Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (296)

Search Parameters:
Keywords = YAP signaling pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1677 KB  
Review
The Cytoskeletal Structure in Cardiomyocyte Maturation and Proliferation
by Aldana Rojas, Shelby Dahlen, Feng Zhang and Shijie Liu
Cells 2025, 14(19), 1494; https://doi.org/10.3390/cells14191494 - 24 Sep 2025
Viewed by 523
Abstract
The adult heart has a limited ability to regenerate, which is partly due to the structural and metabolic specialization that cardiomyocytes (CMs) acquire during postnatal maturation. In this review, we explore how cytoskeletal remodeling, metabolic reprogramming, and interactions with the extracellular matrix (ECM) [...] Read more.
The adult heart has a limited ability to regenerate, which is partly due to the structural and metabolic specialization that cardiomyocytes (CMs) acquire during postnatal maturation. In this review, we explore how cytoskeletal remodeling, metabolic reprogramming, and interactions with the extracellular matrix (ECM) regulate CM maturation, proliferation, and the potential for regeneration. We describe how the assembly of microtubules, actin filaments, and sarcomeric structures is essential for developing contractile function, but also creates structural barriers that prevent cell division. Recent studies show that disassembling these cytoskeletal components, along with activating signaling pathways such as Hippo-YAP, Wnt, and NRG1/ErbB4, can promote CM dedifferentiation and re-entry into the cell cycle. Metabolic shifts also play a critical role. A return from oxidative phosphorylation to glycolysis also leads to CM dedifferentiation and proliferation. In addition, changes in ECM composition and mechanical signaling affect cytoskeletal dynamics and regenerative capacity. Understanding how these structural, metabolic, and signaling networks work together opens the door to new approaches for restoring heart function after injury. Full article
Show Figures

Figure 1

26 pages, 2624 KB  
Review
The Dual Role of RASSF4 in Tumorigenesis: Mechanisms and Epigenetic Targeting Strategies
by Rui Tian, Yixin Wu, Wenbin Yuan, Lingli Tian, Rui Zhang, Hao Lyu, Shuai Xiao, Dong Guo, Qi Zhang, Declan William Ali, Marek Michalak, Cefan Zhou, Jingfeng Tang and Xing-Zhen Chen
Biology 2025, 14(9), 1289; https://doi.org/10.3390/biology14091289 - 18 Sep 2025
Viewed by 540
Abstract
RASSF4 is a key member of the Ras-associated domain family (RASSF) that exhibits dual functionality in tumorigenesis, playing critical yet context-dependent roles in various malignancies. Its expression is epigenetically regulated through promoter hypermethylation, histone modifications, and microRNAs including miR-155 and miR-196a-5p, which directly [...] Read more.
RASSF4 is a key member of the Ras-associated domain family (RASSF) that exhibits dual functionality in tumorigenesis, playing critical yet context-dependent roles in various malignancies. Its expression is epigenetically regulated through promoter hypermethylation, histone modifications, and microRNAs including miR-155 and miR-196a-5p, which directly target its 3′ untranslated region. In most cancers, such as non-small cell lung cancer (NSCLC) and gastric adenocarcinoma (GAC), RASSF4 acts as a tumor suppressor by inhibiting the RAS/MAPK pathway while activating the Hippo signaling cascade, ultimately inducing cell cycle arrest and apoptosis. Conversely, in aRMS, RASSF4 is upregulated by the PAX3-FOXO1 fusion oncoprotein and promotes tumor growth through MST1 inhibition and subsequent YAP activation. This review systematically analyzes current evidence regarding RASSF4’s complex regulatory mechanisms and clinical significance. We propose targeted therapeutic strategies including epigenetic reactivation, gene intervention, and combination therapies. Furthermore, we identify RASSF4 as a promising diagnostic biomarker and therapeutic target based on integrated mechanistic and clinical evidence. Future research should focus on elucidating context-dependent regulatory switches, developing targeted delivery systems, and validating clinical utility through prospective trials. Full article
(This article belongs to the Special Issue Signalling Pathways in Cancer and Disease)
Show Figures

