Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = Wi-Fi indoor positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1297 KiB  
Article
Multi-Granularity and Multi-Modal Feature Fusion for Indoor Positioning
by Lijuan Ye, Yi Wang, Shenglei Pei, Yu Wang, Hong Zhao and Shi Dong
Symmetry 2025, 17(4), 597; https://doi.org/10.3390/sym17040597 - 15 Apr 2025
Viewed by 174
Abstract
Despite the widespread adoption of indoor positioning technology, the existing solutions still face significant challenges. On one hand, Wi-Fi-based positioning struggles to balance accuracy and efficiency in complex indoor environments and architectural layouts formed by pre-existing access points (APs). On the other hand, [...] Read more.
Despite the widespread adoption of indoor positioning technology, the existing solutions still face significant challenges. On one hand, Wi-Fi-based positioning struggles to balance accuracy and efficiency in complex indoor environments and architectural layouts formed by pre-existing access points (APs). On the other hand, vision-based methods, while offering high-precision potential, are hindered by prohibitive costs associated with binocular camera systems required for depth image acquisition, limiting their large-scale deployment. Additionally, channel state information (CSI), containing multi-subcarrier data, maintains amplitude symmetry in ideal free-space conditions but becomes susceptible to periodic positioning errors in real environments due to multipath interference. Meanwhile, image-based positioning often suffers from spatial ambiguity in texture-repeated areas. To address these challenges, we propose a novel hybrid indoor positioning method that integrates multi-granularity and multi-modal features. By fusing CSI data with visual information, the system leverages spatial consistency constraints from images to mitigate CSI error fluctuations while utilizing CSI’s global stability to correct local ambiguities in image-based positioning. In the initial coarse-grained positioning phase, a neural network model is trained using image data to roughly localize indoor scenes. This model adeptly captures the geometric relationships within images, providing a foundation for more precise localization in subsequent stages. In the fine-grained positioning stage, CSI features from Wi-Fi signals and Scale-Invariant Feature Transform (SIFT) features from image data are fused, creating a rich feature fusion fingerprint library that enables high-precision positioning. The experimental results show that our proposed method synergistically combines the strengths of Wi-Fi fingerprints and visual positioning, resulting in a substantial enhancement in positioning accuracy. Specifically, our approach achieves an accuracy of 0.4 m for 45% of positioning points and 0.8 m for 67% of points. Overall, this approach charts a promising path forward for advancing indoor positioning technology. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

15 pages, 10968 KiB  
Article
An Experimental Evaluation of Indoor Localization in Autonomous Mobile Robots
by Mina Khoshrangbaf, Vahid Khalilpour Akram, Moharram Challenger and Orhan Dagdeviren
Sensors 2025, 25(7), 2209; https://doi.org/10.3390/s25072209 - 31 Mar 2025
Viewed by 330
Abstract
High-precision indoor localization and tracking are essential requirements for the safe navigation and task execution of autonomous mobile robots. Despite the growing importance of mobile robots in various areas, achieving precise indoor localization remains challenging due to signal interference, multipath propagation, and complex [...] Read more.
High-precision indoor localization and tracking are essential requirements for the safe navigation and task execution of autonomous mobile robots. Despite the growing importance of mobile robots in various areas, achieving precise indoor localization remains challenging due to signal interference, multipath propagation, and complex indoor layouts. In this work, we present the first comprehensive study comparing the accuracy of Bluetooth low energy (BLE), WiFi, and ultra wideband (UWB) technologies for the indoor localization of mobile robots under various circumstances. In the performed experiments, the error margin of the WiFi-based systems reached 608.7 cm, which is not tolerable for most applications. As a commonly used technology in the existing tracking systems, the accuracy of BLE-based systems is at least 44.12% better than that of WiFi-based systems. The error margin of the BLE-based system in tracking static and mobile robots was 191.7 cm and 340.1 cm, respectively. The experiments showed that even with a limited number of UWB anchors, the system provides acceptable accuracy for tracking the mobile robots. Using only four UWB beacons in an environment of about 431 m2 area, the maximum error margin of detected positions by the UWB-based tracking system remained below 13.1 cm and 28.9 cm on average for the static and mobile robots, respectively. This error margin is 88.05% lower than that of the BLE-based system and 93.27% lower than that of the WiFi-based system on average. The high tracking precision, the need for a lower number of anchors, and the decreasing hardware costs point out that UWB will be the dominating technology in indoor tracking systems in the near future. Full article
(This article belongs to the Special Issue Multi‐sensors for Indoor Localization and Tracking: 2nd Edition)
Show Figures

