Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = Z matrix protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1727 KB  
Article
An Integrated Approach in Assessing the Food-Related Properties of Microparticulated and Fermented Whey
by Sara Khazzar, Stefania Balzan, Arzu Peker, Laura Da Dalt, Federico Fontana, Elisabetta Garbin, Federica Tonolo, Graziano Rilievo, Enrico Novelli and Severino Segato
Foods 2025, 14(19), 3421; https://doi.org/10.3390/foods14193421 - 4 Oct 2025
Viewed by 306
Abstract
As native bovine whey (WHEY) poses environmental concerns as a high-water-content by-product, this trial aimed at assessing the effectiveness of a thermal–mechanical microparticulation coupled with a fermentative process to concentrate it into a high-protein soft dairy cream. Compared to native whey, in microparticulated [...] Read more.
As native bovine whey (WHEY) poses environmental concerns as a high-water-content by-product, this trial aimed at assessing the effectiveness of a thermal–mechanical microparticulation coupled with a fermentative process to concentrate it into a high-protein soft dairy cream. Compared to native whey, in microparticulated (MPW) and fermented (FMPW) matrices, there was a significant increase in proteins (from 0.7 to 8.8%) and lipids (from 0.3 to 1.3%), and a more brilliant yellowness colour. A factorial discriminant analysis (FDA) showed that FMPW had a higher content of saturated fatty acid (SFA) and some specific polyunsaturated fatty acid (PUFA) n-6, and also identified C14:0, C18:1, C18:1 t-11, C18:2 n-6, and C18:3 n-6 as informative biomarkers of microparticulation and fermentative treatments. The SDS-PAGE indicated no effects on the protein profile but indicated its rearrangement into high molecular weight aggregates. Z-sizer and transmission electron microscopy analyses confirmed a different supramolecular structure corresponding to a higher variability and greater incidence of very large molecular aggregates, suggesting that MPW could be accounted as a colloidal matrix that may have similar ball-bearing lubrication properties. Microparticulation of whey could facilitate its circularity into the dairy supply chain through its re-generation from a waste into a high-value fat replacer for dairy-based food production. Full article
Show Figures

Figure 1

19 pages, 3202 KB  
Article
Identification of Proteins Associated with Ovarian Cancer Chemotherapy Resistance Using MALDI-MSI
by Tannith M. Noye, Parul Mittal, Zoe K. Price, Annie Fewster, Georgia Williams, Tara L. Pukala, Manuela Klingler-Hoffmann, Peter Hoffmann, Martin K. Oehler, Noor A. Lokman and Carmela Ricciardelli
Int. J. Mol. Sci. 2025, 26(12), 5893; https://doi.org/10.3390/ijms26125893 - 19 Jun 2025
Viewed by 963
Abstract
Ovarian cancer is the most lethal gynecological cancer. Up to 75% of cases are high-grade serous ovarian cancer (HGSOC) that have high chemosensitivity to first-line platinum-based therapies. However, 75% of patients will become chemoresistant following relapse. The underlying mechanism for developing resistance to [...] Read more.
Ovarian cancer is the most lethal gynecological cancer. Up to 75% of cases are high-grade serous ovarian cancer (HGSOC) that have high chemosensitivity to first-line platinum-based therapies. However, 75% of patients will become chemoresistant following relapse. The underlying mechanism for developing resistance to chemotherapy in HGSOC is poorly understood. In this study, we employed Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging (MALDI-MSI) on matching formalin-fixed paraffin-embedded (FFPE) HGSOC tissues at the time of diagnosis and following relapse with chemotherapy-resistant disease (n = 4). We identified m/z values that were differentially abundant in the matching diagnosis and relapse HGSOC tissues. These were matched to proteins using nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified upregulated proteins in the HGSOC relapse tissues, including COL12A1, FUBP1, PLEC, SLC4A1, and TKT. These proteins were validated by immunohistochemistry (IHC) and gene expression using online databases. IHC showed COL12A1, FUBP1, PLEC, SLC4A1, and TKT protein abundance were significantly elevated in HGSOC relapse tissues compared to matching tissues at diagnosis. COL12A1, FUBP1, PLEC, and TKT mRNA expression levels were significantly increased in HGSOC compared to normal ovary and associated with poor prognosis in HGSOC. We confirmed that higher protein abundance of both COL12A1 and PLEC correlated with reduced progression-free survival in HGSOC patients. Furthermore, both COL12A1 and PLEC mRNA and protein levels were significantly associated with chemotherapy resistance. In summary, using MALDI-MSI, we have identified proteins, including COL12A1 and PLEC, associated with chemotherapy resistance to be further evaluated as HGSOC biomarkers and/or therapeutic targets. Full article
(This article belongs to the Special Issue Current Research for Ovarian Cancer Biology and Therapeutics)
Show Figures

