Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = Yolo v3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 67780 KB  
Article
YOLO-GRBI: An Enhanced Lightweight Detector for Non-Cooperative Spatial Target in Complex Orbital Environments
by Zimo Zhou, Shuaiqun Wang, Xinyao Wang, Wen Zheng and Yanli Xu
Entropy 2025, 27(9), 902; https://doi.org/10.3390/e27090902 (registering DOI) - 25 Aug 2025
Abstract
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small [...] Read more.
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small targets that are easily obscured by background noise and characterized by low local information entropy, many existing object detection frameworks struggle to achieve high accuracy with low computational cost. To address this challenge, we propose YOLO-GRBI, an enhanced detection network designed to balance accuracy and efficiency. A reparameterized ELAN backbone is adopted to improve feature reuse and facilitate gradient propagation. The BiFormer and C2f-iAFF modules are introduced to enhance attention to salient targets, reducing false positives and false negatives. GSConv and VoV-GSCSP modules are integrated into the neck to reduce convolution operations and computational redundancy while preserving information entropy. YOLO-GRBI employs the focal loss for classification and confidence prediction to address class imbalance. Experiments on a self-constructed spacecraft dataset show that YOLO-GRBI outperforms the baseline YOLOv8n, achieving a 4.9% increase in mAP@0.5 and a 6.0% boost in mAP@0.5:0.95, while further reducing model complexity and inference latency. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
24 pages, 17793 KB  
Article
Small Object Detection in Agriculture: A Case Study on Durian Orchards Using EN-YOLO and Thermal Fusion
by Ruipeng Tang, Tan Jun, Qiushi Chu, Wei Sun and Yili Sun
Plants 2025, 14(17), 2619; https://doi.org/10.3390/plants14172619 - 22 Aug 2025
Viewed by 155
Abstract
Durian is a major tropical crop in Southeast Asia, but its yield and quality are severely impacted by a range of pests and diseases. Manual inspection remains the dominant detection method but suffers from high labor intensity, low accuracy, and difficulty in scaling. [...] Read more.
Durian is a major tropical crop in Southeast Asia, but its yield and quality are severely impacted by a range of pests and diseases. Manual inspection remains the dominant detection method but suffers from high labor intensity, low accuracy, and difficulty in scaling. To address these challenges, this paper proposes EN-YOLO, a novel enhanced YOLO-based deep learning model that integrates the EfficientNet backbone and multimodal attention mechanisms for precise detection of durian pests and diseases. The model removes redundant feature layers and introduces a large-span residual edge to preserve key spatial information. Furthermore, a multimodal input strategy—incorporating RGB, near-infrared and thermal imaging—is used to enhance robustness under variable lighting and occlusion. Experimental results on real orchard datasets demonstrate that EN-YOLO outperforms YOLOv8 (You Only Look Once version 8), YOLOv5-EB (You Only Look Once version 5—Efficient Backbone), and Fieldsentinel-YOLO in detection accuracy, generalization, and small-object recognition. It achieves a 95.3% counting accuracy and shows superior performance in ablation and cross-scene tests. The proposed system also supports real-time drone deployment and integrates an expert knowledge base for intelligent decision support. This work provides an efficient, interpretable, and scalable solution for automated pest and disease management in smart agriculture. Full article
(This article belongs to the Special Issue Plant Protection and Integrated Pest Management)
Show Figures