Figure 1

9 pages, 2383 KiB  
Proceeding Paper
WiFi–Round-Trip Timing (WiFi–RTT) Simultaneous Localisation and Mapping: Pedestrian Navigation in Unmapped Environments Using WiFi–RTT and Smartphone Inertial Sensors
by Khalil J. Raja and Paul D. Groves
Eng. Proc. 2025, 88(1), 16; https://doi.org/10.3390/engproc2025088016 - 24 Mar 2025
Viewed by 160
Abstract
A core problem relating to indoor positioning is a lack of prior knowledge of the environment. To date, most WiFi–RTT research assumes knowledge of the access points in an indoor environment. This paper provides a solution to this problem by using a simultaneous [...] Read more.
A core problem relating to indoor positioning is a lack of prior knowledge of the environment. To date, most WiFi–RTT research assumes knowledge of the access points in an indoor environment. This paper provides a solution to this problem by using a simultaneous localisation and mapping (SLAM) algorithm, using WiFi–RTT and pedestrian dead reckoning, which uses the inertial sensors in a smartphone. A WiFi–RTT SLAM algorithm has only been researched in one instance at the time of writing; this paper aims to expand the exploration of this problem, particularly in relation to the use of outlier detection and motion models. For the trials, which were 35 steps long, the final mobile device horizontal positioning error was 1.01 m and 1.7 m for the forward and reverse trials, respectively. The results of this paper show that unmapped indoor positioning using WiFi–RTT is feasible for metre-level indoor positioning, given correct access point calibration. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

40 pages, 2727 KiB  
Review
Indoor Localization Methods for Smartphones with Multi-Source Sensors Fusion: Tasks, Challenges, Strategies, and Perspectives
by Jianhua Liu, Zhijie Yang, Sisi Zlatanova, Songnian Li and Bing Yu
Sensors 2025, 25(6), 1806; https://doi.org/10.3390/s25061806 - 14 Mar 2025
Viewed by 1042
Abstract
Positioning information greatly enhances the convenience of people’s lives and the efficiency of societal operations. However, due to the impact of complex indoor environments, GNSS signals suffer from multipath effects, blockages, and attenuation, making it difficult to provide reliable positioning services indoors. Smartphone [...] Read more.
Positioning information greatly enhances the convenience of people’s lives and the efficiency of societal operations. However, due to the impact of complex indoor environments, GNSS signals suffer from multipath effects, blockages, and attenuation, making it difficult to provide reliable positioning services indoors. Smartphone indoor positioning and navigation is a crucial technology for enabling indoor location services. Nevertheless, relying solely on a single positioning technique can hardly achieve accurate indoor localization. We reviewed several main methods for indoor positioning using smartphone sensors, including Wi-Fi, Bluetooth, cameras, microphones, inertial sensors, and others. Among these, wireless medium-based positioning methods are prone to interference from signals and obstacles in the indoor environment, while inertial sensors are limited by error accumulation. The fusion of multi-source sensors in complex indoor scenarios benefits from the complementary advantages of various sensors and has become a research hotspot in the field of pervasive indoor localization applications for smartphones. In this paper, we extensively review the current mainstream sensors and indoor positioning methods for smartphone multi-source sensor fusion. We summarize the recent research progress in this domain along with the characteristics of the relevant techniques and applicable scenarios. Finally, we collate and organize the key issues and technological outlooks of this field. Full article
Show Figures

