Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = accelerating admixtures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 - 2 Sep 2025
Viewed by 629
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

23 pages, 7456 KB  
Article
Recycling Spent Fluorescent Lamp Glass Waste in Calcium Aluminate Cement: Effects on Hydration and Mechanical Performance
by Lucía Reig, Ángel M. Pitarch, Antonio Gallardo, Lourdes Soriano, María V. Borrachero, Jordi Payá and José M. Monzó
Appl. Sci. 2025, 15(17), 9629; https://doi.org/10.3390/app15179629 - 1 Sep 2025
Viewed by 546
Abstract
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited [...] Read more.
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited because of its residual mercury content. This study investigates the use of manually (MAN) and mechanically (MEC) processed SFLG as partial CAC replacements (up to 50 wt.%). Both SFLG types had irregular morphologies with mean particle sizes of ~20 µm and mercury concentrations of 3140 ± 61 ppb (MAN) and 2133 ± 119 ppb (MEC). Moreover, the addition of SFLG reduced the initial and final setting times, whilst MEC waste notably extended the plastic state duration from 20 min (reference) to 69 min (50 wt.% MEC). Furthermore, strength development was accelerated, with SFLG/CAC mortars reaching peak strengths at 7–10 days versus 28 days as in the CAC reference. CAC and 15 wt.% SFLG mortars showed strength loss over time by reason of their phase conversion, whereas mortars with 25–50 wt.% SFLG experienced significant long-term strength gains, reaching ~60 MPa (25 wt.%) and ~45 MPa (35 wt.%), respectively, after 365 days, with strength activity indexes (SAI) near 90% and 70%, respectively. These improvements are attributed to the formation of strätlingite (C2ASH8), which stabilized hexagonal CAH10 and mitigated conversion to cubic katoite (C3AH6). Mercury leaching remained below 0.01 mg/kg dry matter for all mixes and curing ages, classifying the mortars as non-hazardous and inert under Spanish Royal Decree 646/2020. The results suggest that SFLG can be safely reused as a sustainable admixture in CAC systems, enhancing long-term mechanical performance while minimizing environmental impact. Full article
(This article belongs to the Special Issue Advances in the Sustainability and Energy Efficiency of Buildings)
Show Figures

Figure 1

20 pages, 4109 KB  
Article
Rheological Optimization of 3D-Printed Cementitious Materials Using Response Surface Methodology
by Chenfei Wang, Junyin Lian, Yunhui Fang, Guangming Fan, Yixin Yang, Wenkai Huang and Shuqin Shi
Materials 2025, 18(17), 3933; https://doi.org/10.3390/ma18173933 - 22 Aug 2025
Cited by 1 | Viewed by 842
Abstract
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects [...] Read more.
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects on flowability and dynamic yield stress. A Box–Behnken central composite design was used to establish a mathematical model, followed by the RSM-driven optimization of mix proportions. The optimized formulation (0.32% accelerator, 0.24% HPMC, and 0.23% PCE) achieved a flowability of 147.5 mm and a dynamic yield stress of 711 Pa, which closely matched the predicted values and fulfilled the printability requirements, thus establishing RSM as an effective approach for designing printable cementitious composites. This approach established an RSM-based optimization framework for mix proportion design. These findings offer a mechanistic framework for rational 3DPC mixture design, combining theoretical insights and practical implementation in additive construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 3167 KB  
Article
A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance
by Daniel D. Akerele and Federico Aguayo
Buildings 2025, 15(15), 2759; https://doi.org/10.3390/buildings15152759 - 5 Aug 2025
Cited by 1 | Viewed by 921
Abstract
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and [...] Read more.
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and CSA-LLP (liquid polymer admixture)—against a traditional Type III Portland cement (OPC) control under both laboratory and realistic outdoor conditions. Laboratory specimens were tested for fresh properties, early-age and later-age compressive, flexural, and splitting tensile strengths, as well as drying shrinkage according to ASTM standards. Outdoor 5 × 4 × 12-inch slabs mimicking typical jointed plain concrete panels (JPCPs), instrumented with vibrating wire strain gauges and thermocouples, recorded the strain and temperature at 5 min intervals over 16 weeks, with 24 h wet-burlap curing to replicate field practices. Laboratory findings show that CSA mixes exceeded 3200 psi of compressive strength at 4 h, but cold outdoor casting (~48 °F) delayed the early-age strength development. The CSA-LLP exhibited the lowest drying shrinkage (0.036% at 16 weeks), and outdoor CSA slabs captured the initial ettringite-driven expansion, resulting in a net expansion (+200 µε) rather than contraction. Approximately 80% of the total strain evolved within the first 48 h, driven by autogenous and plastic effects. CSA mixes generated lower peak internal temperatures and reduced thermal strain amplitudes compared to the OPC, improving dimensional stability and mitigating restraint-induced cracking. These results underscore the necessity of field validation for shrinkage compensation mechanisms and highlight the critical roles of the polymer type and curing protocol in optimizing CSA-based repairs for durable, low-carbon pavement rehabilitation. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

