Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = abutment integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4923 KB  
Article
Evolution Law and Stability Control of Energy–Plastic Zone of Surrounding Rock After Secondary Mining in Narrow Pillar Roadway in Thick Seam
by Kun Lv, Zhigang Deng, Jicheng Feng, Mingqi Jia, Xiangye Wu, Aoran Ma and Zhihai Ji
Processes 2025, 13(10), 3152; https://doi.org/10.3390/pr13103152 - 2 Oct 2025
Viewed by 273
Abstract
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on [...] Read more.
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on stress evolution and energy distribution characteristics during secondary mining extraction. Key findings include the following: (1) Under the superimposed influence of goaf-side abutment pressure and secondary mining front abutment pressure, roadway surrounding rock exhibits regional asymmetric characteristics in energy dissipation. (2) Within 10 m ahead of the secondary mining face, the coal pillar experiences intense energy dissipation and plastic zone penetration, leading to bearing structure failure. (3) The energy mechanism reveals that asymmetric dissipative energy distribution drives plastic zone expansion. Accordingly, an integrated control strategy combining differentiated support (bolts/cables + tension-type opposite anchor cables + hydraulic props) with coal pillar grouting modification was developed. Field implementation demonstrated effective control of surrounding rock deformation within 200 mm. This study provides theoretical foundations and technical references for roadway stability control under similar mining conditions. Full article
Show Figures

Figure 1

24 pages, 4922 KB  
Article
Spring-Based Soil–Structure Interaction Modeling of Pile–Abutment Joints in Short-Span Integral Abutment Bridges with LR and RSM
by Erkan Polat and Elifcan Göçmen Polat
Buildings 2025, 15(19), 3493; https://doi.org/10.3390/buildings15193493 - 27 Sep 2025
Viewed by 401
Abstract
Integral abutment bridges (IABs) are increasingly adopted in transportation infrastructure due to their durability, reduced maintenance needs, and cost-effectiveness compared to conventional bridges. However, their reliable performance under live loads is strongly influenced by the nonlinear soil–structure interaction (SSI) at the pile–abutment joint, [...] Read more.
Integral abutment bridges (IABs) are increasingly adopted in transportation infrastructure due to their durability, reduced maintenance needs, and cost-effectiveness compared to conventional bridges. However, their reliable performance under live loads is strongly influenced by the nonlinear soil–structure interaction (SSI) at the pile–abutment joint, which remains challenging to quantify using conventional analysis methods. This study develops simplified spring-based models to capture the SSI behavior of pile–abutment joints in short-span IABs. Predictive equations for joint rotation, deflection, moment, and shear are formulated using Linear Regression (LR) and Response Surface Methodology (RSM). Unlike prior studies relying solely on FEM or traditional p–y curves, the novelty of this work lies in deriving regression-based spring constants calibrated against FEM analyses, which can be directly implemented in standard structural software. This approach significantly reduces computational demands while maintaining predictive accuracy, enabling efficient assessment of pile contributions and global bridge response. Validation against finite element method (FEM) results confirms the reliability of the simplified models, with RSM outperforming LR in representing nonlinear parameter interactions. Full article
(This article belongs to the Special Issue Research on Soil–Structure Interaction for Civil Structures)
Show Figures