Figure 1

19 pages, 3780 KiB  
Article
Local Batch Normalization-Aided CNN Model for RSSI-Based Fingerprint Indoor Positioning
by Houjin Lu, Shuzhi Liu and Seung-Hoon Hwang
Electronics 2025, 14(6), 1136; https://doi.org/10.3390/electronics14061136 - 13 Mar 2025
Cited by 1 | Viewed by 574
Abstract
Indoor positioning systems have become increasingly important due to the limitations of GPS in indoor environments, such as non-line-of-sight conditions and weak signal strength. Among the various indoor positioning techniques, fingerprinting-based approaches utilizing WiFi signals are highly regarded for their accessibility and convenience. [...] Read more.
Indoor positioning systems have become increasingly important due to the limitations of GPS in indoor environments, such as non-line-of-sight conditions and weak signal strength. Among the various indoor positioning techniques, fingerprinting-based approaches utilizing WiFi signals are highly regarded for their accessibility and convenience. However, existing convolutional neural network (CNN) models for fingerprinting often struggle to maintain consistent performance under diverse environmental conditions. To address these challenges, this study proposes a local batch normalization (LBN)-aided CNN model for received signal strength indicator (RSSI)-based indoor positioning. The LBN technique is designed to overcome the limitations of traditional batch normalization (BN) and layer normalization (LN) in managing location-dependent RSSI variations, thereby improving positioning accuracy. The proposed approach consists of two phases: an offline phase, where RSSI data are collected at reference points to train the model, and an online phase, where real-time RSSI data are used to estimate the device’s location. Experimental results demonstrate that the proposed LBN-aided CNN model achieves an accuracy of 92.9%, outperforming existing CNN-based methods. These findings confirm the effectiveness of LBN in enhancing CNN performance for indoor positioning, particularly in challenging environments with significant signal variability. Full article
Show Figures

Graphical abstract

25 pages, 1280 KiB  
Article
Enhancing Indoor Localization with Room-to-Room Transition Time: A Multi-Dataset Study
by Isil Karabey Aksakalli and Levent Bayındır
Appl. Sci. 2025, 15(4), 1985; https://doi.org/10.3390/app15041985 - 14 Feb 2025
Viewed by 445
Abstract
With the rapid advancement of network technologies and the widespread adoption of smart devices, the demand for efficient indoor localization and navigation systems has surged. Addressing the navigation challenge without requiring additional hardware is critical for the broad adoption of such technologies. Among [...] Read more.
With the rapid advancement of network technologies and the widespread adoption of smart devices, the demand for efficient indoor localization and navigation systems has surged. Addressing the navigation challenge without requiring additional hardware is critical for the broad adoption of such technologies. Among various fingerprint-based systems—such as Bluetooth, ZigBee, or FM radio—Wi-Fi-based indoor positioning stands out as a practical solution, due to the pervasiveness of Wi-Fi infrastructure in public indoor spaces. This study introduces an ESP32-based data-collection tool designed to minimize offline training time for Wi-Fi fingerprinting, and it presents a novel dataset incorporating room-to-room transition time, which represents the time taken to move between rooms, alongside Wi-Fi signal strength data. The proposed approach focuses on room-level localization, leveraging Machine Learning (ML) models to predict the most likely room rather than precise (x, y) coordinates. To assess the effectiveness of this feature, three datasets were collected from different residential environments by three different individuals, enabling a comprehensive evaluation across multiple spatial layouts and movement patterns. The experimental results demonstrate that incorporating room-to-room transition time consistently enhanced localization performance across all the datasets, with accuracy improvements ranging from 1.17% to 12.47%, depending on the model and dataset. Notably, the Wide Neural Network model exhibited the highest improvement, achieving an accuracy increase from 82.37% to 94.77%, while the Ensemble-based methods such as Ensemble Bagged Trees also benefited significantly, reaching up to 93.17% accuracy. Despite varying gains across the datasets, the results confirm that integrating room-to-room transition time improves Wi-Fi-based indoor positioning by leveraging temporal movement patterns to enhance classification. Full article
(This article belongs to the Special Issue Current Research in Indoor Positioning and Localization)
Show Figures

