerage network. The sewerage network in the study area was completed in 2014, with a household connection rate exceeding [...] Read more.
In the present study, the changes in the groundwater quality in a Hungarian settlement, Báránd, were examined, nine years after the construction of a sewerage network. The sewerage network in the study area was completed in 2014, with a household connection rate exceeding 97% in 2023. In the summer of 2023, water samples were taken from 37 dug groundwater wells. Changes in the water quality were assessed using three water quality indicators (the Water Quality Index (WQI), Contamination degree (Cd), and Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI)) and geographic information (GIS), data visualization systems, and artificial intelligence (AI). During the evaluation of the quality of the groundwater, eight water chemical parameters were used (pH, EC, NH4+, NO2, NO3, PO43−, COD, Na+). Based on interpolated maps and water quality indices, it was established that while an increasing portion of the area exhibits adequate or good water quality compared to the pre-sewerage period, a deterioration has occurred relative to recent years. Even nine years after the sewerage network construction, elevated concentrations of inorganic nitrogen forms and organic matter persist, indicating the continued presence of accumulated pollutants, as confirmed by all three water quality indicators to varying degrees and spatial patterns. The interactive data visualization and cloud-based sharing of the data of the water quality geodatabase were made freely available with the help of Tableau Public. A Feed-Forward Neural Network (FFNN) was developed to predict the groundwater quality, estimating the water quality statuses of three water quality indicators based on water chemistry parameters. The results showed that the applied training algorithms and activation functions proved to be the most effective in the case of different network structures. The most accurate prediction of the WQI and CCME WQI indicators was provided by the Bayesian control algorithm (trainbr), which achieved the lowest mean-squared error (RMSEWQI = 0.1205, RMSECCME WQI = 0.1305) and the highest determination coefficient (R2WQI = 0.9916, R2CCME WQI = 0.9838). For the Cd index, the accuracy of the model was lower (RMSE = 0.1621, R2 = 0.9714), suggesting that this indicator is more difficult to predict. With regard to our study, it should be emphasized that data visualization is a particularly practical tool for the post-processing of spatial monitoring data, as it is suitable for displaying information in an intuitive, visual form, for discovering spatial patterns and relationships, and for performing real-time analyses. AI is expected to further increase visualization efficiency in the future, enabling the rapid processing of large amounts of data and spatial databases, as well as the identification of complex patterns. Full article
(This article belongs to the Special Issue Urban Water Pollution Control: Theory and Technology)
Show Figures

Figure 1

20 pages, 10490 KB  
Article
A Web-Based Distribution Network Geographic Information System with Protective Coordination Functionality
by Jheng-Lun Jiang, Tung-Sheng Zhan and Ming-Tang Tsai
Energies 2025, 18(15), 4127; https://doi.org/10.3390/en18154127 - 4 Aug 2025
Viewed by 361
Abstract
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates [...] Read more.
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates distribution system feeder GIS monitoring with the system model file layout, fault current analysis, and coordination simulation functions. The system can provide scalable and accessible solutions for power utilities, ensuring that protective devices operate in a coordinated manner to minimize outage impacts and improve service restoration times. The proposed GIS platform has demonstrated significant improvements in fault management and relay coordination through extensive simulation and field testing. This research advances the capabilities of distribution network management and sets a foundation for future enhancements in smart grid technology. Full article
Show Figures

Figure 1

13 pages, 2517 KB  
Article
A Framework for the Dynamic Mapping of Precipitations Using Open-Source 3D WebGIS Technology
by Marcello La Guardia, Antonio Angrisano and Giuseppe Mussumeci
Geographies 2025, 5(3), 40; https://doi.org/10.3390/geographies5030040 - 4 Aug 2025
Viewed by 379
Abstract
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts [...] Read more.
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts to focus their interest on the study of geotechnical assets in relation to these dangerous weather events. At the same time, geospatial representation in 3D WebGIS based on open-source solutions led specialists to employ this kind of technology to remotely analyze and monitor territorial events considering different sources of information. This study considers the construction of a 3D WebGIS framework for the real-time management of geospatial information developed with open-source technologies applied to the dynamic mapping of precipitation in the metropolitan area of Palermo (Italy) based on real-time weather station acquisitions. The structure considered is a WebGIS platform developed with Cesium.js JavaScript libraries, the Postgres database, Geoserver and Mapserver geospatial servers, and the Anaconda Python platform for activating real-time data connections using Python scripts. This framework represents a basic geospatial digital twin structure useful to municipalities, civil protection services, and firefighters for land management and for activating any preventive operations to ensure territorial safety. Furthermore, the open-source nature of the platform favors the free diffusion of this solution, avoiding expensive applications based on property software. The components of the framework are available and shared using GitHub. Full article
Show Figures