Figure 1

23 pages, 28830 KB  
Article
Micro-Expression-Based Facial Analysis for Automated Pain Recognition in Dairy Cattle: An Early-Stage Evaluation
by Shuqiang Zhang, Kashfia Sailunaz and Suresh Neethirajan
AI 2025, 6(9), 199; https://doi.org/10.3390/ai6090199 - 22 Aug 2025
Viewed by 152
Abstract
Timely, objective pain recognition in dairy cattle is essential for welfare assurance, productivity, and ethical husbandry yet remains elusive because evolutionary pressure renders bovine distress signals brief and inconspicuous. Without verbal self-reporting, cows suppress overt cues, so automated vision is indispensable for on-farm [...] Read more.
Timely, objective pain recognition in dairy cattle is essential for welfare assurance, productivity, and ethical husbandry yet remains elusive because evolutionary pressure renders bovine distress signals brief and inconspicuous. Without verbal self-reporting, cows suppress overt cues, so automated vision is indispensable for on-farm triage. Although earlier systems tracked whole-body posture or static grimace scales, frame-level detection of facial micro-expressions has not been explored fully in livestock. We translate micro-expression analytics from automotive driver monitoring to the barn, linking modern computer vision with veterinary ethology. Our two-stage pipeline first detects faces and 30 landmarks using a custom You Only Look Once (YOLO) version 8-Pose network, achieving a 96.9% mean average precision (mAP) at an Intersection over the Union (IoU) threshold of 0.50 for detection and 83.8% Object Keypoint Similarity (OKS) for keypoint placement. Cropped eye, ear, and muzzle patches are encoded using a pretrained MobileNetV2, generating 3840-dimensional descriptors that capture millisecond muscle twitches. Sequences of five consecutive frames are fed into a 128-unit Long Short-Term Memory (LSTM) classifier that outputs pain probabilities. On a held-out validation set of 1700 frames, the system records 99.65% accuracy and an F1-score of 0.997, with only three false positives and three false negatives. Tested on 14 unseen barn videos, it attains 64.3% clip-level accuracy (i.e., overall accuracy for the whole video clip) and 83% precision for the pain class, using a hybrid aggregation rule that combines a 30% mean probability threshold with micro-burst counting to temper false alarms. As an early exploration from our proof-of-concept study on a subset of our custom dairy farm datasets, these results show that micro-expression mining can deliver scalable, non-invasive pain surveillance across variations in illumination, camera angle, background, and individual morphology. Future work will explore attention-based temporal pooling, curriculum learning for variable window lengths, domain-adaptive fine-tuning, and multimodal fusion with accelerometry on the complete datasets to elevate the performance toward clinical deployment. Full article
Show Figures

Figure 1

23 pages, 2751 KB  
Article
MSConv-YOLO: An Improved Small Target Detection Algorithm Based on YOLOv8
by Linli Yang and Barmak Honarvar Shakibaei Asli
J. Imaging 2025, 11(8), 285; https://doi.org/10.3390/jimaging11080285 - 21 Aug 2025
Viewed by 109
Abstract
Small object detection in UAV aerial imagery presents significant challenges due to scale variations, sparse feature representation, and complex backgrounds. To address these issues, this paper focuses on practical engineering improvements to the existing YOLOv8s framework, rather than proposing a fundamentally new algorithm. [...] Read more.
Small object detection in UAV aerial imagery presents significant challenges due to scale variations, sparse feature representation, and complex backgrounds. To address these issues, this paper focuses on practical engineering improvements to the existing YOLOv8s framework, rather than proposing a fundamentally new algorithm. We introduce MultiScaleConv-YOLO (MSConv-YOLO), an enhanced model that integrates well-established techniques to improve detection performance for small targets. Specifically, the proposed approach introduces three key improvements: (1) a MultiScaleConv (MSConv) module that combines depthwise separable and dilated convolutions with varying dilation rates, enhancing multi-scale feature extraction while maintaining efficiency; (2) the replacement of CIoU with WIoU v3 as the bounding box regression loss, which incorporates a dynamic non-monotonic focusing mechanism to improve localization for small targets; and (3) the addition of a high-resolution detection head in the neck–head structure, leveraging FPN and PAN to preserve fine-grained features and ensure full-scale coverage. Experimental results on the VisDrone2019 dataset show that MSConv-YOLO outperforms the baseline YOLOv8s by achieving a 6.9% improvement in mAP@0.5 and a 6.3% gain in recall. Ablation studies further validate the complementary impact of each enhancement. This paper presents practical and effective engineering enhancements to small object detection in UAV scenarios, offering an improved solution without introducing entirely new theoretical constructs. Future work will focus on lightweight deployment and adaptation to more complex environments. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