Figure 1

13 pages, 1543 KiB  
Article
SDR-Fi-Z: A Wireless Local Area Network-Fingerprinting-Based Indoor Positioning Method for E911 Vertical Accuracy Mandate
by Rahul Mundlamuri, Devasena Inupakutika and David Akopian
Sensors 2025, 25(3), 823; https://doi.org/10.3390/s25030823 - 30 Jan 2025
Viewed by 630
Abstract
The Enhanced 911 (E911) mandate of the Federal Communications Commission (FCC) drives the evolution of indoor three-dimensional (3D) location/positioning services for emergency calls. Many indoor localization systems exploit location-dependent wireless signaling signatures, often called fingerprints, and machine learning techniques for position estimation. In [...] Read more.
The Enhanced 911 (E911) mandate of the Federal Communications Commission (FCC) drives the evolution of indoor three-dimensional (3D) location/positioning services for emergency calls. Many indoor localization systems exploit location-dependent wireless signaling signatures, often called fingerprints, and machine learning techniques for position estimation. In particular, received signal strength indicators (RSSIs) and Channel State Information (CSI) in Wireless Local Area Networks (WLANs or Wi-Fi) have gained popularity and have been addressed in the literature. While RSSI signatures are easy to collect, the fluctuation of wireless signals resulting from environmental uncertainties leads to considerable variations in RSSIs, which poses a challenge to accurate localization on a single floor, not to mention multi-floor or even three-dimensional (3D) indoor localization. Considering recent E911 mandate attention to vertical location accuracy, this study aimed to investigate CSI from Wi-Fi signals to produce baseline Z-axis location data, which has not been thoroughly addressed. To that end, we utilized CSI measurements and two representative machine learning methods, an artificial neural network (ANN) and convolutional neural network (CNN), to estimate both 3D and vertical-axis positioning feasibility to achieve E911 accuracy compliance. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

20 pages, 2761 KiB  
Article
Adaptive Kalman Filter Fusion Positioning Based on Wi-Fi and Vision
by Shuxin Zhong, Li Cheng, Haiwen Yuan and Xuan Li
Sensors 2025, 25(3), 671; https://doi.org/10.3390/s25030671 - 23 Jan 2025
Viewed by 753
Abstract
The fusion of multiple sensor data to improve positioning accuracy and robustness is an important research direction in indoor positioning systems. In this paper, a Wi-Fi- and vision-based Fusion Adaptive Kalman Filter (FAKF) method is proposed for improving the accuracy of indoor positioning. [...] Read more.
The fusion of multiple sensor data to improve positioning accuracy and robustness is an important research direction in indoor positioning systems. In this paper, a Wi-Fi- and vision-based Fusion Adaptive Kalman Filter (FAKF) method is proposed for improving the accuracy of indoor positioning. To improve the accuracy of Wi-Fi positioning, a random forest algorithm with added region restriction is proposed. For visual positioning, YOLOv7 target detection and Deep SORT target tracking algorithms are combined in order to improve the stability of visual positioning. The fusion positioning method proposed in this study uses Kalman filtering for state estimation and updating by combining measurements from camera and Wi-Fi sensors, and it adaptively adjusts the parameters and weights of the filters by monitoring the residuals of the camera and Wi-Fi measurements in real time in order to optimize the accuracy and stability of the position estimation. In the experimental section, the real trajectory data and the predicted trajectory data generated using different positioning methods are compared. The experimental results show that the fused positioning method can significantly reduce positioning errors and the fused data can more accurately reflect the actual position of a target compared with single-sensor data. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 1249 KiB  
Article
WiFi Fingerprint Indoor Localization Employing Adaboost and Probability-One Access Point Selection for Multi-Floor Campus Buildings
by Shanyu Jin and Dongwoo Kim
Future Internet 2024, 16(12), 466; https://doi.org/10.3390/fi16120466 - 13 Dec 2024
Viewed by 669
Abstract
Indoor positioning systems have become increasingly important due to the rapid expansion of Internet of Things (IoT) technologies, especially for providing precise location-based services in complex environments such as multi-floor campus buildings. This paper presents a WiFi fingerprint indoor localization system based on [...] Read more.
Indoor positioning systems have become increasingly important due to the rapid expansion of Internet of Things (IoT) technologies, especially for providing precise location-based services in complex environments such as multi-floor campus buildings. This paper presents a WiFi fingerprint indoor localization system based on AdaBoost, combined with a new access point (AP) filtering technique. The system comprises offline and online phases. During the offline phase, a fingerprint database is created using received signal strength (RSS) values for two four-floor campus buildings. In the online phase, the AdaBoost classifier is used to accurately estimate locations. To improve localization accuracy, APs that always appear in the measurement data are selected for applying the AdaBoost algorithm, aiming to eliminate noise from the fingerprint database. The performance of the proposed method is compared with other well-known machine learning-based positioning algorithms in terms of positioning accuracy and error distances. The results indicate that the average positioning accuracy of the proposed scheme reaches 95.55%, which represents an improvement of 5.55% to 16.21% over the other methods. Additionally, the two-dimensional positioning error can be reduced to 0.25 m. Full article
(This article belongs to the Special Issue Wireless Sensor Networks in the IoT)
Show Figures