Figure 1

13 pages, 1290 KB  
Systematic Review
Clinical Outcomes of Zirconia Abutments for Implant Dentistry: Systematic Review
by Andrea Scribante, Dario De Martis, Filippo Vezzoni, Maria Mirando, Domenico Sfondrini and Paolo Zampetti
Prosthesis 2025, 7(5), 113; https://doi.org/10.3390/prosthesis7050113 - 2 Sep 2025
Viewed by 1127
Abstract
Background: Dental implants have become integral in restoring partially or completely edentulous patients due to their reported long-term success. While titanium remains the primary material for implants and abutments due to its mechanical properties and biocompatibility, zirconia has emerged as a promising [...] Read more.
Background: Dental implants have become integral in restoring partially or completely edentulous patients due to their reported long-term success. While titanium remains the primary material for implants and abutments due to its mechanical properties and biocompatibility, zirconia has emerged as a promising alternative, especially for aesthetic regions. This systematic review aimed to assess whether zirconia abutments present a rational alternative to titanium in modern implantology, focusing on their mechanical and clinical performances. Method: The workflow used for this review included the PRISMA checklist. The eligibility criteria included various study types, with a preference given to clinical trials. The search strategy employed the PICO model, including a large number of relevant studies, and online research was carried on the online databases PubMed and Scopus, with “implant” AND “abutment” AND “zirconia” and “zirconia abutment” AND “mechanical properties” used as search strings. Results: Six clinical studies were included with an adequate follow-up and patient cohort; they suggest that while zirconia abutments offer improved aesthetics and biological integration, concerns persist regarding their mechanical properties, particularly regarding their fatigue resistance and connection stability. In vitro studies have revealed differences between titanium and zirconia abutments, with the latter showing greater susceptibility to fatigue-induced deformation and fretting wear. The clinical outcomes, however, demonstrate favourable long-term performance, with zirconia abutments promoting healthy soft tissue conditions. CAD/CAM technologies enable the precise customization of zirconia abutments, enhancing their compatibility and aesthetic outcomes. Conclusions: Although this review faces limitations due to the scarcity of comparative studies and varied methodologies, it underscores the potential of zirconia abutments in implantology. In conclusion, while zirconia abutments offer promising advantages, the careful consideration of patient-specific factors and the long-term outcomes is warranted for their optimal utilisation in implant-supported prostheses. Full article
(This article belongs to the Special Issue Prosthesis: Spotlighting the Work of the Editorial Board Members)
Show Figures