20 pages, 16392 KB  
Article
PCC-YOLO: A Fruit Tree Trunk Recognition Algorithm Based on YOLOv8
by Yajie Zhang, Weiliang Jin, Baoxing Gu, Guangzhao Tian, Qiuxia Li, Baohua Zhang and Guanghao Ji
Agriculture 2025, 15(16), 1786; https://doi.org/10.3390/agriculture15161786 - 21 Aug 2025
Viewed by 160
Abstract
With the development of smart agriculture, the precise identification of fruit tree trunks by orchard management robots has become a key technology for achieving autonomous navigation. To solve the issue of tree trunks being hard to see against their background in orchards, this [...] Read more.
With the development of smart agriculture, the precise identification of fruit tree trunks by orchard management robots has become a key technology for achieving autonomous navigation. To solve the issue of tree trunks being hard to see against their background in orchards, this study introduces PCC-YOLO (PENet, CoT-Net, and Coord-SE attention-based YOLOv8), a new trunk detection model based on YOLOv8. It improves the ability to identify features in low-contrast situations by using a pyramid enhancement network (PENet), a context transformer (CoT-Net) module, and a combined coordinate and channel attention mechanism. By introducing a pyramid enhancement network (PENet) into YOLOv8, the model’s feature extraction ability under low-contrast conditions is enhanced. A context transformer module (CoT-Net) is then used to strengthen global perception capabilities, and a combination of coordinate attention (Coord-Att) and SENetV2 is employed to optimize target localization accuracy. Experimental results show that PCC-YOLO achieves a mean average precision (mAP) of 82.6% on a self-built orchard dataset (5000 images) and a detection speed of 143.36 FPS, marking a 4.8% improvement over the performance of the baseline YOLOv8 model, while maintaining a low computational load (7.8 GFLOPs). The model demonstrates a superior balance of accuracy, speed, and computational cost compared to results for the baseline YOLOv8 and other common YOLO variants, offering an efficient solution for the real-time autonomous navigation of orchard management robots. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 2959 KB  
Article
From Detection to Diagnosis: An Advanced Transfer Learning Pipeline Using YOLO11 with Morphological Post-Processing for Brain Tumor Analysis for MRI Images
by Ikram Chourib
J. Imaging 2025, 11(8), 282; https://doi.org/10.3390/jimaging11080282 - 21 Aug 2025
Viewed by 362
Abstract
Accurate and timely detection of brain tumors from magnetic resonance imaging (MRI) scans is critical for improving patient outcomes and informing therapeutic decision-making. However, the complex heterogeneity of tumor morphology, scarcity of annotated medical data, and computational demands of deep learning models present [...] Read more.
Accurate and timely detection of brain tumors from magnetic resonance imaging (MRI) scans is critical for improving patient outcomes and informing therapeutic decision-making. However, the complex heterogeneity of tumor morphology, scarcity of annotated medical data, and computational demands of deep learning models present substantial challenges for developing reliable automated diagnostic systems. In this study, we propose a robust and scalable deep learning framework for brain tumor detection and classification, built upon an enhanced YOLO-v11 architecture combined with a two-stage transfer learning strategy. The first stage involves training a base model on a large, diverse MRI dataset. Upon achieving a mean Average Precision (mAP) exceeding 90%, this model is designated as the Brain Tumor Detection Model (BTDM). In the second stage, the BTDM is fine-tuned on a structurally similar but smaller dataset to form Brain Tumor Detection and Segmentation (BTDS), effectively leveraging domain transfer to maintain performance despite limited data. The model is further optimized through domain-specific data augmentation—including geometric transformations—to improve generalization and robustness. Experimental evaluations on publicly available datasets show that the framework achieves high mAP@0.5 scores (up to 93.5% for the BTDM and 91% for BTDS) and consistently outperforms existing state-of-the-art methods across multiple tumor types, including glioma, meningioma, and pituitary tumors. In addition, a post-processing module enhances interpretability by generating segmentation masks and extracting clinically relevant metrics such as tumor size and severity level. These results underscore the potential of our approach as a high-performance, interpretable, and deployable clinical decision-support tool, contributing to the advancement of intelligent real-time neuro-oncological diagnostics. Full article
(This article belongs to the Topic Machine Learning and Deep Learning in Medical Imaging)
Show Figures