Figure 1

27 pages, 8052 KB  
Article
The RNA Chaperone Hfq and Small Non-Coding RNAs Modulate the Biofilm Formation of the Fish Pathogen Yersinia ruckeri
by María J. Barros, Lillian G. Acuña, Felipe Hernández-Vera, Pía Vásquez-Arriagada, Diego Peñaloza, Ana Moya-Beltrán, Fausto Cabezas-Mera, Francisco Parra, Fernando Gil, Juan A. Fuentes and Iván L. Calderón
Int. J. Mol. Sci. 2025, 26(10), 4733; https://doi.org/10.3390/ijms26104733 - 15 May 2025
Cited by 1 | Viewed by 875
Abstract
The fish pathogen Yersinia ruckeri forms biofilms on abiotic surfaces, contributing to recurrent infections in aquaculture. Increasing evidence suggests that the RNA chaperone Hfq and small non-coding RNAs (sRNAs) are key regulators of bacterial biofilm formation. However, the regulatory mechanisms mediated by these [...] Read more.
The fish pathogen Yersinia ruckeri forms biofilms on abiotic surfaces, contributing to recurrent infections in aquaculture. Increasing evidence suggests that the RNA chaperone Hfq and small non-coding RNAs (sRNAs) are key regulators of bacterial biofilm formation. However, the regulatory mechanisms mediated by these factors remain largely unexplored in Y. ruckeri. In this study, we investigated the roles of Hfq and the Hfq-dependent sRNAs RprA, ArcZ, and RybB in the biofilm formation of Y. ruckeri. We first characterized the sRNAome of biofilm-forming cells, identifying the conserved RprA, ArcZ, and RybB, among the upregulated sRNAs. We then evaluated motility, biofilm formation, and architecture in strains lacking either hfqhfq) or these sRNAs (ΔsRNA). Our results reveal that both Δhfq and ΔsRNA strains exhibit significant alterations in biofilm and motility phenotypes, including changes in bacterial morphology and extracellular matrix. Furthermore, expression analyses indicate that these sRNAs modulate the transcription of key regulatory factors, flagellar and phosphodiesterase genes, ultimately influencing intracellular cyclic di-GMP levels, a key second messenger in biofilm formation. Together, our findings demonstrate that Hfq and its associated sRNAs play critical regulatory roles in Y. ruckeri biofilm formation by controlling the expression of genes involved in motility, bacterial envelope proteins, and c-di-GMP metabolism. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