32 pages, 8548 KB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 1437
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

24 pages, 16143 KB  
Article
Influence of UV Radiation on the Appearance Quality of Fair-Faced Concrete and Mitigation Approaches
by Ao Wu, Jia Ke, Zhijie Liu and Zhonghe Shui
Materials 2025, 18(9), 2039; https://doi.org/10.3390/ma18092039 - 29 Apr 2025
Viewed by 762
Abstract
Fair-faced concrete has garnered substantial attention in recent years owing to its aesthetic appeal and eco-friendly attributes. However, as a construction material, its long-term performance is highly dependent on its service environment, particularly ultraviolet (UV) radiation. This research focuses on examining the influence [...] Read more.
Fair-faced concrete has garnered substantial attention in recent years owing to its aesthetic appeal and eco-friendly attributes. However, as a construction material, its long-term performance is highly dependent on its service environment, particularly ultraviolet (UV) radiation. This research focuses on examining the influence of UV exposure and managing the admixtures employed in concrete and investigating the effects of UV radiation on the appearance quality, pore distribution, and micro-composition of fair-faced concrete. Results indicate that UV radiation enhances moisture evaporation, increases surface and bulk porosity, and accelerates carbonation and early hydration reactions, forming more calcite on the surface. These factors degrade the appearance quality of fair-faced concrete. To mitigate UV-aging damage, two common anti-UV admixtures, nano-silica (NS) and water-based fluorocarbon paint (FC), were evaluated. Results show that both admixtures effectively improve the UV-resistance of fair-faced concrete, particularly when combined. The FC+NS group reduced the surface glossiness loss rate from 28.63% to 12.95% after 28 days of UV exposure, with surface porosity and maximum pore diameter recorded at 0.157% and 3.66 mm, respectively, indicating excellent appearance quality. These findings underscore the potential of these admixtures, both individually and in combination, to enhance the UV resistance of fair-faced concrete, sustaining its durability under prolonged UV exposure. Full article
Show Figures

Figure 1

16 pages, 10275 KB  
Article
Structure Formation and Properties of Activated Supersulfate Cement
by Leonid Dvorkin, Vadim Zhitkovsky, Izabela Hager, Tomasz Tracz and Tomasz Zdeb
Materials 2025, 18(9), 1912; https://doi.org/10.3390/ma18091912 - 23 Apr 2025
Cited by 1 | Viewed by 678
Abstract
The article investigates the characteristics of the phase composition and structure of supersulfated cement (SSC) during hardening using X-ray, electron microscopy, and ultrasonic analysis methods. The influence of different types of activators, hardening accelerators, and superplasticizers on the type and morphology of the [...] Read more.
The article investigates the characteristics of the phase composition and structure of supersulfated cement (SSC) during hardening using X-ray, electron microscopy, and ultrasonic analysis methods. The influence of different types of activators, hardening accelerators, and superplasticizers on the type and morphology of the newly formed phases during SSC hardening was studied. The effect of a polycarboxylate-type superplasticizer and calcium chloride on the standard consistency and setting times of SSC was experimentally determined. It was established that the introduction of the superplasticizer reduces the standard consistency by 10–16%. Experimental data showed higher effectiveness of phosphogypsum as a sulfate activator compared to gypsum stone. The strength increase of SSC at 7 days reached up to 35%, and at 28 days, up to 15%. Based on the kinetics of ultrasonic wave propagation during SSC hardening, the main stages of structure formation and the influence of cement composition on these stages were determined. The experimental results demonstrate the effect of SSC composition on its standard consistency, setting time, and mechanical properties. The impact of the type of activator and admixtures on the change in SSC strength during storage was investigated. It was found that the addition of a polycarboxylate-type superplasticizer significantly reduces the strength loss of SSC during long-term storage. Using mathematical modeling, experimentally obtained statistical models of strength were developed, which allow for the quantitative evaluation of individual and combined effects, as well as the determination of optimal SSC compositions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