Figure 1

16 pages, 2923 KB  
Article
Method for Dairy Cow Target Detection and Tracking Based on Lightweight YOLO v11
by Zhongkun Li, Guodong Cheng, Lu Yang, Shuqing Han, Yali Wang, Xiaofei Dai, Jianyu Fang and Jianzhai Wu
Animals 2025, 15(16), 2439; https://doi.org/10.3390/ani15162439 - 20 Aug 2025
Viewed by 134
Abstract
With the development of precision livestock farming, in order to achieve the goal of fine management and improve the health and welfare of dairy cows, research on dairy cow motion monitoring has become particularly important. In this study, considering the problems surrounding a [...] Read more.
With the development of precision livestock farming, in order to achieve the goal of fine management and improve the health and welfare of dairy cows, research on dairy cow motion monitoring has become particularly important. In this study, considering the problems surrounding a large amount of model parameters, the poor accuracy of multi-target tracking, and the nonlinear motion of dairy cows in dairy farming scenes, a lightweight detection model based on improved YOLO v11n was proposed and four tracking algorithms were compared. Firstly, the Ghost module was used to replace the standard convolutions in the YOLO v11n network and a more lightweight attention mechanism called ELA was replaced, which reduced the number of model parameters by 18.59%. Then, a loss function called SDIoU was used to solve the influence of different cow target sizes. With the above improvements, the improved model achieved an increase of 2.0 percentage points and 2.3 percentage points in mAP@75 and mAP@50-95, respectively. Secondly, the performance of four tracking algorithms, including ByteTrack, BoT-SORT, OC-SORT, and BoostTrack, was systematically compared. The results show that 97.02% MOTA and 89.81% HOTA could be achieved when combined with the OC-SORT tracking algorithm. Considering the demand of equipment in lightweight models, the improved object detection model in this paper reduces the number of model parameters while offering better performance. The OC-SORT tracking algorithm enables the tracking and localization of cows through video surveillance alone, creating the necessary conditions for the continuous monitoring of cows. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