11 pages, 4258 KB  
Article
Mammarenavirus Z Protein Myristoylation and Oligomerization Are Not Required for Its Dose-Dependent Inhibitory Effect on vRNP Activity
by Haydar Witwit and Juan C. de la Torre
BioChem 2025, 5(2), 10; https://doi.org/10.3390/biochem5020010 - 29 Apr 2025
Cited by 2 | Viewed by 921
Abstract
Background/Objectives: N-Myristoyltransferase inhibitors (NMTi) represent a novel antiviral strategy against mammarenaviruses such as Lassa and Junin viruses. The Z matrix protein inhibits viral ribonucleoprotein (vRNP) activity in a dose-dependent manner. Here, we investigated whether Z-mediated vRNP inhibition depends on Z myristoylation or [...] Read more.
Background/Objectives: N-Myristoyltransferase inhibitors (NMTi) represent a novel antiviral strategy against mammarenaviruses such as Lassa and Junin viruses. The Z matrix protein inhibits viral ribonucleoprotein (vRNP) activity in a dose-dependent manner. Here, we investigated whether Z-mediated vRNP inhibition depends on Z myristoylation or oligomerization. Methods: We used HEK293T cells transfected with wild-type (WT) or G2A-mutated Z constructs in LCMV minigenome (MG) assays. Cells were treated with the NMTi IMP-1088 and the proteasome inhibitor MG132. Z protein expression, vRNP activity, and VLP production were analyzed by immunofluorescence, western blotting, and colocalization analyses. Results: IMP-1088 treatment led to proteasome-mediated degradation of Z, reducing its inhibition of vRNP activity, which was restored by MG132. The non-myristoylated Z G2A mutant retained vRNP inhibitory activity but showed impaired oligomerization and budding capacity. These findings demonstrate that Z-mediated vRNP inhibition is independent of myristoylation and oligomerization. Conclusions: Z myristoylation and oligomerization are not required for its inhibitory vRNP activity. Targeting Z myristoylation with NMTi impairs virus assembly and budding without affecting Z-mediated inhibition of vRNP activity, supporting the development of NMTi as a promising broad-spectrum antiviral strategy against mammarenaviruses. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

19 pages, 1786 KB  
Article
Contamination of Wheat Flour and Processed Foodstuffs with Soybean and Mustard Allergenic Proteins
by Mariachiara Bianco, Domenico De Palma, Antonio Pagano, Ilario Losito, Tommaso R. I. Cataldi and Cosima D. Calvano
Int. J. Mol. Sci. 2025, 26(8), 3891; https://doi.org/10.3390/ijms26083891 - 20 Apr 2025
Viewed by 797
Abstract
In recent years, sustainable agricultural practices in wheat cultivation have garnered significant attention, particularly those focused on minimizing pesticide and herbicide usage to safeguard the environment. One effective approach is green manuring, which entails rotating wheat with crops such as soybean and mustard [...] Read more.
In recent years, sustainable agricultural practices in wheat cultivation have garnered significant attention, particularly those focused on minimizing pesticide and herbicide usage to safeguard the environment. One effective approach is green manuring, which entails rotating wheat with crops such as soybean and mustard to harness their natural pesticidal and herbicidal properties. While this method presents clear environmental advantages, it also poses a risk of cross-contamination, as these globally recognized allergens may unintentionally pass through wheat-based products. To protect consumers with allergies, there is an urgent need for a reliable analytical method to detect and quantify these allergenic proteins in wheat-derived foodstuffs. In this study, we assessed various protein extraction protocols to optimize the recovery of soybean and mustard allergens from wheat flour. The extracted proteins were analyzed using a bottom-up proteomics approach involving trypsin digestion, coupled with reversed-phase liquid chromatography and mass spectrometry in multiple reaction monitoring (MRM) mode. Two key allergenic proteins, Glycinin G1 and 11S Globulin, were selected as representative for soybean and mustard, respectively. The identified quantifier marker of Glycinin G1 was VLIVPQNFVVAAR (m/z 713.4312+), while FYLAGNQEQEFLK (m/z 793.8962+) and VFDGELQEGR (m/z 575.2802+) were designated as qualifier markers. The selection of specific marker peptides for mustard proved challenging due to the high structural similarity among proteins from Sinapis alba and other members of the Brassicaceae family. For 11S Globulin, FNTLETTLTR (m/z 598.3192+) was recognized as the quantifier marker, with VTSVNSYTLPILQYIR (m/z 934.0192+) serving as the qualifier marker. The developed method underwent thorough validation for linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, repeatability, and reproducibility, as well as potential matrix and processing effects. This strategy successfully facilitated the identification and quantification of soybean and mustard allergenic proteins in complex, processed food matrices, including naturally contaminated flour and cookies. These findings enhance food safety monitoring and regulatory compliance, thereby helping to mitigate allergen-related risks in wheat-based products. Full article
Show Figures