Figure 1

19 pages, 3477 KB  
Article
HDAC Inhibitors Enhance the Chemosensitivity of Osteosarcoma Cells to Etoposide by Suppressing the Hippo/YAP Signaling Pathway
by Zhijie Cao, Yulu Chen, Mengshan Chen, Qianjin Fan, Hui Sun, Dong Jin, Yajing Liu, Yanwen Xiong and Donglai Wang
Int. J. Mol. Sci. 2025, 26(18), 8935; https://doi.org/10.3390/ijms26188935 - 13 Sep 2025
Viewed by 429
Abstract
Osteosarcoma primarily occurs in children and adolescents, and is a highly aggressive bone tumor, particularly presenting challenges in metastatic or recurrent cases due to chemoresistance. Emerging evidences suggest that histone deacetylase inhibitors (HDACis) may exert anti-tumor effects by enhancing the efficacy of various [...] Read more.
Osteosarcoma primarily occurs in children and adolescents, and is a highly aggressive bone tumor, particularly presenting challenges in metastatic or recurrent cases due to chemoresistance. Emerging evidences suggest that histone deacetylase inhibitors (HDACis) may exert anti-tumor effects by enhancing the efficacy of various therapeutic modalities. However, the combination of traditional chemotherapy with HDACi-based treatment for osteosarcoma intervention has not been thoroughly explored. This study investigates the anticancer properties of HDACis and/or etoposide (VP16) on the osteosarcoma cell lines U2OS and SJSA-1. Cell viability, morphology, growth and apoptosis were evaluated after treatments, in addition to their influence on the expression levels of proteins associated with apoptotic processes. To elucidate the underlying mechanisms, we employed RNA sequencing, RT-qPCR, and Western blot analyses. Treatment with either HDACis or VP16 alone resulted in an antiproliferative effects in U2OS and SJSA-1 cell lines. Notably, HDACis significantly increased the sensitivity of osteosarcoma cells to VP16, as evidenced by marked differences in cell viability, growth, morphology and apoptosis. Furthermore, when compared to doxorubicin treatment, this VP16/TSA/NAM combinatory regimen demonstrated a comparable ability to suppress cell viability while exhibiting a more pronounced inhibition of cell proliferation. Mechanistically, the combination of HDACis and VP16 specifically resulted in inhibition of the Hippo/YAP signaling cascade, accompanied by a reduction in total YAP1 protein expression. Collectively, our findings suggest that HDACis potentiate the capacity of VP16 to hinder cellular proliferation and trigger apoptosis via the downregulation of the Hippo/YAP pathway, thereby providing a prospective approach to overcome chemoresistance in osteosarcoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

23 pages, 4819 KB  
Review
Dysregulation of MicroRNAs in Hepatocellular Carcinoma: Targeting Oncogenic Signaling Pathways for Innovative Therapies
by Yusra Zarlashat, Judit Halász and Edit Dósa
Int. J. Mol. Sci. 2025, 26(17), 8365; https://doi.org/10.3390/ijms26178365 - 28 Aug 2025
Viewed by 687
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer-related death. Hyperactivation of oncogenes and suppression of tumor suppressor genes/proteins drive HCC initiation and progression. MicroRNAs (miRNAs) critically modulate HCC biology by regulating proliferation, apoptosis, [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer-related death. Hyperactivation of oncogenes and suppression of tumor suppressor genes/proteins drive HCC initiation and progression. MicroRNAs (miRNAs) critically modulate HCC biology by regulating proliferation, apoptosis, and metastasis. Acting either as tumor suppressors or oncomiRs, they shape core signaling pathways, including PI3K/Akt/mTOR, Hippo–YAP/TAZ, Wnt/β-catenin, RAS/MAPK, and p53. Their dysregulation in tissues and body fluids renders them promising diagnostic biomarkers and therapeutic targets. Preclinical studies demonstrate that miRNA-based strategies—either restoring tumor-suppressive miRNAs (e.g., miR-34a, miR-125a-5p) or inhibiting oncogenic miRNAs (e.g., miR-660-5p)—can suppress HCC progression and reduce treatment resistance. Combination approaches, such as pairing miR-122 mimics with miR-221 inhibitors or delivering miR-326 via nanoparticles, further enhance efficacy by simultaneously targeting multiple oncogenic pathways. This review summarizes recent advances in miRNA-mediated regulation of HCC signaling and highlights their clinical potential, including ongoing trials of miRNA-based diagnostics and therapeutics for early detection, prognostication, and personalized treatment. Full article
(This article belongs to the Special Issue Pathogenesis and Molecular Treatment of Primary Liver Cancer)
Show Figures