19 pages, 6678 KB  
Article
Wheat Head Detection in Field Environments Based on an Improved YOLOv11 Model
by Yuting Zhang, Zihang Liu, Xiangdong Guo, Congcong Li and Guifa Teng
Agriculture 2025, 15(16), 1765; https://doi.org/10.3390/agriculture15161765 - 17 Aug 2025
Viewed by 502
Abstract
Precise wheat head detection is essential for plant counting and yield estimation in precision agriculture. To tackle the difficulties arising from densely packed wheat heads with diverse scales and intricate occlusions in real-world field conditions, this research introduces YOLO v11n-GRN, an improved wheat [...] Read more.
Precise wheat head detection is essential for plant counting and yield estimation in precision agriculture. To tackle the difficulties arising from densely packed wheat heads with diverse scales and intricate occlusions in real-world field conditions, this research introduces YOLO v11n-GRN, an improved wheat head detection model founded on the streamlined YOLO v11n framework. The model optimizes performance through three key innovations: This study introduces a Global Edge Information Transfer (GEIT) module architecture that incorporates a Multi-Scale Edge Information Generator (MSEIG) to enhance the perception of wheat head contours through effective modeling of edge features and deep semantic fusion. Additionally, a C3k2_RFCAConv module is developed to improve spatial awareness and multi-scale feature representation by integrating receptive field augmentation and a coordinate attention mechanism. The utilization of the Normalized Gaussian Wasserstein Distance (NWD) as the localization loss function enhances regression stability for distant small targets. Experiments were, respectively, validated on the self-built multi-temporal wheat field image dataset and the GWHD2021 public dataset. Results showed that, while maintaining a lightweight design (3.6 MB, 10.3 GFLOPs), the YOLOv11n-GRN model achieved a precision, recall, and mAP@0.5 of 92.5%, 91.1%, and 95.7%, respectively, on the self-built dataset, and 91.6%, 89.7%, and 94.4%, respectively, on the GWHD2021 dataset. This fully demonstrates that the improvements can effectively enhance the model’s comprehensive detection performance for wheat ear targets in complex backgrounds. Meanwhile, this study offers an effective technical approach for wheat head detection and yield estimation in challenging field conditions, showcasing promising practical implications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 1118 KB  
Article
SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices
by Haixia Liu, Yingkun Song, Yongxing Lin and Zhixin Tie
Sensors 2025, 25(16), 5072; https://doi.org/10.3390/s25165072 - 15 Aug 2025
Viewed by 423
Abstract
Vehicle detection plays a pivotal role in traffic management as a key technology for intelligent traffic management and driverless driving. However, current deep learning-based vehicle detection models face several challenges in practical applications. These include slow detection speeds, large computational and parametric quantities, [...] Read more.
Vehicle detection plays a pivotal role in traffic management as a key technology for intelligent traffic management and driverless driving. However, current deep learning-based vehicle detection models face several challenges in practical applications. These include slow detection speeds, large computational and parametric quantities, high leakage and misdetection rates in target-intensive environments, and difficulties in deploying them on edge devices with limited computing power and memory. To address these issues, this paper proposes an improved vehicle detection method called SMA-YOLO, based on the YOLOv7 model. Firstly, MobileNetV3 is adopted as the new backbone network to lighten the model. Secondly, the SimAM attention mechanism is incorporated to suppress background interference and enhance small-target detection capability. Additionally, the ACON activation function is substituted for the original SiLU activation function in the YOLOv7 model to improve detection accuracy. Lastly, SIoU is used to replace CIoU to optimize the loss of function and accelerate model convergence. Experiments on the UA-DETRAC dataset demonstrate that the proposed SMA-YOLO model achieves a lightweight effect, significantly reducing model size, computational requirements, and the number of parameters. It not only greatly improves detection speed but also maintains higher detection accuracy. This provides a feasible solution for deploying a vehicle detection model on embedded devices for real-time detection. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 7955 KB  
Article
Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites
by JongHo Na, JaeKang Lee, HyuSoung Shin and IlDong Yun
Appl. Sci. 2025, 15(16), 9000; https://doi.org/10.3390/app15169000 - 14 Aug 2025
Viewed by 228
Abstract
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data [...] Read more.
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data were collected from an actual earthwork site. Key construction equipment and terrain objects primarily operated at the site were identified, and 89,766 images were processed to build a site-specific training dataset. This dataset includes annotated bounding boxes for object detection and polygon masks for instance segmentation. The performance of the dataset was validated using representative models—YOLO v7 for object detection and Mask R-CNN for instance segmentation. Quantitative metrics and visual assessments confirmed the validity and practical applicability of the dataset. The dataset used in this study has been made publicly available for use by researchers in related fields. This dataset is expected to serve as a foundational resource for advancing object detection applications in construction safety. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 4742 KB  
Article
Design and Evaluation of LLDPE/Epoxy Composite Tiles with YOLOv8-Based Defect Detection for Flooring Applications
by I. Infanta Mary Priya, Siddharth Anand, Aravindan R. Bishwakarma, M. Uma, Sethuramalingam Prabhu and M. M. Reddy
Processes 2025, 13(8), 2568; https://doi.org/10.3390/pr13082568 - 14 Aug 2025
Viewed by 195
Abstract
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a [...] Read more.
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a hardener as a green substitute for conventional ceramic and cement tiles. LLDPE is recognized for its flexibility, durability, and chemical resistance, making it an effective filler within the epoxy matrix. To optimize its material properties, composite samples were fabricated using three different LLDPE-to-epoxy ratios: 30:70, 40:60, and 50:50. Flexural strength testing revealed that while the 50:50 blend achieved the highest maximum value (29.887 MPa), it also exhibited significant variability, reducing its reliability for practical applications. In contrast, the 40:60 ratio demonstrated more consistent and repeatable flexural strength, ranging from 16 to 20 MPa, which is ideal for flooring applications where mechanical performance under repeated loading is critical. Scanning Electron Microscopy (SEM) images confirmed uniform filler dispersion in the 40:60 mix, further supporting its mechanical consistency. The 30:70 composition showed irregular and erratic behaviour, with values ranging from 11.596 to 25.765 MPa, indicating poor dispersion and increased brittleness. To complement the development of the materials, deep learning techniques were employed for real-time defect detection in the manufactured tiles. Utilizing the YOLOv8 (You Only Look Once version 8) algorithm, this study implemented an automated, vision-based surface monitoring system capable of identifying surface deterioration and defects. A dataset comprising over 100 annotated images was prepared, featuring various surface defects such as cracks, craters, glaze detachment, and tile lacunae, alongside defect-free samples. The integration of machine learning not only enhances quality control in the production process but also offers a scalable solution for defect detection in large-scale manufacturing environments. This research demonstrates a dual approach to material innovation and intelligent defect detection to improve the performance and quality assurance of composite tiles, contributing to sustainable construction practices. Full article
Show Figures