Figure 1

27 pages, 11525 KiB  
Article
Mobile Robot Positioning with Wireless Fidelity Fingerprinting and Explainable Artificial Intelligence
by Hüseyin Abacı and Ahmet Çağdaş Seçkin
Sensors 2024, 24(24), 7943; https://doi.org/10.3390/s24247943 - 12 Dec 2024
Viewed by 848
Abstract
Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), [...] Read more.
Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), Wi-Fi is more suitable for use indoors because signal blocking, attenuation, and reflection restrictions create a unique pattern in places with many Wi-Fi transmitters, and more precise positioning can be performed than GNSS. This paper proposes a machine learning-based method for Wi-Fi-enabled robot positioning in indoor environments. The contributions of this research include comprehensive 3D position estimation, utilization of existing Wi-Fi infrastructure, and a carefully collected dataset for evaluation. The results indicate that the AdaBoost algorithm attains a notable level of accuracy, utilizing the dBm signal strengths from Wi-Fi access points distributed throughout a four-floor building. The mean average error (MAE) values obtained in three axes with the Adaptive Boosting algorithm are 0.044 on the x-axis, 0.063 on the y-axis, and 0.003 m on the z-axis, respectively. In this study, the importance of various Wi-Fi access points was examined with explainable artificial intelligence methods, and the positioning performances obtained by using data from a smaller number of access points were examined. As a result, even when positioning was conducted with only seven selected Wi-Fi access points, the MAE value was found to be 0.811 for the x-axis, 0.492 for the y-axis, and 0.134 for the Z-axis, respectively. Full article
(This article belongs to the Special Issue Emerging Advances in Wireless Positioning and Location-Based Services)
Show Figures

Figure 1

31 pages, 1377 KiB  
Review
Indoor Positioning Systems in Logistics: A Review
by Laura Vaccari, Antonio Maria Coruzzolo, Francesco Lolli and Miguel Afonso Sellitto
Logistics 2024, 8(4), 126; https://doi.org/10.3390/logistics8040126 - 4 Dec 2024
Viewed by 1553
Abstract
Background: Indoor Positioning Systems (IPS) have gained increasing relevance in logistics, offering solutions for safety enhancement, intralogistics management, and material flow control across various environments such as industrial facilities, offices, hospitals, and supermarkets. This study aims to evaluate IPS technologies’ performance and applicability [...] Read more.
Background: Indoor Positioning Systems (IPS) have gained increasing relevance in logistics, offering solutions for safety enhancement, intralogistics management, and material flow control across various environments such as industrial facilities, offices, hospitals, and supermarkets. This study aims to evaluate IPS technologies’ performance and applicability to guide practitioners in selecting systems suited to specific contexts. Methods: The study systematically reviews key IPS technologies, positioning methods, data types, filtering methods, and hybrid technologies, alongside real-world examples of IPS applications in various testing environments. Results: Our findings reveal that radio-based technologies, such as Radio Frequency Identification (RFID), Ultra-wideband (UWB), Wi-Fi, and Bluetooth (BLE), are the most commonly used, with UWB offering the highest accuracy in industrial settings. Geometric methods, particularly multilateration, proved to be the most effective for positioning and are supported by advanced filtering techniques like the Extended Kalman Filter and machine learning models such as Convolutional Neural Networks. Overall, hybrid approaches that integrate multiple technologies demonstrated enhanced accuracy and reliability, effectively mitigating environmental interferences and signal attenuation. Conclusions: The study provides valuable insights for logistics practitioners, emphasizing the importance of selecting IPS technologies suited to specific operational contexts, where precision and reliability are critical to operational success. Full article
Show Figures