Figure 1

20 pages, 14619 KB  
Article
A Cognition–Affect–Behavior Framework for Assessing Street Space Quality in Historic Cultural Districts and Its Impact on Tourist Experience
by Dongsheng Huang, Weitao Gong, Xinyang Wang, Siyuan Liu, Jiaxin Zhang and Yunqin Li
Buildings 2025, 15(15), 2739; https://doi.org/10.3390/buildings15152739 - 3 Aug 2025
Viewed by 604
Abstract
Existing research predominantly focuses on the preservation or renewal models of the physical forms of historic cultural districts, with limited exploration of their roles in stimulating tourists’ cognitive, affective resonance, and behavioral interactions. This study addresses historic cultural districts by evaluating the space [...] Read more.
Existing research predominantly focuses on the preservation or renewal models of the physical forms of historic cultural districts, with limited exploration of their roles in stimulating tourists’ cognitive, affective resonance, and behavioral interactions. This study addresses historic cultural districts by evaluating the space quality and its impact on tourist experiences through the “cognition-affect-behavior” framework, integrating GIS, street view semantic segmentation, VR eye-tracking, and web crawling technologies. The findings reveal significant multidimensional differences in how space quality influences tourist experiences: the impact intensities of functional diversity, sky visibility, road network accessibility, green visibility, interface openness, and public facility convenience decrease sequentially, with path coefficients of 0.261, 0.206, 0.205, 0.204, 0.201, and 0.155, respectively. Additionally, space quality exerts an indirect effect on tourist experiences through the mediating roles of cognitive, affective, and behavioral dimensions, with a path coefficient of 0.143. This research provides theoretical support and practical insights for empowering cultural heritage space governance with digital technologies in the context of cultural and tourism integration. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 2368 KB  
Article
Exploring Patient-Centered Perspectives on Suicidal Ideation: A Mixed-Methods Investigation in Gastrointestinal Cancer Care
by Avishek Choudhury, Yeganeh Shahsavar, Imtiaz Ahmed, M. Abdullah Al-Mamun and Safa Elkefi
Cancers 2025, 17(15), 2460; https://doi.org/10.3390/cancers17152460 - 25 Jul 2025
Viewed by 448
Abstract
Background: Gastrointestinal (GI) cancer patients face a four-fold higher suicide risk than the general US population. This study explores psychosocial aspects of GI cancer patient experiences, assessing suicidal ideation and behavior, mental distress during treatment phases, and psychosocial factors on mental health. Methods: [...] Read more.
Background: Gastrointestinal (GI) cancer patients face a four-fold higher suicide risk than the general US population. This study explores psychosocial aspects of GI cancer patient experiences, assessing suicidal ideation and behavior, mental distress during treatment phases, and psychosocial factors on mental health. Methods: A two-phase mixed-methods approach involved a web-based survey and follow-up interviews. Quantitative data analysis validated mental health and suicidal ideation constructs, and correlation analyses were performed. The patient journey was charted from diagnosis to treatment. Results: Two hundred and two individuals participated, with 76 from the rural Appalachian region and 78 undergoing treatments. Quantitative analysis showed a higher prevalence of passive suicidal ideation than active planning. The post-treatment recovery period was the most emotionally challenging. Qualitative data emphasized emotional support and vulnerability to isolation. Care quality concerns included individualized treatment plans and better communication. Patients also needed clear, comprehensive information about treatment and side effects. The in-depth interview with four GI cancer patients revealed a healthcare system prioritizing expedient treatment over comprehensive care, lacking formal psychological support. AI emerged as a promising avenue for enhancing patient understanding and treatment options. Conclusions: Our research advocates for a patient-centric model of care, enhanced by technology and empathetic communication. Full article
Show Figures

Figure 1

40 pages, 16352 KB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 1006
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