Figure 1

23 pages, 3875 KB  
Article
Edge AI for Industrial Visual Inspection: YOLOv8-Based Visual Conformity Detection Using Raspberry Pi
by Marcelo T. Okano, William Aparecido Celestino Lopes, Sergio Miele Ruggero, Oduvaldo Vendrametto and João Carlos Lopes Fernandes
Algorithms 2025, 18(8), 510; https://doi.org/10.3390/a18080510 - 14 Aug 2025
Viewed by 460
Abstract
This paper presents a lightweight and cost-effective computer vision solution for automated industrial inspection using You Only Look Once (YOLO) v8 models deployed on embedded systems. The YOLOv8 Nano model, trained for 200 epochs, achieved a precision of 0.932, an mAP@0.5 of 0.938, [...] Read more.
This paper presents a lightweight and cost-effective computer vision solution for automated industrial inspection using You Only Look Once (YOLO) v8 models deployed on embedded systems. The YOLOv8 Nano model, trained for 200 epochs, achieved a precision of 0.932, an mAP@0.5 of 0.938, and an F1-score of 0.914, with an average inference time of ~470 ms on a Raspberry Pi 500, confirming its feasibility for real-time edge applications. The proposed system aims to replace physical jigs used for the dimensional verification of extruded polyamide tubes in the automotive sector. The YOLOv8 Nano and YOLOv8 Small models were trained on a Graphics Processing Unit (GPU) workstation and subsequently tested on a Central Processing Unit (CPU)-only Raspberry Pi 500 to evaluate their performance in constrained environments. The experimental results show that the Small model achieved higher accuracy (a precision of 0.951 and an mAP@0.5 of 0.941) but required a significantly longer inference time (~1315 ms), while the Nano model achieved faster execution (~470 ms) with stable metrics (precision of 0.932 and mAP@0.5 of 0.938), therefore making it more suitable for real-time applications. The system was validated using authentic images in an industrial setting, confirming its feasibility for edge artificial intelligence (AI) scenarios. These findings reinforce the feasibility of embedded AI in smart manufacturing, demonstrating that compact models can deliver reliable performance without requiring high-end computing infrastructure. Full article
(This article belongs to the Special Issue Advances in Computer Vision: Emerging Trends and Applications)
Show Figures

Figure 1

20 pages, 3137 KB  
Article
Development and Implementation of an IoT-Enabled Smart Poultry Slaughtering System Using Dynamic Object Tracking and Recognition
by Hao-Ting Lin and Suhendra
Sensors 2025, 25(16), 5028; https://doi.org/10.3390/s25165028 - 13 Aug 2025
Viewed by 360
Abstract
With growing global attention on animal welfare and food safety, humane and efficient slaughtering methods in the poultry industry are in increasing demand. Traditional manual inspection methods for stunning broilers need significant expertise. Additionally, most studies on electrical stunning focus on white broilers, [...] Read more.
With growing global attention on animal welfare and food safety, humane and efficient slaughtering methods in the poultry industry are in increasing demand. Traditional manual inspection methods for stunning broilers need significant expertise. Additionally, most studies on electrical stunning focus on white broilers, whose optimal stunning conditions are not suitable for red-feathered Taiwan chickens. This study aimed to implement a smart, safe, and humane slaughtering system designed to enhance animal welfare and integrate an IoT-enabled vision system into slaughter operations for red-feathered Taiwan chickens. The system enables real-time monitoring and smart management of the poultry stunning process using image technologies for dynamic object tracking recognition. Focusing on red-feathered Taiwan chickens, the system applies dynamic tracking objects with chicken morphology feature extraction based on the YOLO-v4 model to accurately identify stunned and unstunned chickens, ensuring compliance with animal welfare principles and improving the overall efficiency and hygiene of poultry processing. In this study, the dynamic tracking object recognition system comprises object morphology feature detection and motion prediction for red-feathered Taiwan chickens during the slaughtering process. Images are firsthand data from the slaughterhouse. To enhance model performance, image amplification techniques are integrated into the model training process. In parallel, the system architecture integrates IoT-enabled modules to support real-time monitoring, sensor-based classification, and cloud-compatible decisions based on collections of visual data. Prior to image amplification, the YOLO-v4 model achieved an average precision (AP) of 83% for identifying unstunned chickens and 96% for identifying stunned chickens. After image amplification, AP improved significantly to 89% and 99%, respectively. The model achieved and deployed a mean average precision (mAP) of 94% at an IoU threshold of 0.75 and processed images at 39 frames per second, demonstrating its suitability for IoT-enabled real-time dynamic tracking object recognition in a real slaughterhouse environment. Furthermore, the YOLO-v4 model for poultry slaughtering recognition in transient stability, as measured by training loss and validation loss, outperforms the YOLO-X model in this study. Overall, this smart slaughtering system represents a practical and scalable application of AI in the poultry industry. Full article
Show Figures