Graphical abstract

21 pages, 4783 KB  
Article
Epithelial-Mesenchymal Transition Activates YAP to Drive Malignant Progression and Immune Evasion
by Xi Huang, Mingyan Zhang, Alexander D. Pearce, Matthew D. Gibbons, Dan Jin, Lu Li, Dongxin Hu, Renbin Liu, Mu Yu, Ming Tan, Jia Chang, Jixin Dong, Mingyi Xie, Weizhou Zhang, Lizi Wu, Catherine Flores, Jörg Bungert, Todd M. Brusko and Jianrong Lu
Cancers 2025, 17(17), 2767; https://doi.org/10.3390/cancers17172767 - 25 Aug 2025
Viewed by 895
Abstract
Background: Epithelial-mesenchymal transition (EMT) is prevalent in human cancer and facilitates tumor metastasis and therapy resistance by enhancing cancer cell motility, invasiveness, survival, and immune evasion. However, the molecular mechanisms underlying the cellular changes during EMT remain largely elusive, making it challenging [...] Read more.
Background: Epithelial-mesenchymal transition (EMT) is prevalent in human cancer and facilitates tumor metastasis and therapy resistance by enhancing cancer cell motility, invasiveness, survival, and immune evasion. However, the molecular mechanisms underlying the cellular changes during EMT remain largely elusive, making it challenging to simultaneously target these diverse malignant phenotypes. Results: Here, we show that the EMT-inducing ZEB transcription factors directly repressed WWC1 (also known as KIBRA), a key upstream activating component of the Hippo signaling pathway. The EMT program thus inherently downregulated WWC1, leading to impaired Hippo signaling and constitutive activation of the downstream effector and transcriptional coactivator YAP. The YAP-dependent transcriptional program promotes manifold cellular phenotypes that resemble those induced during EMT. Indeed, pharmacological inhibition of YAP suppressed EMT-stimulated cell migration and invasion, apoptosis resistance, and cell size growth, identifying active YAP as a common essential mediator of multiple EMT-associated phenotypes. Moreover, YAP activation directly induced transcription of B7 family immune checkpoint proteins VSIR (VISTA) and PD-L2, and rendered cancer cells resistant to effector CD8 T cells. Conclusions: Collectively, the results suggest that EMT intrinsically activates YAP by repressing WWC1, providing a non-genetic mechanism for pervasive YAP activation in cancer. Activated YAP, in turn, critically contributes to diverse EMT-enhanced malignant phenotypes and immune evasion. Therefore, pharmacological targeting of YAP may suppress various EMT-associated malignant properties and improve the efficacy of anti-PD-1 immunotherapy, offering a promising therapeutic strategy against cancer cells exhibiting EMT characteristics. Full article
Show Figures

Figure 1

31 pages, 1804 KB  
Review
Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives
by Seyedesomaye Jasemi, Elena Rita Simula, Yao Lin, Rosanna Rita Satta, Corrado Rubino, Antonio Cossu, Milena Fais, Marta Noli and Leonardo A. Sechi
Cancers 2025, 17(17), 2737; https://doi.org/10.3390/cancers17172737 - 23 Aug 2025
Cited by 1 | Viewed by 1018
Abstract
Despite notable progress in cancer therapy, immune evasion remains a major obstacle to effective treatment outcomes. In the context of spaceflight, astronauts are exposed to unique environmental stressors—particularly microgravity and radiation—that profoundly affect cellular and immune homeostasis. Emerging evidence suggests that microgravity alters [...] Read more.
Despite notable progress in cancer therapy, immune evasion remains a major obstacle to effective treatment outcomes. In the context of spaceflight, astronauts are exposed to unique environmental stressors—particularly microgravity and radiation—that profoundly affect cellular and immune homeostasis. Emerging evidence suggests that microgravity alters key cellular processes, including proliferation, apoptosis, adhesion, and oncogenic signaling pathways such as NF-κB and ERK1/2. Concurrently, microgravity (µg) disrupts immune regulation, potentially facilitating both tumor progression and treatment resistance. Of particular concern is the upregulation of human endogenous retroviruses (HERVs), especially HERV-K and HERV-W, under µg conditions, which may exacerbate inflammatory responses and immune system dysregulation. While some studies indicate that µg may impair tumor growth, others reveal enhanced immune evasion and reduced antitumor immunity. Importantly, insights from µg research extend beyond space medicine and provide translational opportunities for terrestrial oncology, including the development of physiologically relevant 3D tumor models for drug screening, the identification of mechano-sensitive pathways (FAK/RhoA, YAP/TAZ) as therapeutic targets, and novel immunotherapeutic strategies involving epigenetic modulation and checkpoint inhibition. This review critically examines the dual role of µg in modulating cancer progression and immune function. We synthesize findings on how µg shapes immune responses, alters tumor–immune system interactions, and impacts the efficacy of immunotherapeutic approaches. Finally, we highlight translational opportunities and challenges for optimizing cancer immunotherapy and precision oncology in both spaceflight and Earth-based environments. Full article
(This article belongs to the Special Issue Cancer-Therapy-Related Adverse Events (2nd Edition))
Show Figures