31 pages, 30962 KB  
Article
Study on the Effects and Mechanisms of Fly Ash, Silica Fume, and Metakaolin on the Properties of Slag–Yellow River Sediment-Based Geopolymers
by Ge Zhang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Materials 2025, 18(8), 1845; https://doi.org/10.3390/ma18081845 - 17 Apr 2025
Cited by 3 | Viewed by 868
Abstract
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious [...] Read more.
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious materials. The impact of varying replacement ratios of these admixtures for slag on setting time, workability, reaction kinetics, and strength development were thoroughly investigated. To understand the underlying mechanisms, microstructural analysis was conducted using thermogravimetric–differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS), and mercury intrusion porosimetry (MIP). The results indicate that the incorporation of FA, SF, and metakaolin delayed the initial reaction, prolonged the induction period, and reduced the acceleration rate. These effects hindered early strength development. At 30% FA content, the matrix exhibited excellent flowability and sustained heat release. The 28-day splitting tensile strength increased by 42.40%, while compressive strength decreased by 2.85%. In contrast, 20% SF significantly improved compressive strength, increasing the 28-day compressive and splitting tensile strengths by 11.19% and 6.16%, respectively. At 15% metakaolin, the strength improvement was intermediate, with 28-day compressive and splitting tensile strengths increasing by 3.55% and 10.59%, respectively. However, dosages exceeding 20% for SF and metakaolin significantly reduced workability. The incorporation of FA, SF, and metakaolin did not interfere with the slag’s alkali-activation reaction. The newly formed N-A-S-H and C-S-H gels integrated with the original C-A-S-H gels, optimizing the pore structure and reducing pores larger than 1 µm, enhancing the matrix compactness and microstructural reinforcement. This study provides practical guidance for optimizing the use of sustainable mineral admixtures in geopolymer systems. Full article
Show Figures

Figure 1

24 pages, 7880 KB  
Article
Enhancing the Early Hydration of Supersulfate Cement: The Effect of Sodium Aluminate
by Jiawei Wang, Ting Li, Jinbang Wang, Chong Zhang, Xiuzhi Zhang and Guangbin Duan
Materials 2025, 18(6), 1228; https://doi.org/10.3390/ma18061228 - 10 Mar 2025
Cited by 2 | Viewed by 1316
Abstract
Supersulfate cement (SSC) has received significant attention in the construction industry due to its extensive utilization of solid wastes and low carbon emissions. However, the low carbonation resistance and early strength of SSC greatly restricted its application, which was attributed to early insufficient [...] Read more.
Supersulfate cement (SSC) has received significant attention in the construction industry due to its extensive utilization of solid wastes and low carbon emissions. However, the low carbonation resistance and early strength of SSC greatly restricted its application, which was attributed to early insufficient alkalinity and slow hydration. Facilitating early hydration alkalinity is critical to promote early hydration and improve early performance for SSC. Thus, sodium aluminate (SA), an admixture with concentrations ranging from 0% to 4%, was adopted to enhance early alkalinity and investigate its impact on the initial hydration process. The results indicated that incorporating SA into SSC enhances its early performance by balancing high alkalinity and AFt stability. The addition of 2% SA accelerates hydration procession, reducing initial and final setting times by 76% and 42%, respectively, while increasing viscosity by 50% for improved structural stability. At 2% SA, 1-day and 7-day compressive strengths rose from 3.7 MPa to 8.4 MPa and from 15.1 MPa to 18.5 MPa, respectively, representing gains of 127% and 22.5%, which were facilitated by accelerated GGBFS dissolution and needle-like AFt formation, which densifies the crystal-gel network microstructure. Full article
Show Figures