Figure 1

15 pages, 3236 KB  
Article
Analysis of OpenCV Security Vulnerabilities in YOLO v10-Based IP Camera Image Processing Systems for Disaster Safety Management
by Do-Yoon Jung and Nam-Ho Kim
Electronics 2025, 14(16), 3216; https://doi.org/10.3390/electronics14163216 - 13 Aug 2025
Viewed by 354
Abstract
This paper systematically analyzes security vulnerabilities that may occur during the OpenCV library and IP camera linkage process for the YOLO v10-based IP camera image processing system used in the disaster safety management field. Recently, the use of AI-based real-time image analysis technology [...] Read more.
This paper systematically analyzes security vulnerabilities that may occur during the OpenCV library and IP camera linkage process for the YOLO v10-based IP camera image processing system used in the disaster safety management field. Recently, the use of AI-based real-time image analysis technology in disaster response and safety management systems has been increasing, but it has been confirmed that open source-based object detection frameworks and security vulnerabilities in IP cameras can pose serious threats to the reliability and safety of actual systems. In this study, the structure of an image processing system that applies the latest YOLO v10 algorithm was analyzed, and major security threats (e.g., remote code execution, denial of service, data tampering, authentication bypass, etc.) that might occur during the IP camera image collection and processing process using OpenCV were identified. In particular, the possibility of attacks due to insufficient verification of external inputs (model files, configuration files, image data, etc.), failure to set an initial password, and insufficient encryption of network communication sections were presented with cases. These problems could lead to more serious results in mission-critical environments such as disaster safety management. Full article
Show Figures

Figure 1

25 pages, 4360 KB  
Article
Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques
by Kai-Di Zhang, Edward T.-H. Chu, Chia-Rong Lee and Jhih-Hua Su
Electronics 2025, 14(16), 3187; https://doi.org/10.3390/electronics14163187 - 11 Aug 2025
Viewed by 337
Abstract
The popularity of keeping ornamental fish has grown increasingly, as their vibrant presence can provide a calming influence. Accurately assessing the health of ornamental fish is important but challenging. For this, researchers have focused on developing fish tracking methods that provide trajectories for [...] Read more.
The popularity of keeping ornamental fish has grown increasingly, as their vibrant presence can provide a calming influence. Accurately assessing the health of ornamental fish is important but challenging. For this, researchers have focused on developing fish tracking methods that provide trajectories for health assessment. However, issues such as mirror images, occlusion, and motion prediction errors can significantly reduce the accuracy of existing algorithms. To address these problems, we propose a novel ornamental fish tracking method based on deep learning techniques. We first utilize the You Only Look Once (YOLO) v5 deep convolutional neural network algorithm with Distance Intersection over Union–Non Maximum Suppression (DIoU-NMS) to handle occlusion problems. We then design an object removal algorithm to eliminate fish mirror image coordinates. Finally, we adopt an improved DeepSORT algorithm, replacing the original Kalman Filter with an advanced Noise Scale Adaptive (NSA) Kalman Filter to enhance tracking accuracy. In our experiment, we evaluated our method in three simulated real-world fish tank environments, comparing it with the YOLOv5 and YOLOv7 methods. The results show that our method can increase Multiple Object Tracking Accuracy (MOTA) by up to 13.3%, Higher Order Tracking Accuracy (HOTA) by up to 10.0%, and Identification F1 Score by up to 14.5%. These findings confirm that our object removal algorithm effectively improves Multiple Object Tracking Accuracy, which facilitates early disease detection, reduces mortality, and mitigates economic losses—an important consideration given many owners’ limited ability to recognize common diseases. Full article
(This article belongs to the Special Issue Computer Vision and AI Algorithms for Diverse Scenarios)
Show Figures

Figure 1

Back to TopTop