Figure 1

23 pages, 4442 KB  
Article
Biotechnological Phytocomplex of Zanthoxylum piperitum (L.) DC. Enhances Collagen Biosynthesis In Vitro and Improves Skin Elasticity In Vivo
by Giovanna Rigillo, Giovanna Pressi, Oriana Bertaiola, Chiara Guarnerio, Matilde Merlin, Roberto Zambonin, Stefano Pandolfo, Angela Golosio, Francesca Masin, Fabio Tascedda, Marco Biagi and Giulia Baini
Pharmaceutics 2025, 17(1), 138; https://doi.org/10.3390/pharmaceutics17010138 - 20 Jan 2025
Viewed by 2700
Abstract
Background: Zanthoxylum piperitum (L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia. Its berries are widely used as a spice, known for imparting a distinctive, tingly numbing sensation. Biologically, Z. piperitum has antimicrobial, antioxidant, and anti-inflammatory [...] Read more.
Background: Zanthoxylum piperitum (L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia. Its berries are widely used as a spice, known for imparting a distinctive, tingly numbing sensation. Biologically, Z. piperitum has antimicrobial, antioxidant, and anti-inflammatory properties, and it is studied for its potential benefits in pain relief and digestive health. This study proposed a novel biotechnological Z. piperitum phytocomplex (ZPP) obtained by plant cell culture for skin health, specifically targeting collagen synthesis, extracellular matrix stability, and resilience against cellular stress. Given the bioactivity of Z. piperitum, we aimed to analyze its efficacy as a sustainable alternative for skin-supportive applications in cosmetics and supplements. Methods: ZPP was produced through stable plant cell cultures, yielding a lignan-rich (3.02% w/w) phytocomplex. Human fibroblasts (HFFs) were treated with varying ZPP concentrations to assess cellular viability, collagen metabolism, and ECM-related enzyme activities, both under normal and cell stress conditions. The in vivo assessment was performed by measuring biophysical skin parameters such as hydration, elasticity, and roughness in female volunteers for a period of six weeks. Results: In vitro, ZPP exhibited non-cytotoxicity at all concentrations tested. Under hyperosmotic stress, ZPP reduced cellular damage, suggesting enhanced resilience. ZPP upregulated lysyl oxidase (LOX) protein levels, critical for collagen cross-linking and ECM stability, with protective effects observed under oxidative/inflammatory conditions. Additionally, ZPP selectively inhibited collagenase, attenuating collagen breakdown, though antioxidant activity was modest. In vivo evaluation highlighted improved skin hydration, elasticity, and roughness. Conclusions: ZPP shows promise as a biotechnological agent for skin health, particularly in supporting collagen integrity, ECM stabilization, and cellular resilience under stress. While further studies are needed to explore its full efficacy, especially for aging and environmentally stressed skin, these findings highlight ZPP’s potential as a new ingredient for cosmetic formulations aimed at skin care and the treatment of alterations caused by aging or environmental conditions. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Figure 1

15 pages, 3168 KB  
Article
Differentiation of Escherichia coli and Shigella flexneri by Metabolite Profiles Obtained Using Gold Nanoparticles-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry
by Adrian Arendowski
Pathogens 2025, 14(1), 19; https://doi.org/10.3390/pathogens14010019 - 30 Dec 2024
Viewed by 1854
Abstract
Escherichia coli and Shigella flexneri are challenging to differentiate using methods such as phenotyping, 16S rRNA sequencing, or protein profiling through matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) due to their close relatedness. This study explores the potential for identifying E. coli and [...] Read more.
Escherichia coli and Shigella flexneri are challenging to differentiate using methods such as phenotyping, 16S rRNA sequencing, or protein profiling through matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) due to their close relatedness. This study explores the potential for identifying E. coli and S. flexneri by incorporating reference spectra of metabolite profiles, obtained via surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) employing gold nanoparticles (AuNPs), into the Bruker Biotyper database. Metabolite extracts from E. coli and S. flexneri cells were prepared using liquid–liquid extraction in a chloroform–methanol–water system. The extracts were analyzed using Au-SALDI MS in positive ion mode, and reference spectra, compiled from 30 spectra for each bacterium, were added to the database. Identification of bacteria based on metabolite fingerprints in the Biotyper database produced correct results with scores exceeding 2.75. The results of Partial Least Squares-Discriminant Analysis (PLS-DA) demonstrated that the metabolomic approach could accurately differentiate the microorganisms under study. A panel of nine m/z values was also identified, each with an area under the ROC curve of above 0.8, enabling accurate identification of E. coli and S. flexneri. A search of metabolite databases allowed the following compounds to be assigned to the selected m/z values: N-acetylputrescine, arginine, 2-maleylacetate, benzoyl phosphate, N8-acetylspermidine, alanyl-glutamate, 4-hydroxy-2,3,4,5-tetrahydrodipicolinate, and sucrose. The analyses showed that identification of bacteria based on metabolite profiles obtained by the Au-SALDI MS method is feasible and can be useful for distinguishing closely related microorganisms that are difficult to differentiate by other techniques. Full article
(This article belongs to the Special Issue Rapid Novel Diagnostics for Infectious Disease)
Show Figures

Figure 1

18 pages, 5637 KB  
Article
Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane
by Xiang Li, Yijing Gao, Cuifang Yang, Hairong Huang, Yijie Li, Shengfeng Long, Hai Yang, Lu Liu, Yaoyang Shen and Zeping Wang
Agronomy 2024, 14(11), 2640; https://doi.org/10.3390/agronomy14112640 - 8 Nov 2024
Cited by 1 | Viewed by 1027
Abstract
Pokkah boeng disease (PBD), which is caused by Fusarium verticillioides, is a major sugarcane disease in Southeast Asian countries. Breeding varieties to become resistant to F. verticillioides is the most effective approach for minimizing the damage caused by PBD, and identifying genes [...] Read more.
Pokkah boeng disease (PBD), which is caused by Fusarium verticillioides, is a major sugarcane disease in Southeast Asian countries. Breeding varieties to become resistant to F. verticillioides is the most effective approach for minimizing the damage caused by PBD, and identifying genes mediating resistance to PBD via molecular techniques is essential. The production of reactive oxygen species (ROSs) is one of a cell’s first responses to pathogenic infections. Plant peroxisomes play roles in several metabolic processes involving ROSs. In this study, seedlings of YT94/128 and GT37 inoculated with F. verticillioides were used to identify PBD resistance genes. The cells showed a high degree of morphological variation, and the cell walls became increasingly degraded as the duration of the infection increased. There was significant variation in H2O2 accumulation over time. Catalase, superoxide dismutase, and peroxidase activities increased in both seedlings. Analysis of differentially expressed genes (DEGs) revealed that peroxidase-metabolism-related genes are mainly involved in matrix protein import and receptor recycling, adenine nucleotide transport, peroxisome division, ROS metabolism, and processes related to peroxisomal membrane proteins. The expression levels of SoCATA1 and SoSOD2A2 gradually decreased after sugarcane infection. F. verticillioides inhibited the expressions of C5YVR0 and C5Z4S4. Sugarcane infection by F. verticillioides disrupts the balance of intracellular ROSs and increases the cell membrane’s lipid peroxidation rate. Defense-related enzymes play a key regulatory role in maintaining a low, healthy level of ROSs. The results of this study enhance our understanding of the mechanism through which peroxisomes mediate the resistance of sugarcane to PBD and provide candidate genes that could be used to breed varieties with improved traits via molecular breeding. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1000 KB  
Article
Advancing Bioanalytical Method Validation: A Comprehensive ICH M10 Approach for Validating LC–MS/MS to Quantify Fluoxetine in Human Plasma and Its Application in Pharmacokinetic Studies
by Aimen El Orche, Amine Cheikh, Choukri El Khabbaz, Houda Bouchafra, My El Abbes Faouzi, Yahya Cherrah, Siddique Akber Ansari, Hamad M. Alkahtani, Shoeb Anwar Ansari and Mustapha Bouatia
Molecules 2024, 29(19), 4588; https://doi.org/10.3390/molecules29194588 - 27 Sep 2024
Cited by 2 | Viewed by 3023
Abstract
A fast and sample cleanup approach for fluoxetine in human plasma was developed using protein precipitation coupled with LC–MS-MS. Samples were treated with methanol prior to LC–MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of [...] Read more.
A fast and sample cleanup approach for fluoxetine in human plasma was developed using protein precipitation coupled with LC–MS-MS. Samples were treated with methanol prior to LC–MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of methanol and 10 mM ammonium formate pH acidified with formic acid (80:20, v/v) at a flow rate of 0.2 mL/min. The run time was 4 min. Mass parameters were optimized to monitor transitions at m/z [M + H]+ 310 > > 148 for fluoxetine and m/z [M + H]+ 315.1 > > 153 for fluoxetine-d5 as an internal standard. The lower limit of quantification and the dynamic range were 0.25 and 0.25–50 ng/mL, respectively. Linearity was good for intra-day and inter-day validations (R2 = 0.999). The matrix effect was acceptable with CV% < 15 and accuracy% < 15. The hemolytic effect was negligible. Fluoxetine was stable in human plasma for 48 h at room temperature (25 °C), for 12 months frozen at −25 °C, for 48 h in an auto-sampler at 6 °C, and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of fluoxetine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies. The method was successfully applied to a pharmacokinetic study of fixed-dose fluoxetine in nine healthy volunteers. Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis)
Show Figures

Figure 1

20 pages, 22624 KB  
Article
Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication
by Haydar Witwit, Carlos Alberto Betancourt, Beatrice Cubitt, Roaa Khafaji, Heinrich Kowalski, Nathaniel Jackson, Chengjin Ye, Luis Martinez-Sobrido and Juan C. de la Torre
Viruses 2024, 16(9), 1362; https://doi.org/10.3390/v16091362 - 26 Aug 2024
Cited by 4 | Viewed by 2717
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the [...] Read more.
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan-NMT inhibitor DDD85646 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlates with reduced Z budding activity and GP2-mediated fusion activity as well as with proteasome-mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic-fever-causing Junin (JUNV) and Lassa (LASV) mammarenaviruses. Our results support the exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

25 pages, 7576 KB  
Article
Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi
by Stefan Toepfer, Szabolcs Toth, Tanja Zupan, Urban Bogataj, Nada Žnidaršič, Marta Ladanyi and Jerica Sabotič
Insects 2024, 15(1), 60; https://doi.org/10.3390/insects15010060 - 15 Jan 2024
Cited by 1 | Viewed by 2422
Abstract
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic [...] Read more.
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 4864 KB  
Article
Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma
by Manal El-Gendy, Mohamed Hefnawy, Adeeba Alzamil, Adel El-Azab, Alaa Abdel-Aziz and Ali El Gamal
Separations 2024, 11(1), 10; https://doi.org/10.3390/separations11010010 - 26 Dec 2023
Cited by 2 | Viewed by 2846
Abstract
A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of tipiracil (TIP), trifluridine (FTD), and their metabolites, 5-trifluoromethyluracil (FTY) and 5-carboxy-2′-deoxyuridine (5CDU), in rat plasma. This method is highly sensitive, specific, and fast. Paracetamol (PAR) [...] Read more.
A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of tipiracil (TIP), trifluridine (FTD), and their metabolites, 5-trifluoromethyluracil (FTY) and 5-carboxy-2′-deoxyuridine (5CDU), in rat plasma. This method is highly sensitive, specific, and fast. Paracetamol (PAR) is used as an internal standard (IS). Using acetonitrile-induced protein precipitation, the analytes were extracted from a plasma sample and separated on a Waters BEH C18 (1.7 μm particle size, 50 mm × 2.1 mm ID) column protected by a security guard cartridge (C18, 4 × 2.0 mm). The isocratic mobile phase was made up of methanol and water containing 0.1% formic acid (80:20, v/v) at a flow rate of 0.5 mL/min for 4 min. The quantification was performed using a positive electrospray ionization (ESI) interface and a multiple-reaction monitoring (MRM) mode. The MRM transitions employed were m/z 242.96 → 182.88 for TIP, 296.96 → 116.86 for FTD, 180.98 → 139.85 for FTY, 272.96 → 156.86 for 5CDU, and 151.97 → 92.68 for IS. The validated method complied with the guidelines set by the US-FDA over on a linear concentration range of 5–4000 ng/mL for FTD, FTY, and 5CDU, and 5–1000 ng/mL for TIP. The coefficient of determination (r2) was equal to or greater than 0.997. The corresponding lower limits of detection (LLOD) were 1.5 ng/mL for FTD, FTY, and 5CDU and 1.0 ng/mL for TIP. The recoveries of all analytes from rat plasma ranged from 88.67% to 112.18%, and the mean relative standard deviation (RSD) of accuracy and precision result was less than or equal to 6.84%. FTD, FTY, 5CDU, and TIP demonstrated adequate stability throughout the various circumstances examined. Additionally, no matrix effects were identified for any of the analytes. The assay was effectively utilized to conduct a pharmacokinetic study in rats following the oral administration of FTD and TIP at a dosage of 5.6 mg/kg, with a ratio of 1:0.5 for FTD and TIP, respectively. This indicates that the suggested approach is suitable for future clinical research. The pharmacokinetic parameters Cmax (maximum concentration), Tmax (time to reach maximum concentration), t1/2 (half-life), AUC0-24 (area under the concentration–time curve from 0 to 24 h), AUC total (total area under the concentration–time curve), Ke (elimination rate constant), Vd (volume of distribution), and CL (clearance) of all analytes were assessed. The assay developed exhibits significant advancements compared to earlier bioanalytical methods documented in the literature. These improvements include high sensitivity, specificity, and efficacy in high throughput analysis of complex matrices. Additionally, the assay offers a shorter run time and smaller sample volume (50 μL). Full article
Show Figures

Figure 1

17 pages, 1485 KB  
Article
Matrix Effect Evaluation in GC/MS-MS Analysis of Multiple Pesticide Residues in Selected Food Matrices
by Mateja Bulaić Nevistić and Marija Kovač Tomas
Foods 2023, 12(21), 3991; https://doi.org/10.3390/foods12213991 - 31 Oct 2023
Cited by 18 | Viewed by 4141
Abstract
Multi-analyte methods based on QuEChERS sample preparation and chromatography/mass spectrometry determination are indispensable in monitoring pesticide residues in the feed and food chain. QuEChERS method, even though perceived as convenient and generic, can contribute to sample matrix constituents’ introduction to the measuring system [...] Read more.
Multi-analyte methods based on QuEChERS sample preparation and chromatography/mass spectrometry determination are indispensable in monitoring pesticide residues in the feed and food chain. QuEChERS method, even though perceived as convenient and generic, can contribute to sample matrix constituents’ introduction to the measuring system and possibly affect analytical results. In this study, matrix effects (ME) were investigated in four food matrices of plant origin (apples, grapes, spelt kernels, and sunflower seeds) during GC-MS/MS analysis of >200 pesticide residues using QuEChERS sample preparation. Data analysis revealed considerable analyte signal enhancement and suppression: strong enhancement was observed for the majority of analytes in two matrices within the commodity groups with high water content—apples, and high acid and water content—grapes (73.9% MES and 72.5% MEA, and 77.7% MES and 74.9% MEA, respectively), while strong suppression was observed for matrices within the commodity groups with high starch/protein content and low water and fat content—spelt kernels, and high oil content and very low water content—sunflower seeds (82.1% MES and 82.6% MEA, and 65.2% MES and 70.0% MEA, respectively). Although strong matrix effects were the most common for all investigated matrices, the use of matrix-matched calibration for each sample type enabled satisfactory method performance, i.e., recoveries for the majority of analytes (up to roughly 90%, depending on the fortification level and matrix type), which was also externally confirmed through participation in proficiency testing schemes for relevant food commodity groups with the achieved z-scores within acceptable range ≤ |2|. Full article
Show Figures

Figure 1

10 pages, 931 KB  
Article
Poor Sensitivity of the MALDI Biotyper® MBT Subtyping Module for Detection of Klebsiella pneumoniae Carbapenemase (KPC) in Klebsiella Species
by Luz Cuello, Judith Alvarez Otero, Kerryl E. Greenwood-Quaintance, Liang Chen, Blake Hanson, Jinnethe Reyes, Lauren Komarow, Lizhao Ge, Zane D. Lancaster, Garrett G. Gordy, Audrey N. Schuetz and Robin Patel
Antibiotics 2023, 12(9), 1465; https://doi.org/10.3390/antibiotics12091465 - 20 Sep 2023
Cited by 2 | Viewed by 2785
Abstract
Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect [...] Read more.
Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect KPC simultaneously with organism identification by a matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-ToF MS). Here, the subtyping module was evaluated using 795 clinical Klebsiella isolates, with whole genome sequences used to assess for blaKPC and p019. For the isolates identified as KPC positive by sequencing, the overall sensitivity of the MALDI-ToF MS subtyping module was 239/574 (42%) with 100% specificity. For the isolates harboring p019, the subtyping module showed a sensitivity of 97% (239/246) and a specificity of 100%. The subtyping module had poor sensitivity for the detection of blaKPC-positive Klebsiella isolates, albeit exhibiting excellent specificity. The poor sensitivity was a result of p019 being present in only 43% of the blaKPC-positive Klebsiella isolates. Full article
Show Figures

Graphical abstract

10 pages, 1258 KB  
Article
Development of a Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Method for Characterizing Linalool Oral Pharmacokinetics in Humans
by Yan-Hong Wang, Goutam Mondal, Nicole Stevens, Cécile Bascoul, Russell J. Osguthorpe, Ikhlas A. Khan and Charles R. Yates
Molecules 2023, 28(18), 6457; https://doi.org/10.3390/molecules28186457 - 6 Sep 2023
Cited by 3 | Viewed by 3696
Abstract
Lavender (Lavandula angustifolia Miller or Lavandula officinalis Chaix) is an ethnopharmacological plant commonly known as English lavender. Linalool and linalyl acetate are putative phytoactives in lavender essential oil (LEO) derived from the flower heads. LEO has been used in aroma or massage [...] Read more.
Lavender (Lavandula angustifolia Miller or Lavandula officinalis Chaix) is an ethnopharmacological plant commonly known as English lavender. Linalool and linalyl acetate are putative phytoactives in lavender essential oil (LEO) derived from the flower heads. LEO has been used in aroma or massage therapy to reduce sleep disturbance and to mitigate anxiety. Recently, an oral LEO formulation was administered in human clinical trials designed to ascertain its anxiolytic effect. However, human pharmacokinetics and an LC–MS/MS method for the measurement of linalool are lacking. To address this deficiency, a rapid and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the analysis of linalool in human serum. Prior to the analysis, a simple sample preparation protocol including protein precipitation and liquid–liquid extraction of serum samples was created. The prepared samples were analyzed using a C18 reversed-phase column and gradient elution (acetonitrile and water, both containing 0.1% formic acid). A Waters Xevo TQ-S tandem mass spectrometer (positive mode) was used to quantitatively determine linalool and IS according to transitions of m/z 137.1→95.1 (tR 0.79 min) and 205.2→149.1 (tR 1.56 min), respectively. The method was validated for precision, accuracy, selectivity, linearity, sensitivity, matrix effects, and stability, and it was successfully applied to characterize the oral pharmacokinetics of linalool in humans. The newly developed LC–MS/MS-based method and its application in clinical trial serum samples are essential for the characterization of potential pharmacokinetic and pharmacodynamic interactions. Full article
Show Figures

Graphical abstract

Back to TopTop