Figure 1

20 pages, 3107 KB  
Article
Computer Simulation and Speedup of Solving Heat Transfer Problems of Heating and Melting Metal Particles with Laser Radiation
by Arturas Gulevskis and Konstantin Volkov
Computers 2025, 14(2), 47; https://doi.org/10.3390/computers14020047 - 4 Feb 2025
Viewed by 1086
Abstract
The study of the process of laser action on powder materials requires the construction of mathematical models of the interaction of laser radiation with powder particles that take into account the features of energy supply and are applicable in a wide range of [...] Read more.
The study of the process of laser action on powder materials requires the construction of mathematical models of the interaction of laser radiation with powder particles that take into account the features of energy supply and are applicable in a wide range of beam parameters and properties of the particle material. A model of the interaction of pulsed or pulse-periodic laser radiation with a spherical metal particle is developed. To find the temperature distribution in the particle volume, the non-stationary three-dimensional heat conductivity equation with a source term that takes into account the action of laser radiation is solved. In the plane normal to the direction of propagation of laser radiation, the change in the radiation intensity obeys the Gaussian law. It is possible to take into account changes in the intensity of laser radiation in space due to its absorption by the environment. To accelerate numerical calculations, a computational algorithm is used based on the use of vectorized data structures and parallel implementation of operations on general-purpose graphics accelerators. The features of the software implementation of the method for solving a system of difference equations that arises as a result of finite-volume discretization of the heat conductivity equation with implicit scheme by the iterative method are presented. The model developed describes the heating and melting of a spherical metal particle exposed by multi-pulsed laser radiation. The implementation of the computational algorithm developed is based on the use of vectorized data structures and GPU resources. The model and calculation results are of interest for constructing a two-phase flow model describing the interaction of test particles with laser radiation on the scale of the entire calculation domain. Such a model is implemented using a discrete-trajectory approach to modeling the motion and heat exchange of a dispersed admixture. Full article
Show Figures

Figure 1

23 pages, 6906 KB  
Article
Multi-Scale Modeling of Transport Properties in Cementitious Materials with GO Admixture
by Bing Liu, Weichen Kang, Weixing Lian, Feng Xing, Hongfang Sun and Hongyan Ma
Nanomaterials 2025, 15(3), 222; https://doi.org/10.3390/nano15030222 - 30 Jan 2025
Cited by 2 | Viewed by 1186
Abstract
In coastal areas, the presence of concrete cracks provides pathways for hazardous ions to ingress from the exterior into the interior of concrete, while the migration of the ions further accelerates concrete deterioration and causes durability problems. The incorporation of graphene oxide (GO) [...] Read more.
In coastal areas, the presence of concrete cracks provides pathways for hazardous ions to ingress from the exterior into the interior of concrete, while the migration of the ions further accelerates concrete deterioration and causes durability problems. The incorporation of graphene oxide (GO) into concrete can inhibit crack initiation and development starting at the nanoscale, improving the concrete microstructure, thereby affecting concrete’s resistance to hazardous ion transport and the resulting deterioration. In this study, a multi-scale transport model for cementitious materials with a GO admixture was established to predict the resistance to hazardous ions. Based on the determination of hydration types and hydration kinetics, microstructure modeling was conducted at three scales, the sub-microscale, microscale, and mesoscale, upon which transport property simulations were performed. At the microscale, the effects of both the cement paste matrix and the interfacial transition zone (ITZ) were considered. Through the simulation, it was found that the addition of GO reduced the duration of the induction period and increased the rate of hydration development after the induction period. Moreover, the incorporation of GO could reduce the porosity of cementitious materials at all simulation scales at both early and later ages. At the microscale, it improved the pore structure of the cement matrix and ITZ by reducing large pores and increasing small pores. At all three simulation scales, GO could increase the diffusion tortuosity in hydration products, suppress ion transport, and improve the resistance to hazardous ions of cementitious materials. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

20 pages, 3910 KB  
Article
Slag Substitution Effect on Features of Alkali-Free Accelerator-Reinforced Cemented Paste Backfill
by Ibrahim Cavusoglu
Minerals 2025, 15(2), 135; https://doi.org/10.3390/min15020135 - 29 Jan 2025
Cited by 1 | Viewed by 832
Abstract
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance [...] Read more.
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance is not yet fully understood. This study investigates the influences of slag substitution and AF accelerators on the performance of CPB through a comprehensive experimental approach. CPB samples were prepared with slag substitution ratios of 25%, 50%, and 75%, maintaining a fixed AF accelerator content of 0.4%. Various test techniques, including unconfined comprehensive strength (UCS), mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and thermal analysis (TG/DTA), were employed to study their mechanical and microstructural properties. Monitoring tests were also conducted to thoroughly assess the performance of CPB, including suction (self-desiccation), electrical conductivity (EC), and volumetric water content (VWC) tests. The results showed that the PCI50–SL50–0.4AF sample exhibited 2.3 times higher strength than the control sample for 28 days, with this improvement attributed to enhanced pozzolanic reactions contributing to better microstructural compactness. Monitoring tests revealed accelerated hydration kinetics and reduced water content in slag-reinforced CPB, highlighting the significant role of AF accelerator in facilitating rapid setting and improving early-age mechanical strength. Microstructural findings revealed that porosity decreased and C–S–H gel formation increased in the specimen containing slag and AF accelerators, contributing to increased strength and durability. These findings highlight the potential usage of slag and AF accelerators to enhance CPB’s mechanical, microstructural, and hydration properties, offering significant benefits for mining operations by improving backfill performance, while contributing to environmental sustainability through reduced cement consumption and associated CO2 emissions. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

20 pages, 3852 KB  
Article
Al(SO4)(OH)·5H2O Stemming from Complexation of Aluminum Sulfate with Water-Soluble Ternary Copolymer and further Stabilized by Silica Gel as Effective Admixtures for Enhanced Mortar Cementing
by Zhiyuan Song, Zainab Bibi, Sidra Chaudhary, Qinxiang Jia, Xiaoyong Li and Yang Sun
Materials 2024, 17(19), 4762; https://doi.org/10.3390/ma17194762 - 27 Sep 2024
Viewed by 1073
Abstract
A water-soluble ternary copolymer bearing carboxyl, sulfonic, and amide functional groups was synthesized using ammonium persulfate-catalyzed free radical polymerization in water, resulting in high monomer conversion. This copolymer was then complexed with aluminum sulfate, forming an admixture containing Al(SO4)(OH)·5H2O, [...] Read more.
A water-soluble ternary copolymer bearing carboxyl, sulfonic, and amide functional groups was synthesized using ammonium persulfate-catalyzed free radical polymerization in water, resulting in high monomer conversion. This copolymer was then complexed with aluminum sulfate, forming an admixture containing Al(SO4)(OH)·5H2O, which was subsequently combined with silica gel. Characterization revealed that the synthesized copolymer formed a large, thin membrane that covered both the aluminum compounds and the silica gel blocks. The introduction of this complex admixture, combining the copolymer and aluminum sulfate, not only reduced the setting times of the cement paste but also enhanced the mechanical strengths of the mortar compared to using aluminum sulfate alone. The complex admixture led to the formation of katoite, metajennite, and C3A (tricalcium aluminate) in the mortar, demonstrating significant linking effects, whereas pure aluminum sulfate could not completely transform C3S within 24 h. Further addition of silica gel to the complex admixture further shortened the setting times of the paste, slightly reduced compressive strength, but improved flexural strength compared to the initial complex admixture. The silicon components appeared to fill the micropores and mesopores of the mortar, accelerating cement setting and enhancing flexural strength, while slightly decreasing compressive strength. This study contributed to the development of new cementing accelerators with improved hardening properties. Full article
Show Figures