Figure 1

24 pages, 726 KB  
Review
Transcriptomic Comparisons of Somatic and Cancer Stem Cells
by Austin Drysch, Arun Ahuja, Dillan Prasad, Rishi Jain, Sharbel Romanos, Amr Alwakeal and Christopher Ahuja
Biomedicines 2025, 13(8), 2039; https://doi.org/10.3390/biomedicines13082039 - 21 Aug 2025
Viewed by 936
Abstract
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of [...] Read more.
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of how the transcriptomic landscapes of normal somatic stem cells (SSCs) diverge from those of CSCs to enable malignancy. This review synthesizes current knowledge of the key signaling pathways (Wnt, Notch, Hedgehog, TGF-β), transcription factors (Oct4, Sox2, Nanog, c-Myc, YAP/TAZ), and epigenetic mechanisms (chromatin remodeling, DNA methylation, microRNA regulation) that govern stemness in SSCs and are hijacked or dysregulated in CSCs. We highlight how context-specific modulation of these pathways distinguishes physiological regeneration from tumorigenesis. Importantly, we discuss the role of epithelial–mesenchymal transition (EMT), cellular plasticity, and microenvironmental cues in reprogramming and maintaining CSC phenotypes. By integrating transcriptomic and epigenetic insights across cancer biology and regenerative medicine, this review provides a framework for identifying vulnerabilities specific to CSCs while still preserving normal stem cell function. Understanding these distinctions is essential for the development of targeted therapies that minimize damage to healthy tissues and advance precision oncology. Full article
(This article belongs to the Special Issue Advances in Precision Cancer Therapy)
Show Figures

Figure 1

23 pages, 1615 KB  
Review
Current Mechanobiological Pathways and Therapies Driving Spinal Health
by Rahul Kumar, Kyle Sporn, Harlene Kaur, Akshay Khanna, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Bioengineering 2025, 12(8), 886; https://doi.org/10.3390/bioengineering12080886 - 20 Aug 2025
Viewed by 964
Abstract
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the [...] Read more.
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the structural and functional integrity of spinal tissues. These signaling mechanisms respond to physical cues and interact with inflammatory mediators such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), driving changes that lead to disc degeneration, vertebral fractures, spinal cord injury, and ligament failure. New research is emerging that shows scaffold designs that can directly harness these pathways. Further, new stem cell-based therapies have been shown to promote disc regeneration through targeted differentiation and paracrine signaling. Interestingly, many novel bone and ligament scaffolds are modulating anti-inflammatory signals to enhance tissue repair and integration, as well as prevent scaffold degradation. Neural scaffolds are also arising. These mimic spinal biomechanics and activate Piezo signaling to guide axonal growth and restore motor function. Scientists have begun combining these biological platforms with brain–computer interface technology to restore movement and sensory feedback in patients with severe spinal damage. Although this technology is not fully clinically ready, this field is advancing rapidly. As implantable technology can now mimic physiological processes, molecular signaling, biomechanical design, and neurotechnology opens new possibilities for restoring spinal function and improving the quality of life for individuals with spinal disorders. Full article
(This article belongs to the Special Issue Biomechanics and Mechanobiology in Cell and Tissue Engineering)
Show Figures