Figure 1

16 pages, 3542 KB  
Article
Design and Numerical Analysis of a Combined Pile–Raft Foundation for a High-Rise in a Sensitive Urban Environment
by Steffen Leppla, Arnoldas Norkus, Martynas Karbočius and Viktor Gribniak
Buildings 2025, 15(16), 2933; https://doi.org/10.3390/buildings15162933 - 19 Aug 2025
Viewed by 1100
Abstract
Designing deep foundations in densely urbanized areas presents significant challenges due to complex soil conditions, high groundwater levels, and the proximity of sensitive infrastructure. This study addresses these challenges through the development and numerical analysis of a combined pile–raft foundation (CPRF) system for [...] Read more.
Designing deep foundations in densely urbanized areas presents significant challenges due to complex soil conditions, high groundwater levels, and the proximity of sensitive infrastructure. This study addresses these challenges through the development and numerical analysis of a combined pile–raft foundation (CPRF) system for a 75 m tall hotel tower in Frankfurt am Main, Germany. The construction site is characterized by heterogeneous soil layers and is located adjacent to a historic quay wall and bridge abutments, necessitating strict deformation control and robust structural performance. A comprehensive three-dimensional finite element model was developed using PLAXIS 3D to simulate staged construction and soil–structure interaction (SSI). The CPRF system comprises a 2 m thick triangular raft and 34 large-diameter bored piles (1.5 m in diameter, 40–45 m in length), designed to achieve a load-sharing ratio of 0.89. The raft contributes significantly to the overall bearing capacity, reducing bending moments and settlement. The predicted settlement of the high-rise structure remains within 45 mm, while displacement of adjacent heritage structures does not exceed critical thresholds (≤30 mm), ensuring compliance with serviceability criteria. The study provides validated stiffness parameters for superstructure design and demonstrates the effectiveness of CPRF systems in mitigating geotechnical risks in historically sensitive urban environments. By integrating advanced numerical modeling with staged construction simulation and heritage preservation criteria, the research contributes to the evolving practice of performance-based foundation design. The findings support the broader applicability of CPRFs in infrastructure-dense settings and offer a methodological framework for future projects involving complex SSI and cultural heritage constraints. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 5210 KB  
Article
The Control Mechanism of the Coal Pillar Width on the Mechanical State of Hard Roofs
by Qifeng Jia, Songtao Ji, Jie Zhang, Zhiyu Fang, Chao Lyu and Jurij Karlovšek
Mathematics 2025, 13(16), 2548; https://doi.org/10.3390/math13162548 - 8 Aug 2025
Viewed by 359
Abstract
This study addresses the critical challenge of optimizing coal pillar width in burst-prone mines with thick, hard roof strata, balancing resource recovery, roadway stability, and coal burst mitigation. Through integrated analytical modeling and rigorously calibrated numerical simulations, the research reveals the complex interplay [...] Read more.
This study addresses the critical challenge of optimizing coal pillar width in burst-prone mines with thick, hard roof strata, balancing resource recovery, roadway stability, and coal burst mitigation. Through integrated analytical modeling and rigorously calibrated numerical simulations, the research reveals the complex interplay between pillar width, roof mechanics, and stress redistribution. Key findings demonstrate that pillar width dictates roof failure mechanics and energy accumulation. The case study indicates that increasing the coal pillar width from 6 m to 20 m shifts the tensile fracture location from solid coal toward the pillar center, migrates shear failure zones closer to roadways, and relocates elastic strain energy accumulation to the pillar area. This concentrates static and dynamic loads directly onto wider pillars upon roof fracture, escalating instability risks. A risky coal pillar width is identified as 10–20 m, where pillars develop severe lateral abutment pressures perilously close to roadways, combining high elastic energy storage with exposure to roof fracture dynamics. Conversely, narrow pillars exhibit low stress concentrations and limited energy storage due to plastic deformation, reducing burst potential despite requiring robust asymmetric support. Strategic selection of narrow or wide pillars provides a safer pathway. The validated analytical–numerical framework offers a scientifically grounded methodology for pillar design under hard roof conditions, enhancing resource recovery while mitigating coal burst risks. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 11273 KB  
Article
The Effect of Different Tightening Torques of Implant Cone Morse Abutment Connection Under Dynamic Fatigue Loading: An In Vitro Study
by Felice Lorusso, Antonio Scarano, Sergio Rexhep Tari, Ishita Singhal, Funda Goker, Maria Costanza Soldini, Gianluca Martino Tartaglia and Massimo Del Fabbro
Biomimetics 2025, 10(8), 511; https://doi.org/10.3390/biomimetics10080511 - 4 Aug 2025
Viewed by 690
Abstract
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue [...] Read more.
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue test. Methods: Eighty conic implants (Ø: 3.8 mm L: 10 mm) with a 6° cone morse joint were embedded in resin blocks with an inclination of 30° ± 2°. The samples were divided into 8 groups (4 Test and 4 Control). The implant–abutment joints were coupled with different tightening torques: 25 Ncm (Group I), 30 Ncm (Group II), 35 Ncm (Group III) and 40 Ncm (Group IV). An in vitro cyclic loading test (1 × 104 loads) was performed for 4 Test groups, while 4 Control groups did not receive any forces. All the samples were assessed with Scanning Electron Microscopy to compare the microfractures and microgaps on flexion and extension points. Results: Microscopy observation results showed significant differences among torque groups. We found that 30 Ncm had the best stability with less microgap. Conclusions: Tightening torque plays an important role in the distortion of the cone morse joint under mechanical forces. However, further studies should be conducted to validate the results using different implant–abutment joints for comparison. Full article
Show Figures

Figure 1

23 pages, 5280 KB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 467
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

22 pages, 9122 KB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 - 1 Aug 2025
Viewed by 753
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

16 pages, 1741 KB  
Article
Effect of Crestal Position on Bone–Implant Stress Interface of Three-Implant Splinted Prostheses: A Finite Element Analysis
by Mario Ceddia, Giulia Marchioli, Tea Romasco, Luca Comuzzi, Adriano Piattelli, Douglas A. Deporter, Natalia Di Pietro and Bartolomeo Trentadue
Materials 2025, 18(14), 3344; https://doi.org/10.3390/ma18143344 - 16 Jul 2025
Cited by 1 | Viewed by 698
Abstract
Optimizing stress distribution at the bone–implant interface is critical to enhancing the long-term biomechanical performance of dental implant systems. Vertical misalignment between splinted implants can result in elevated localized stresses, increasing the risk of material degradation and peri-implant bone resorption. This study employs [...] Read more.
Optimizing stress distribution at the bone–implant interface is critical to enhancing the long-term biomechanical performance of dental implant systems. Vertical misalignment between splinted implants can result in elevated localized stresses, increasing the risk of material degradation and peri-implant bone resorption. This study employs three-dimensional finite element analysis (FEA) to evaluate the mechanical response of peri-implant bone under oblique loading, focusing on how variations in vertical implant platform alignment influence stress transmission. Four implant configurations with different vertical placements were modeled: (A) all crestal, (B) central subcrestal with lateral crestal, (C) lateral subcrestal with central crestal, and (D) all subcrestal. A 400 N oblique load was applied at 45° simulated masticatory forces. Von Mises stress distributions were analyzed in both cortical and trabecular bone, with a physiological threshold of 100 MPa considered for cortical bone. Among the models, configuration B exhibited the highest cortical stress, exceeding the physiological threshold. In contrast, configurations with uniform vertical positioning, particularly model D, demonstrated more favorable stress dispersion and lower peak values. Stress concentrations were consistently observed at the implant–abutment interface across all configurations, identifying this area as critical for design improvements. These findings underscore the importance of precise vertical alignment in implant-supported restorations to minimize stress concentrations and improve the mechanical reliability of dental implants. The results provide valuable insights for the development of next-generation implant systems with enhanced biomechanical integration and material performance under functional loading. Full article
Show Figures

Figure 1

22 pages, 20537 KB  
Article
Er:YAG Laser Applications for Debonding Different Ceramic Restorations: An In Vitro Study
by Ruxandra Elena Luca, Anișoara Giumancă-Borozan, Iosif Hulka, Ioana-Roxana Munteanu, Carmen Darinca Todea and Mariana Ioana Miron
Medicina 2025, 61(7), 1189; https://doi.org/10.3390/medicina61071189 - 30 Jun 2025
Viewed by 755
Abstract
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools [...] Read more.
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools and handpieces and occasionally results in abutment fractures. Restorations are nearly never reusable in any of these situations. Erbium-doped yttrium-aluminum-garnet (Er:YAG) and erbium-chromium yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers casafely and effectively remove FPRs, according to scientific studiesre. This study sets out to examine the impact of Er:YAG laser radiation on the debonding of different ceramic restorations, comparing the behavior of various ceramic prosthetic restoration types under laser radiation action and evaluating the integrity of prosthetic restorations and dental surfaces exposed to laser radiation. Materials and Methods: The study included a total of 16 removed teeth, each prepared on opposite surfaces as abutments.y. Based on the previously defined groups, four types of ceramic restorations were included in the study: feldspathic (F), lithium disilicates (LD), layered zirconia (LZ), and monolithic zirconia (MZ). The thickness of the prosthetic restorations was measured at three points, and two different materials were used for cementation. The Er:YAG Fotona StarWalker MaQX laser was used to debond the ceramic FPR at a distance of 10 mm using an R14 sapphire tip with 275 mJ, 20 Hz, 5.5 W, with air cooling (setting 1 of 9) and water. After debonding, the debonded surface was visualized under electron microscopy. Results: A total of 23 ceramic FPRs were debonded, of which 12 were intact and the others fractured into two or three pieces. The electron microscopy images showed that debonding took place without causing any harm to the tooth structure. The various restoration types had the following success rates: 100% for the LZ and F groups, 87% for the LD group, and 0% for the MZ group. In terms of cement type, debonding ceramic FPRs cemented with RELYX was successful 75% of the time, compared to Variolink DC’s 69% success rate. Conclusions: In summary, the majority of ceramic prosthetic restorations can be successfully and conservatively debonded with Er:YAG radiation. Full article
(This article belongs to the Special Issue Advancements in Dental Medicine, Oral Anesthesiology and Surgery)
Show Figures

Figure 1

24 pages, 1368 KB  
Article
Unveiling the Value of Green Amenities: A Mixed-Methods Analysis of Urban Greenspace Impact on Residential Property Prices Across Riyadh Neighborhoods
by Tahar Ledraa and Sami Abdullah Aldubikhi
Buildings 2025, 15(12), 2088; https://doi.org/10.3390/buildings15122088 - 17 Jun 2025
Viewed by 1275
Abstract
The literature shows greenspaces generally increase nearby property values, but in Riyadh, this relationship is complex and understudied. Existing studies lack sector-specific analyses across Riyadh’s neighborhoods, overlook the impact of the Green Riyadh Project launched in 2019, and fail to address negative externalities [...] Read more.
The literature shows greenspaces generally increase nearby property values, but in Riyadh, this relationship is complex and understudied. Existing studies lack sector-specific analyses across Riyadh’s neighborhoods, overlook the impact of the Green Riyadh Project launched in 2019, and fail to address negative externalities associated with large greenspaces in an arid, privacy-conscious context. Such paradoxical impact of larger greenspaces bordering major roads at the neighborhood edge, unexpectedly reduce property values by 2–4% due to petty crime, congestion, poor upkeep, and privacy concerns, contrasting with 10–18% premiums for properties abutting greenspaces with restricted access in affluent neighborhoods. Global studies typically report positive greenspace effects, so negative impacts in specific Riyadh sectors are surprising. This highlights the city’s unique arid, cultural, and urban dynamics in addressing this research gap. The research uses purposive quota sampling of Riyadh neighborhood greenspaces and a mixed-methods approach of quantitative hedonic pricing analysis combined with qualitative semi-structured interviews with real estate agents. Findings underscore the need for tailored urban planning (e.g., mitigating petty crime, overcrowding, poor maintenance). This suggests the importance of integrating green infrastructure into urban planning, not only for its ecological and social benefits but also for its tangible positive impact on property values. Poor greenspace upkeep and safety concerns can reduce price premiums of abutting properties. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

42 pages, 3024 KB  
Article
Developing a Research Roadmap for Highway Bridge Infrastructure Innovation: A Case Study
by Arya Ebrahimpour, Aryan Baibordy and Ahmed Ibrahim
Infrastructures 2025, 10(6), 133; https://doi.org/10.3390/infrastructures10060133 - 30 May 2025
Cited by 1 | Viewed by 1589
Abstract
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, [...] Read more.
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, helping bridge engineers make informed decisions that enhance bridge safety while maintaining controlled life cycle costs. Although some bridge asset management roadmaps exist, such as the one published by the United States Federal Highway Administration (FHWA), there is a lack of structured research roadmaps that are both region-specific and adaptable as guiding frameworks for similar studies. For instance, the FHWA roadmap cannot be universally applied across diverse regional contexts. This study addresses this critical gap by developing a research roadmap tailored to Idaho, USA. The roadmap was developed using a three-phase methodological approach: (1) a comprehensive analysis of past and ongoing Department of Transportation (DOT)-funded research projects over the last five years, (2) a nationwide survey of DOT funding and research practices, and (3) a detailed assessment of Idaho Transportation Department (ITD) deficiently rated bridge inventory, including individual element condition states. In the first phase, three filtering stages were implemented to identify the top 25 state projects. A literature review was conducted for each project to provide ITD’s Technical Advisory Committee (TAC) members with insights into research undertaken by various state DOTs. Moreover, in the second phase, approximately six questionnaires were designed and distributed to other state DOTs. These questionnaires primarily covered topics related to bridge research priorities and funding allocation. In the final phase, a condition state analysis was conducted using data-driven methods. Key findings from this three-phase methodological approach highlight that ultra-high-performance concrete (UHPC), bridge deck preservation, and maintenance strategies are high-priority research areas across many DOTs. Furthermore, according to the DOT responses, funding is most commonly allocated to projects related to superstructure and deck elements. Finally, ITD found that the most deficient elements in Idaho bridges are reinforced concrete abutments, reinforced concrete pile caps and footings, reinforced concrete pier walls, and movable bearing systems. These findings were integrated with insights from ITD’s TAC to generate a prioritized list of 23 high-impact research topics aligned with Idaho’s specific needs and priorities. From this list, the top six topics were selected for further investigation. By adopting this strategic approach, ITD aims to enhance the efficiency and effectiveness of its bridge-related research efforts, ultimately contributing to safer and more resilient transportation infrastructure. This paper could be a helpful resource for other DOTs seeking a systematic approach to addressing their bridge research needs. Full article
Show Figures

Figure 1

10 pages, 1975 KB  
Communication
Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study
by Bayandelger Davaatseren, Jae-Sung Kwon, Sangho Eom and Jae Hoon Lee
Materials 2025, 18(11), 2469; https://doi.org/10.3390/ma18112469 - 24 May 2025
Cited by 1 | Viewed by 1245
Abstract
Background/Objectives: This in vitro study investigated the retention of three different geometrical designs of short titanium base (Ti-base) abutments used in implant-supported zirconia crowns. The advent of digital technology has facilitated the integration of Ti-base abutments into implant dentistry by improving time [...] Read more.
Background/Objectives: This in vitro study investigated the retention of three different geometrical designs of short titanium base (Ti-base) abutments used in implant-supported zirconia crowns. The advent of digital technology has facilitated the integration of Ti-base abutments into implant dentistry by improving time efficiency, precision, and patient comfort. Methods: Three types of short Ti-base abutments were evaluated: Geo SRN multibase® (Group A), Herilink® (Group B), and TS Link® (Group C), each with a height of 4 mm and gingival height of 1 mm (n = 20 per group). Zirconia crowns (LUXEN® Smile S2, DentalMax, Republic of Korea) were modified for the testing setup and fabricated using CAD/CAM technology, then bonded to the abutments with RelyX® Luting 2 resin-modified glass ionomer cement. Pull-out tests were conducted at a crosshead speed of 1 mm/min to assess retention. Results: One-way ANOVA and post hoc Tukey tests revealed significant differences in retention values among the different abutment shapes (p < 0.05). The mean retention forces were 194.65 N for Group A, 241.33 N for Group C, and 360.20 N for Group B. Conclusions: The geometrical design of Ti-base short abutments significantly affects the retention of CAD/CAM zirconia crowns, with hexagonal shapes (Group B) demonstrating superior retention. Clinically, selecting an abutment design with enhanced mechanical retention may improve the long-term success of implant-supported restorations. Full article
(This article belongs to the Special Issue Advances in Dental and Restorative Materials)
Show Figures

Figure 1

16 pages, 5732 KB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Cited by 1 | Viewed by 585
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

14 pages, 3522 KB  
Article
Thermoplastic Zinc-Infused Polymer for Chairside Socket Seal Abutments Enhances Antimicrobial and Tissue-Integrative Properties
by Wannes Van Holm, Katleen Vandamme, Jill Hadisurya, Ferda Pamuk, Naiera Zayed, Merve Kübra Aktan, Annabel Braem, Andy Temmerman and Wim Teughels
Antibiotics 2025, 14(5), 441; https://doi.org/10.3390/antibiotics14050441 - 27 Apr 2025
Viewed by 834
Abstract
Background/Objectives: The essential trace element zinc (Zn) has a pivotal role in wound healing and can show antibacterial activity, but its application in oral implant materials is underexplored. Customized healing abutments can modulate the peri-implant tissue health when appropriate bioactive materials promoting [...] Read more.
Background/Objectives: The essential trace element zinc (Zn) has a pivotal role in wound healing and can show antibacterial activity, but its application in oral implant materials is underexplored. Customized healing abutments can modulate the peri-implant tissue health when appropriate bioactive materials promoting mucosal healing are used. The present study investigated a novel Zn-containing polymer for its potential in soft-tissue engineering applications. Methods: Four traditional materials—titanium, glass ionomer, a composite, and the novel Zn-containing polymer—were tested in vitro for bacterial growth using a multispecies oral bacterial model compared to hydroxyapatite. The biocompatibility of the materials was also evaluated by evaluating the adhesion, proliferation, and cytotoxicity of human oral keratinocytes (HOK-18A) onto these materials, compared to tissue culture plastic. Results: The Zn-containing polymer exhibited a significantly lower biofilm formation compared to conventional materials as it was composed of less pathogenic bacteria. The Zn-containing material also demonstrated a superior biocompatibility towards HOK-18A, approximating the adhesion and proliferation of the keratinocytes to optimal tissue culture conditions. Moreover, these properties did not seem to degrade and were maintained over a period of 31 days. The cytotoxicity assessment revealed no significant reduction in metabolic activity for any material. Conclusions: This study highlights the potential of the novel Zn-containing polymer in soft-tissue engineering, owing to its antimicrobial and biocompatible assets. These properties, combined with the ease of chairside modeling, position the material as a promising alternative for creating customized healing abutments. Further research is needed to explore its mechanism of wound healing modulation and its clinical performance. Full article
Show Figures

Figure 1

Back to TopTop