Figure 1

19 pages, 4278 KB  
Article
Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives
by Tobias Schack, Bastian Strybny and Michael Haist
Materials 2024, 17(18), 4509; https://doi.org/10.3390/ma17184509 - 13 Sep 2024
Cited by 1 | Viewed by 1462
Abstract
In this study, the impact of binder granulometry as well as chemical additives on the early strength and early age stiffness development of eco-efficient mortars with low clinker content and ternary blended cements with high contents of slag and limestone powder was investigated. [...] Read more.
In this study, the impact of binder granulometry as well as chemical additives on the early strength and early age stiffness development of eco-efficient mortars with low clinker content and ternary blended cements with high contents of slag and limestone powder was investigated. With regard to granulometry, the particle size distribution of the slag was varied in two steps. In addition, admixtures based on nano-granular C-S-H seeds were used for the acceleration of the hydration reaction. Both the compressive strength at 1d and the in-situ ultrasound pulse velocity for the first 36 h were determined. The granulometric optimization of the slag leads to an improvement in compressive strength of up to 162% in the early phase of the first 24 h. In addition, C-S-H seeding enhanced the hydration reaction mortars as early as 6 h after water addition (at 20 °C). An increase in the dosage level of the C-S-H seeding admixture further resulted in a corresponding increase in early strength, particularly when the clinker content exceeds 30 wt% up to 103%. The proposed combined granulometric and admixture-based approach significantly improves the reaction of the binder in the early phase, so that the clinker factor can be significantly reduced while maintaining a comparable binder intensity. Full article
Show Figures

Figure 1

20 pages, 20552 KB  
Article
The Effect of Carbon Nanotubes and Carbon Microfibers on the Piezoresistive and Mechanical Properties of Mortar
by Irene Kanellopoulou, Ioannis A. Kartsonakis, Athanasia I. Chrysanthopoulou and Costas A. Charitidis
Fibers 2024, 12(8), 62; https://doi.org/10.3390/fib12080062 - 31 Jul 2024
Cited by 1 | Viewed by 2233
Abstract
Sustainability, safety and service life expansion in the construction sector have gained a lot of scientific and technological interest during the last few decades. In this direction, the synthesis and characterization of smart cementitious composites with tailored properties combining mechanical integrity and self-sensing [...] Read more.
Sustainability, safety and service life expansion in the construction sector have gained a lot of scientific and technological interest during the last few decades. In this direction, the synthesis and characterization of smart cementitious composites with tailored properties combining mechanical integrity and self-sensing capabilities have been in the spotlight for quite some time now. The key property for the determination of self-sensing behavior is the electrical resistivity and, more specifically, the determination of reversible changes in the electrical resistivity with applied stress, which is known as piezoresistivity. In this study, the mechanical and piezoresistive properties of mortars reinforced with carbon nanotubes (CNTs) and carbon micro-fibers (CMFs) are determined. Silica fume and a polymer with polyalkylene glycol graft chains were used as dispersant agents for the incorporation of the CNTs and CMFs into the cement paste. The mechanical properties of the mortar composites were investigated with respect to their flexural and compressive strength. A four-probe method was used for the estimation of their piezoresistive response. The test outcomes revealed that the combination of the dispersant agents along with a low content of CNTs and CMFs by weight of cement (bwoc) results in the production of a stronger mortar with enhanced mechanical performance and durability. More specifically, there was an increase in flexural and compressive strength of up to 38% and 88%, respectively. Moreover, mortar composites loaded with 0.4% CMF bwoc and 0.05% CNTs bwoc revealed a smooth and reversible change in electrical resistivity vs. compression loading—with unloading comprising a strong indication of self-sensing behavior. This work aims to accelerate progress in the field of material development with structural sensing and electrical actuation via providing a deeper insight into the correlation among cementitious composite preparation, admixture dispersion quality, cementitious composite microstructure and mechanical and self-sensing properties. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

Back to TopTop