Figure 1

20 pages, 4459 KB  
Article
Substrate Stiffness Modulates Hypertrophic Chondrocyte Reversion and Chondrogenic Phenotype Restoration
by Da-Long Dong and Guang-Zhen Jin
Cells 2025, 14(16), 1291; https://doi.org/10.3390/cells14161291 - 20 Aug 2025
Viewed by 794
Abstract
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte [...] Read more.
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte behavior and whether it can reverse their phenotype towards a more stable, chondrogenic state. A series of tunable polydimethylsiloxane (PDMS) substrates with stiffnesses ranging from 78 to 508 kPa were fabricated to simulate varying mechanical microenvironments. Hypertrophic chondrocytes were cultured on these substrates, and their morphology, nuclear architecture, gene/protein expression, and mechanotransductive signaling pathways were systematically evaluated. After 7 to 21 days of culture, the chondrocytes on stiffer matrices exhibited enlarged nuclei, increased cytoskeletal tension, and enhanced focal adhesion signaling. This corresponded with the upregulation of osteogenic and hypertrophic markers such as RUNX2, COL10A1, and COL1A1. In contrast, cells on softer substrates (78 kPa) displayed reduced nuclear YAP localization, higher levels of phosphorylated YAP, and significantly increased expression of COL2A1 and SOX9, indicating reversion to a chondrogenic phenotype. Furthermore, differential activation of Smad1/5/8 and Smad2/3 pathways was observed depending on matrix stiffness, contributing to the phenotype shift. Matrix stiffness exerts a significant regulatory effect on hypertrophic chondrocytes via YAP-mediated mechanotransduction. Soft substrates promote phenotype reversion and cartilage-specific gene expression, offering a promising biomechanical strategy for cartilage tissue engineering and OA intervention. Full article
(This article belongs to the Special Issue Targeting Cellular Microenvironment in Aging and Disease)
Show Figures

Figure 1

21 pages, 1744 KB  
Review
Fibroblast–Myofibroblast Transition in Osteoarthritis Progression: Current Insights
by Ruixin Peng, Qiyuan Lin, Zhen Yang, Hui Li, Jiao Jiao Li and Dan Xing
Int. J. Mol. Sci. 2025, 26(16), 7881; https://doi.org/10.3390/ijms26167881 - 15 Aug 2025
Viewed by 1139
Abstract
Osteoarthritis (OA) is a multifactorial joint disease traditionally characterized by cartilage degradation, while growing evidence underscores the critical role of synovial fibrosis in driving disease progression. The synovium exhibits pathological remodeling in OA, primarily due to the phenotypic transition of fibroblast-like synoviocytes (FLSs) [...] Read more.
Osteoarthritis (OA) is a multifactorial joint disease traditionally characterized by cartilage degradation, while growing evidence underscores the critical role of synovial fibrosis in driving disease progression. The synovium exhibits pathological remodeling in OA, primarily due to the phenotypic transition of fibroblast-like synoviocytes (FLSs) into myofibroblasts. This fibroblast–myofibroblast transition (FMT) results in excessive deposition of extracellular matrix (ECM) and increased tissue stiffness and contractility, collectively contributing to chronic inflammation and fibrotic stiffening of the joint capsule. These fibrotic changes not only impair synovial function but also exacerbate cartilage degeneration, nociceptive sensitization, and joint dysfunction, thereby amplifying OA severity. Focusing on the frequently overlooked role of the FMT of synovial fibroblasts in OA, this review introduces the biological characteristics of FLSs and myofibroblasts and systematically examines the key molecular pathways implicated in OA-related FMT, including TGF-β, Wnt/β-catenin, YAP/TAZ, and inflammatory signaling cascades. It also discusses emerging therapeutic strategies targeting synovial fibrosis and FMT and considers their implications for the clinical management of OA. By highlighting recent advances and unresolved challenges, this review provides critical insights into the fibroblast–myofibroblast axis as a central contributor to OA progression and a promising therapeutic target for modifying disease trajectory. Full article
Show Figures