23 pages, 2062 KB  
Review
A Systematic Review of the Bibliometrics and Methodological Research Used on Studies Focused on School Neighborhood Built Environment and the Physical Health of Children and Adolescents
by Iris Díaz-Carrasco, Sergio Campos-Sánchez, Ana Queralt and Palma Chillón
Children 2025, 12(7), 943; https://doi.org/10.3390/children12070943 - 17 Jul 2025
Viewed by 591
Abstract
Objectives: The aim of this systematic review is to analyze the research journals, sample characteristics and research methodology used in the studies about school neighborhood built environment (SNBE) and the physical health of children and adolescents. Methods: Using 124 key terms [...] Read more.
Objectives: The aim of this systematic review is to analyze the research journals, sample characteristics and research methodology used in the studies about school neighborhood built environment (SNBE) and the physical health of children and adolescents. Methods: Using 124 key terms across four databases (Web of Science, PubMed, Sportdiscus and Transportation Research Board), 8837 studies were identified, and 55 were selected. The research question and evidence search were guided by the “Population, Intervention, Comparison, Outcomes” (PICO) framework. Results: Most studies were published in health-related research journals (67.3%) and conducted in 16 countries, primarily urban contexts (44.4%). Cross-sectional designs dominated (89.1%), with participation ranging from a minimum of 7 schools and 94 students to a maximum of 6362 schools and 979,119 students. Street network distances are often defined by 1000 or 800 m. The SNBE variables (135 total) were often measured via GIS (67.2%). In contrast, 70.6% of the 45 physical health measures relied on self-reports. Conclusions: This systematic review highlights the diverse approaches, gaps, and common patterns in studying the association between the SNBE and the physical health of children and adolescents. Therefore, this manuscript may serve as a valuable resource to examine the current landscape of knowledge and to guide future research on this topic. Full article
Show Figures

Figure 1

33 pages, 39261 KB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 586
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

23 pages, 2709 KB  
Review
Digital Technologies in Urban Regeneration: A Systematic Literature Review from the Perspectives of Stakeholders, Scales, and Stages
by Xiaer Xiahou, Xingyuan Ding, Peng Chen, Yuchong Qian and Hongyu Jin
Buildings 2025, 15(14), 2455; https://doi.org/10.3390/buildings15142455 - 12 Jul 2025
Viewed by 652
Abstract
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and [...] Read more.
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and big data, these technologies have extensively penetrated various dimensions of urban regeneration, from planning and design to implementation and post-operation management, providing new possibilities for improving urban regeneration efficiency and quality. However, the existing literature lacks a systematic evaluation of technology application patterns across different project scales and phases, comprehensive analysis of stakeholder–technology interactions, and quantitative assessment of technology distribution throughout the urban regeneration lifecycle. This research gap limits the in-depth understanding of how digital technologies can better support urban regeneration practices. This study aims to identify and quantify digital technology application patterns across urban regeneration stages, scales, and stakeholder configurations through systematic analysis of 56 high-quality articles from the Scopus and Web of Science databases. Using a mixed-methods approach combining a systematic literature review, bibliometric analysis, and meta-analysis, we categorized seven major digital technology types and analyzed their distribution patterns. Key findings reveal distinct temporal patterns: GIS and BIM/CIM technologies dominate in the pre-urban regeneration (Pre-UR) stage (10% and 12% application proportions, respectively). GIS applications increase significantly to 14% in post-urban regeneration (Post-UR) stage, while AI technology remains underutilized across all phases (2% in Pre-UR, decreasing to 1% in Post-UR). Meta-analysis reveals scale-dependent technology adoption patterns, with different technologies showing varying effectiveness at building-level, district-level, and city-level implementations. Research challenges include stakeholder digital divides, scale-dependent adoption barriers, and phase-specific implementation gaps. This study constructs a multi-dimensional analytical framework for digital technology support in urban regeneration, providing quantitative evidence for optimizing technology selection strategies. The framework offers practical guidance for policymakers and practitioners in developing context-appropriate digital technology deployment strategies for urban regeneration projects. Full article
Show Figures

Figure 1

24 pages, 2148 KB  
Review
Living Landmarks: A Review of Monumental Trees and Their Role in Ecosystems
by Ruben Budău, Claudia Simona Cleopatra Timofte, Ligia Valentina Mirisan, Mariana Bei, Lucian Dinca, Gabriel Murariu and Karoly Alexandru Racz
Plants 2025, 14(13), 2075; https://doi.org/10.3390/plants14132075 - 7 Jul 2025
Viewed by 758
Abstract
Monumental trees, defined by their exceptional size, form, and age, are critical components of both cultural heritage and ecological systems. However, their conservation faces increasing threats from habitat fragmentation, climate change, and inadequate public policies. This review synthesized global research on monumental trees [...] Read more.
Monumental trees, defined by their exceptional size, form, and age, are critical components of both cultural heritage and ecological systems. However, their conservation faces increasing threats from habitat fragmentation, climate change, and inadequate public policies. This review synthesized global research on monumental trees by analyzing 204 peer-reviewed articles published between 1989 and 2024 that were sourced from Web of Science and Scopus. Our bibliometric analysis highlighted Olea europaea and Castanea sativa as the most frequently studied species and identified a surge in publications after 2019, particularly from the USA, Italy, and Spain. Key research themes included conservation, biodiversity, and ecosystem services. The methodological approaches varied globally, encompassing ranking systems; GIS mapping; remote sensing; and non-invasive diagnostic tools, such as acoustic tomography and chlorophyll fluorescence. Conservation strategies discussed included vegetative propagation, cryopreservation, and legal risk management. Despite advances in these techniques, significant gaps remain in effectively addressing environmental pressures and integrating multidisciplinary approaches. We concluded that targeted, interdisciplinary strategies are essential to safeguard monumental trees as vital ecological and cultural landmarks. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

29 pages, 10029 KB  
Review
The Evolution of the Interaction Between Urban Rail Transit and Land Use: A CiteSpace-Based Knowledge Mapping Approach
by Haochen Yang, Nana Cui and Haishan Xia
Land 2025, 14(7), 1386; https://doi.org/10.3390/land14071386 - 1 Jul 2025
Viewed by 1149
Abstract
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into [...] Read more.
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into global trends. This study comprehensively employs CiteSpace, VOSviewer, and Scimago Graphica to conduct bibliometric and knowledge map analysis on 1894 articles from the Web of Science database between 2004 and 2024, focusing on global research trends, collaboration networks, thematic evolution, and methodological advancements. Key findings include the following: (1) research on rail transit and land use has been steadily increasing, with a significant “US-China dual-core” distribution, where most studies are concentrated in the United States and China, with higher research density in Asia; (2) domestic and international research has primarily focused on themes such as the built environment, value capture, and public transportation, with a recent shift toward artificial intelligence and smart city technology applications; (3) research methods have evolved from foundational 3S technologies (GIS, GPS, RS) to spatial modeling tools (e.g., LUTI model, node-place model), and the current emergence of AI-driven analysis (e.g., machine learning, deep learning, digital twins). The study identifies three future research directions—technology integration, data governance, and institutional innovation—which provide guidance for the coordinated planning of transportation and land use in future smart city development. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

14 pages, 9483 KB  
Article
Optimizing an Urban Water Infrastructure Through a Smart Water Network Management System
by Evangelos Ntousakis, Konstantinos Loukakis, Evgenia Petrou, Dimitris Ipsakis and Spiros Papaefthimiou
Electronics 2025, 14(12), 2455; https://doi.org/10.3390/electronics14122455 - 17 Jun 2025
Viewed by 708
Abstract
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, [...] Read more.
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, cracking, and losses. Taking this into account, non-revenue water (i.e., water that is distributed to homes and facilities but not returning revenues) is estimated at almost 50%. To this end, intelligent water management via computational advanced tools is required in order to optimize water usage, to mitigate losses, and, more importantly, to ensure sustainability. To address this issue, a case study was developed in this paper, following a step-by-step methodology for the city of Heraklion, Greece, in order to introduce an intelligent water management system that integrates advanced technologies into the aging water distribution infrastructure. The first step involved the digitalization of the network’s spatial data using geographic information systems (GIS), aiming at enhancing the accuracy and accessibility of water asset mapping. This methodology allowed for the creation of a framework that formed a “digital twin”, facilitating real-time analysis and effective water management. Digital twins were developed upon real-time data, validated models, or a combination of the above in order to accurately capture, simulate, and predict the operation of the real system/process, such as water distribution networks. The next step involved the incorporation of a hydraulic simulation and modeling tool that was able to analyze and calculate accurate water flow parameters (e.g., velocity, flowrate), pressure distributions, and potential inefficiencies within the network (e.g., loss of mass balance in/out of the district metered areas). This combination provided a comprehensive overview of the water system’s functionality, fostering decision-making and operational adjustments. Lastly, automatic meter reading (AMR) devices could then provide real-time data on water consumption and pressure throughout the network. These smart water meters enabled continuous monitoring and recording of anomaly detections and allowed for enhanced control over water distribution. All of the above were implemented and depicted in a web-based environment that allows users to detect water meters, check water consumption within specific time-periods, and perform real-time simulations of the implemented water network. Full article
Show Figures

Figure 1

Back to TopTop