Figure 1

22 pages, 2553 KiB  
Review
Advancements in Indoor Precision Positioning: A Comprehensive Survey of UWB and Wi-Fi RTT Positioning Technologies
by Jiageng Qiao, Fan Yang, Jingbin Liu, Gege Huang, Wei Zhang and Mengxiang Li
Network 2024, 4(4), 545-566; https://doi.org/10.3390/network4040027 - 29 Nov 2024
Cited by 1 | Viewed by 1467
Abstract
High-precision indoor positioning is essential for various applications, such as the Internet of Things, robotics, and smart manufacturing, requiring accuracy better than 1 m. Conventional indoor positioning methods, like Wi-Fi or Bluetooth fingerprinting, typically provide low accuracy within a range of several meters, [...] Read more.
High-precision indoor positioning is essential for various applications, such as the Internet of Things, robotics, and smart manufacturing, requiring accuracy better than 1 m. Conventional indoor positioning methods, like Wi-Fi or Bluetooth fingerprinting, typically provide low accuracy within a range of several meters, while techniques such as laser or visual odometry often require fusion with absolute positioning methods. Ultra-wideband (UWB) and Wi-Fi Round-Trip Time (RTT) are emerging radio positioning technologies supported by industry leaders like Apple and Google, respectively, both capable of achieving high-precision indoor positioning. This paper offers a comprehensive survey of UWB and Wi-Fi positioning, beginning with an overview of UWB and Wi-Fi RTT ranging, followed by an explanation of the fundamental principles of UWB and Wi-Fi RTT-based geometric positioning. Additionally, it compares the strengths and limitations of UWB and Wi-Fi RTT technologies and reviews advanced studies that address practical challenges in UWB and Wi-Fi RTT positioning, such as accuracy, reliability, continuity, and base station coordinate calibration issues. These challenges are primarily addressed through a multi-sensor fusion approach that integrates relative and absolute positioning. Finally, this paper highlights future directions for the development of UWB- and Wi-Fi RTT-based indoor positioning technologies. Full article
Show Figures

Figure 1

21 pages, 534 KiB  
Article
Detection of Access Point Spoofing in the Wi-Fi Fingerprinting Based Positioning
by Juraj Machaj, Clément Safon, Slavomír Matúška and Peter Brída
Sensors 2024, 24(23), 7624; https://doi.org/10.3390/s24237624 - 28 Nov 2024
Viewed by 924
Abstract
Indoor positioning based on Wi-Fi signals has gained a lot of attention lately. There are many advantages related to the use of Wi-Fi signals for positioning, including the availability of Wi-Fi access points in indoor environments and the integration of Wi-Fi transceivers into [...] Read more.
Indoor positioning based on Wi-Fi signals has gained a lot of attention lately. There are many advantages related to the use of Wi-Fi signals for positioning, including the availability of Wi-Fi access points in indoor environments and the integration of Wi-Fi transceivers into consumer devices. However, since Wi-Fi uses an unlicensed spectrum, anyone can create their own access points. Therefore, it is possible to affect the function of the localization system by spoofing signals from access points and thus alter positioning accuracy. Previously published works focused mainly on the evaluation of spoofing on localization systems and the detection of anomalies when updating the radio map. Spoofing mitigation solutions were proposed; however, their application to systems that use off-the-shelf items is not straightforward. In this paper filtering algorithms are proposed to minimize the impact of access point spoofing. The filtering was applied with a combination of the widely used K-Nearest Neighbours (KNN) localization algorithm and their performance is evaluated using the UJIIndoorLoc dataset. During the evaluation, the spoofing of Access Points was performed in two different scenarios and the number of spoofed access points ranged from 1 to 10. Based on the achieved results proposed SFKNN provided good detection of the spoofing and helped to reduce the mean localization error by 2–5 m, especially when the number of spoofed access points was higher. Full article
(This article belongs to the Special Issue Smart Systems and Wireless Sensor Networks for Localization)
Show Figures

Figure 1

19 pages, 602 KiB  
Article
WKNN-Based Wi-Fi Fingerprinting with Deep Distance Metric Learning via Siamese Triplet Network for Indoor Positioning
by Jae-Hyeon Park, Dongdeok Kim and Young-Joo Suh
Electronics 2024, 13(22), 4448; https://doi.org/10.3390/electronics13224448 - 13 Nov 2024
Viewed by 861
Abstract
Weighted k-nearest neighbor (WKNN)-based Wi-Fi fingerprinting is popular in indoor location-based services due to its ease of implementation and low computational cost. KNN-based methods rely on distance metrics to select the nearest neighbors. However, traditional metrics often fail to capture the complexity of [...] Read more.
Weighted k-nearest neighbor (WKNN)-based Wi-Fi fingerprinting is popular in indoor location-based services due to its ease of implementation and low computational cost. KNN-based methods rely on distance metrics to select the nearest neighbors. However, traditional metrics often fail to capture the complexity of indoor environments and have limitations in identifying non-linear relationships. To address these issues, we propose a novel WKNN-based Wi-Fi fingerprinting method that incorporates distance metric learning. In the offline phase, our method utilizes a Siamese network with a triplet loss function to learn a meaningful distance metric from training fingerprints (FPs). This process employs a unique triplet mining strategy to handle the inherent noise in FPs. Subsequently, in the online phase, the learned metric is used to calculate the embedding distance, followed by a signal-space distance filtering step to optimally select neighbors and estimate the user’s location. The filtering step mitigates issues from an overfitted distance metric influenced by hard triplets, which could lead to incorrect neighbor selection. We evaluate the proposed method on three benchmark datasets, UJIIndoorLoc, Tampere, and UTSIndoorLoc, and compare it with four WKNN models. The results show a mean positioning error reduction of 3.55% on UJIIndoorLoc, 16.21% on Tampere, and 16.49% on UTSIndoorLoc, demonstrating enhanced positioning accuracy. Full article
(This article belongs to the Special Issue Next-Generation Indoor Wireless Communication)
Show Figures

Figure 1

24 pages, 5816 KiB  
Article
Adaptive FPGA-Based Accelerators for Human–Robot Interaction in Indoor Environments
by Mangali Sravanthi, Sravan Kumar Gunturi, Mangali Chinna Chinnaiah, Siew-Kei Lam, G. Divya Vani, Mudasar Basha, Narambhatla Janardhan, Dodde Hari Krishna and Sanjay Dubey
Sensors 2024, 24(21), 6986; https://doi.org/10.3390/s24216986 - 30 Oct 2024
Viewed by 1136
Abstract
This study addresses the challenges of human–robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation [...] Read more.
This study addresses the challenges of human–robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation of human location and the robot’s intention to serve based on the human’s location at static and adaptive positions. This paper presents three methodologies to address these challenges: binary classification to analyze static and adaptive postures for human localization in indoor environments using the sensor fusion method, adaptive Simultaneous Localization and Mapping (SLAM) for the robot to deliver the task, and human–robot implicit communication. VLSI hardware schemes are developed for the proposed method. Initially, the control unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze the human posture. Subsequently, static and adaptive human posture data are communicated to the robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based triangulation navigation method. The experimental validation was conducted in a hospital environment. The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO 2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation. Full article
(This article belongs to the Special Issue Deep Learning for Perception and Recognition: Method and Applications)
Show Figures

Figure 1

Back to TopTop