Figure 1

18 pages, 5890 KB  
Article
Targeting Hippo Signaling Pathway with a Boron Derivative, Sodium Pentaborate Pentahydrate (NaB): Therapeutic Strategies in Colorectal Cancer
by Büşra Yüksel, Fikrettin Şahin and Nezaket Türkel
Pharmaceuticals 2025, 18(8), 1171; https://doi.org/10.3390/ph18081171 - 8 Aug 2025
Viewed by 574
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, highlighting the urgent need for novel therapeutic strategies. This study aimed to investigate the anticancer potential of sodium pentaborate pentahydrate (NaB) in CRC by evaluating its effects on human colorectal [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, highlighting the urgent need for novel therapeutic strategies. This study aimed to investigate the anticancer potential of sodium pentaborate pentahydrate (NaB) in CRC by evaluating its effects on human colorectal cancer cell lines and elucidating underlying molecular mechanisms. Methods: The cytotoxic and molecular effects of NaB were assessed in three human CRC cell lines (HCT-116, HT-29, and COLO-205) and one normal colon epithelial cell line (CCD-18CO). Cell viability assays were conducted to determine time- and dose-dependent responses. Apoptosis, cell cycle progression, colony formation, and migration capacity were evaluated. Gene and protein expression analyses were performed to examine apoptosis-related, DNA damage response, cell cycle, and Hippo signaling pathway components. Results: NaB significantly reduced cancer cell viability in a time- and dose-dependent manner, with minimal cytotoxicity to normal colon cells. It induced marked apoptosis, especially in HCT-116 and COLO-205 cells, and caused G2/M cell cycle arrest. In HCT-116 cells, NaB suppressed proliferation by downregulating PCNA and MKI-67 and reduced colony formation and migration. Molecular analyses revealed upregulation of pro-apoptotic BAX and downregulation of BCL-2, ATM, ATR, and cell cycle–related genes. NaB also inhibited oncogenic Hippo signaling by enhancing YAP1 phosphorylation and decreasing CTGF and CYR61 expression. Conclusions: These findings demonstrate that sodium pentaborate pentahydrate exerts selective anticancer effects on colorectal cancer cells through the induction of apoptosis, cell cycle arrest, and suppression of key oncogenic pathways. NaB represents a promising candidate for further development as a therapeutic agent in CRC treatment. Full article
Show Figures

Graphical abstract

37 pages, 1914 KB  
Review
Mechanistic Insights into the Pathogenesis of Polycystic Kidney Disease
by Qasim Al-orjani, Lubna A. Alshriem, Gillian Gallagher, Raghad Buqaileh, Neela Azizi and Wissam AbouAlaiwi
Cells 2025, 14(15), 1203; https://doi.org/10.3390/cells14151203 - 5 Aug 2025
Viewed by 1387
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and [...] Read more.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and function. Loss of PC1/PC2 disrupts calcium homeostasis, elevates cAMP, and activates proliferative cascades such as PKA–B-Raf–MEK–ERK, mTOR, and Wnt, driving cystogenesis via epithelial proliferation, impaired apoptosis, fluid secretion, and fibrosis. Recent evidence also implicates novel signaling axes in ADPKD progression including, the Hippo pathway, where dysregulated YAP/TAZ activity enhances c-Myc-mediated proliferation; the stimulator of interferon genes (STING) pathway, which is activated by mitochondrial DNA release and linked to NF-κB-driven inflammation and fibrosis; and the TWEAK/Fn14 pathway, which mediates pro-inflammatory and pro-apoptotic responses via ERK and NF-κB activation in tubular cells. Mitochondrial dysfunction, oxidative stress, and maladaptive extracellular matrix remodeling further exacerbate disease progression. A refined understanding of ADPKD’s complex signaling networks provides a foundation for precision medicine and next-generation therapeutics. This review gathers recent molecular insights and highlights both established and emerging targets to guide targeted treatment strategies in ADPKD. Full article
Show Figures

Figure 1

28 pages, 2414 KB  
Review
Breaking Down Osteoarthritis: Exploring Inflammatory and Mechanical Signaling Pathways
by Wafa Ali Batarfi, Mohd Heikal Mohd Yunus, Adila A. Hamid, Manira Maarof and Rizal Abdul Rani
Life 2025, 15(8), 1238; https://doi.org/10.3390/life15081238 - 4 Aug 2025
Viewed by 2185
Abstract
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the [...] Read more.
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the dual roles of inflammatory and mechanical signaling in OA pathogenesis, focusing on crucial pathways such as NF-kB, JAK/STAT, and MAPK in inflammation, as well as Wnt/β-catenin, Integrin-FAK, and Hippo-YAP/TAZ in mechanotransduction. The interplay between these pathways highlights a vicious cycle wherein mechanical stress exacerbates inflammation, and inflammation weakens cartilage, increasing its vulnerability to mechanical damage. Additionally, we discuss emerging therapeutic strategies targeting these pathways, including inhibitors of cartilage-degrading enzymes, anti-inflammatory biologics, cell-based regenerative approaches, and non-pharmacological mechanical interventions. By dissecting the molecular mechanisms underlying OA, this review aims to provide insights into novel interventions that address both inflammatory and mechanical components of the disease, paving the way for precision medicine in OA management. Full article
(This article belongs to the Special Issue Current Views on Knee Osteoarthritis: 3rd Edition)
Show Figures

Figure 1

13 pages, 1002 KB  
Perspective
Sensing the Stiffness: Cellular Mechano-Sensing at the Implant Interface
by Patricia S. Pardo, Delia Danila, Raja Devesh Kumar Misra and Aladin M. Boriek
Cells 2025, 14(14), 1101; https://doi.org/10.3390/cells14141101 - 17 Jul 2025
Viewed by 745
Abstract
In this perspective, we highlight the relevance of the FA-Hippo signaling pathway and its regulation of the Yes-associated protein (YAP) and the transcriptional coactivator with a PDZ-binding domain (TAZ) as main players in the process of implants integration. The modulation and responses of [...] Read more.
In this perspective, we highlight the relevance of the FA-Hippo signaling pathway and its regulation of the Yes-associated protein (YAP) and the transcriptional coactivator with a PDZ-binding domain (TAZ) as main players in the process of implants integration. The modulation and responses of YAP/TAZ triggered by substrate and ECM stiffness are of particular interest in the construction of materials used for medical implants. YAP/TAZ nuclear localization and activity respond to the substrate stiffness by several mechanisms that involve the canonical and non-canonical Hippo signaling and independently of the Hippo cascade. YAP/TAZ regulate the expression of genes involved in several mechanisms of relevance for implant integration such as the proliferation and differentiation of cell precursors and the immune response to the implant. The influence of substrate stiffness on the regulation of the immune response is not completely understood and the progress in this field can contribute to the designing of an adequate implant design. Though the use of nano-biomaterials has been proved to contribute to implant success, the relationship between grain size and stiffness of the material has not been explored in the biomedical field; filling these gaps in the knowledge of biomaterials will highly contribute to the design of biomaterials that could take advantage of the cells sensing and response to the stiffness at the implant interface. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Graphical abstract

18 pages, 3083 KB  
Article
Targeting Vascular and Inflammatory Crosstalk: Cannabigerol as a Dual-Pathway Modulator in Rosacea
by Suji Kim and Ji Hyun Lee
Int. J. Mol. Sci. 2025, 26(14), 6840; https://doi.org/10.3390/ijms26146840 - 16 Jul 2025
Cited by 1 | Viewed by 741
Abstract
Rosacea is a chronic inflammatory skin condition characterized by persistent erythema and abnormal vascular response. Although current treatments focus on symptomatic relief, they often provide only temporary improvement and may be associated with side effects or recurrence. Cannabigerol (CBG), a non-psychoactive cannabinoid, has [...] Read more.
Rosacea is a chronic inflammatory skin condition characterized by persistent erythema and abnormal vascular response. Although current treatments focus on symptomatic relief, they often provide only temporary improvement and may be associated with side effects or recurrence. Cannabigerol (CBG), a non-psychoactive cannabinoid, has recently garnered attention for its pharmacological activities, including anti-inflammatory, antioxidant, neuroprotective, and skin barrier–supportive effects. However, its role in modulating pathological responses in rosacea remains unclear. In this study, we investigated the therapeutic potential of topically applied CBG in an LL-37-induced rosacea-like mouse model. Clinical and histological assessments revealed that CBG markedly reduced erythema, epidermal hyperplasia, and mast cell infiltration. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed downregulation of Il1b, Il4, Il6, Il13, Il22, Il31, Tlr2, Vegfa, and Mmp9. Immunohistochemistry and Western blot analyses further demonstrated suppression of CD31, vascular endothelial growth factor (VEGF), and Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), along with reduced activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, including decreased levels of JAK1, STAT3, and phosphorylated STAT3. These findings suggest that topical CBG alleviates rosacea-like skin inflammation by targeting inflammatory and vascular pathways, including JAK/STAT and YAP/TAZ signaling. Full article
(This article belongs to the Special Issue Molecular Research Progress of Skin and Skin Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop