Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = active strike-slip faults

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8271 KB  
Article
Asymmetric Structural Response Characteristics of Transmission Tower-Line Systems Under Cross-Fault Ground Motions Revealed by Shaking Table Tests
by Yu Wang, Xiaojun Li, Xiaohui Wang and Mianshui Rong
Symmetry 2025, 17(10), 1646; https://doi.org/10.3390/sym17101646 - 4 Oct 2025
Viewed by 213
Abstract
The long-distance high-voltage transmission tower-line system, frequently traversing active fault zones, is vulnerable to severe symmetry-breaking damage during earthquakes due to asymmetric permanent ground displacements. However, the seismic performance of such systems, particularly concerning symmetry-breaking effects caused by asymmetric fault displacements, remains inadequately [...] Read more.
The long-distance high-voltage transmission tower-line system, frequently traversing active fault zones, is vulnerable to severe symmetry-breaking damage during earthquakes due to asymmetric permanent ground displacements. However, the seismic performance of such systems, particularly concerning symmetry-breaking effects caused by asymmetric fault displacements, remains inadequately studied. This study investigates the symmetry degradation mechanisms in a 1:40 scaled 500 kV tower-line system subjected to cross-fault ground motions via shaking table tests. The testing protocol incorporates representative fault mechanisms—strike-slip and normal/reverse faults—to systematically evaluate their differential impacts on symmetry response. Measurements of acceleration, strain, and displacement reveal that while acceleration responses are spectrally controlled, structural damage is highly fault-type dependent and markedly asymmetric. The acceleration of towers without permanent displacement was 35–50% lower than that of towers with permanent displacement. Under identical permanent displacement conditions, peak displacements caused by normal/reverse motions exceeded those from strike-slip motions by 50–100%. Accordingly, a fault-type-specific amplification factor of 1.5 is proposed for the design of towers in dip-slip fault zones. These results offer novel experimental insights into symmetry violation under fault ruptures, including fault-specific correction factors and asymmetry-resistant design strategies. However, the conclusions are subject to limitations such as scale effects and the exclusion of vertical ground motion components. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Viewed by 178
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

23 pages, 15398 KB  
Article
Relative Uplift Rates Along the Central Mindoro Fault, Philippines
by Jeremy Rimando and Rolly Rimando
GeoHazards 2025, 6(3), 57; https://doi.org/10.3390/geohazards6030057 - 15 Sep 2025
Viewed by 582
Abstract
The Central Mindoro Fault (CMF) is a major active oblique, sinistral strike-slip fault within the Philippine archipelago that accommodates the oblique convergence between the Philippine Sea Plate (PSP) and the Sunda Plate (SP). This study focused on assessing the spatial distribution of relative [...] Read more.
The Central Mindoro Fault (CMF) is a major active oblique, sinistral strike-slip fault within the Philippine archipelago that accommodates the oblique convergence between the Philippine Sea Plate (PSP) and the Sunda Plate (SP). This study focused on assessing the spatial distribution of relative uplift rates along the CMF by calculating multiple geomorphic indices (elongation ratio, volume-to-area-ratio, valley floor width-to-height ratio, hypsometric integral, and normalized steepness index) and interpreting these values in the context of any along-strike variations in geology and climate, as well as the context of the CMF’s kinematics. We observed 2 characteristics of spatial distributions of relative uplift rates: (1) at least 20–30 km-long high uplift rate sections in the northwestern end of the CMF-bound mountain range (CMF segment I), and (2) at most, CMF-wide moderate to high uplift rates. This trend matches the geomorphic-based cumulative fault offset measurements distribution, possibly indicating consistent kinematics and an overall nearly-uniform stress-field since at least the Pleistocene. Based on the spatial distribution of areas with high relative uplift rates highlighted by this study, future efforts to assess the CMF’s seismogenic capability should focus on segments I and III. Full article
Show Figures

Figure 1

12 pages, 4760 KB  
Article
Developmental Characteristics of Post-Rift Faults and Palostress Field Inversion in the Bozhong 19-6 Structural Belt
by Shuchun Yang, Xinran Li, Ke Wang and Guidong Ping
Processes 2025, 13(9), 2726; https://doi.org/10.3390/pr13092726 - 26 Aug 2025
Viewed by 395
Abstract
The faults in the post-rift period have an important controlling effect on the migration and accumulation of oil and gas in the shallow strata of Bohai Bay Basin. Based on the seismic interpretation data of Bozhong 19-6 Structural Belt, this paper analyzes the [...] Read more.
The faults in the post-rift period have an important controlling effect on the migration and accumulation of oil and gas in the shallow strata of Bohai Bay Basin. Based on the seismic interpretation data of Bozhong 19-6 Structural Belt, this paper analyzes the geometric characteristics and growth history of the faults in the post-rift period and inverts the tectonic paleostress that caused the fault activities in the post-rift period. Finally, the developmental characteristics of the faults in the post-rift period are deeply understood from three aspects: fault geometry, kinematics, and dynamics. In the study area, the trend of post-rift faults are mainly east–west, followed by NEE. According to the fault activity, it can be divided into three types: newly formed faults, long-term active faults, and deep-linked faults. The latter two types are faults that existed before and then reactivated during post-rifted period. The inversion result of the Neogene is the strike-slip stress field, showing that the intermediate principal stress axis (σ2) is oriented vertically, the minimum principal stress (σ3) is oriented N170°, the maximum principal stress axis (σ1) is oriented N80°, and σ31 = 0.24, σ21 = 0.62. The data used in this inversion method is easily obtained in the oil and gas industry, and the inversion results can provide an important reference for analyzing the regional tectonic evolution and clarifying the fault activity at the key moment of oil and gas accumulation. Full article
Show Figures

Figure 1

16 pages, 4771 KB  
Article
Identifying Deep Seismogenic Sources in Southern Piedmont (North-Western Italy) via the New Tool TESLA for Microseismicity Analysis
by Francisca Guiñez-Rivas, Guido Maria Adinolfi, Cesare Comina and Sergio Carmelo Vinciguerra
GeoHazards 2025, 6(3), 47; https://doi.org/10.3390/geohazards6030047 - 20 Aug 2025
Viewed by 613
Abstract
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of [...] Read more.
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of precise source mechanisms is a difficult and non-trivial task. In this study, we present a detailed application of TESLA (Tool for automatic Earthquake low-frequency Spectral Level estimAtion), a novel tool designed to overcome these limitations. We demonstrated TESLA’s effectiveness in defining source mechanism analysis by applying it to seismic sequences that occurred near Asti (AT), in the Monferrato area (Southern Piedmont, Italy). Our analysis reveals that the observed clusters consist of two distinct seismic sequences, occurring in 1991 and 2012, which were activated by the same seismogenic source. We relocated a total of 36 events with magnitudes ranging from 1.1 to 3.7, using a 3D velocity model, and computed 12 well-constrained focal mechanism solutions using the first motion polarities and the low-frequency spectral level ratios. The results highlight a relatively small seismogenic source located at approximately 5 km north of Asti (AT), at a depth of between 10 and 25 km, trending SW–NE with strike-slip kinematics. A smaller cluster of three events shows an activation of a different fault segment at around 60 km of depth, also showing strike-slip kinematics. These findings are in good agreement with the regional stress field acting in the Monferrato area and support the use of investigation tools such as TESLA for microseismicity analysis. Full article
Show Figures

Figure 1

28 pages, 146959 KB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 - 30 Jul 2025
Viewed by 650
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

26 pages, 23038 KB  
Article
Geometry and Kinematics of the North Karlik Tagh Fault: Implications for the Transpressional Tectonics of Easternmost Tian Shan
by Guangxue Ren, Chuanyou Li, Chuanyong Wu, Kai Sun, Quanxing Luo, Xuanyu Zhang and Bowen Zou
Remote Sens. 2025, 17(14), 2498; https://doi.org/10.3390/rs17142498 - 18 Jul 2025
Viewed by 646
Abstract
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault [...] Read more.
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault System. The North Karlik Tagh Fault (NKTF) is an important fault demarcating the north boundary of the Karlik Tagh. While structurally significant, it is poorly understood in terms of its late Quaternary tectonic activity. In this study, we analyze the offset geomorphology based on interpretations of satellite imagery, field survey, and digital elevation models derived from structure-from-motion (SfM), and we provide the first quantitative constraints on the late-Quaternary slip rate using the abandonment age of deformed fan surfaces and river terraces constrained by the 10Be cosmogenic dating method. Our results reveal that the NKTF can be divided into the Yanchi and Xiamaya segments based on along-strike variations. The NW-striking Yanchi segment exhibits thrust faulting with a 0.07–0.09 mm/yr vertical slip, while the NE-NEE-striking Xiamaya segment displays left-lateral slip at 1.1–1.4 mm/yr since 180 ka. In easternmost Tian Shan, the interaction between thrust and sinistral strike-slip faults forms a transpressional regime. These left-lateral faults, together with those in the Gobi Altai, collectively facilitate eastward crustal escape in response to ongoing Indian indentation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

28 pages, 17579 KB  
Article
Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations
by Daniele Cheloni, Nicola Angelo Famiglietti, Aybige Akinci, Riccardo Caputo and Annamaria Vicari
Remote Sens. 2025, 17(13), 2270; https://doi.org/10.3390/rs17132270 - 2 Jul 2025
Viewed by 2554
Abstract
The 6 February 2023 MW 7.8 and MW 7.6 earthquakes in southeastern Türkiye ruptured more than 400 km of the East Anatolian Fault Zone (EAFZ), producing one of the most destructive seismic sequences in recent history. Here, we integrate InSAR data, [...] Read more.
The 6 February 2023 MW 7.8 and MW 7.6 earthquakes in southeastern Türkiye ruptured more than 400 km of the East Anatolian Fault Zone (EAFZ), producing one of the most destructive seismic sequences in recent history. Here, we integrate InSAR data, a new GNSS velocity field, and small-magnitude earthquakes to investigate the coseismic deformation, rupture geometry, and interseismic strain accumulation along the EAFZ. Using elastic dislocation modeling with a variable-strike, multi-segment fault geometry, we constrain the slip distribution of the mainshocks, showing improved fits to the surface displacement compared to the planar fault model. The MW 7.8 event ruptured a number of fault segments over ~300 km, while the MW 7.6 event activated a more localized fault system with a peak slip exceeding 15 m. We also model two moderate events (MW 5.6 in 2020 and MW 5.3 in 2022) along the southwestern part of the Pütürge segment—an area not ruptured during the 2020 or 2023 sequences. GNSS-derived strain-rate and locking depth estimates reveal strong interseismic coupling and significant strain accumulation in this region, suggesting the potential for a future large earthquake (MW 6.6–7.1). Similarly, the Hatay region, at the southwestern termination of the 2023 rupture, shows a persistent strain accumulation and complex fault interactions involving the Dead Sea Fault and the Cyprus Arc. Our results demonstrate the importance of combining remote sensing and geodetic data to constrain fault kinematics, evaluate rupture segmentation, and assess the seismic hazard in tectonically active regions. Targeted monitoring at rupture terminations—such as the Pütürge and Hatay sectors—may be crucial for anticipating future large-magnitude earthquakes. Full article
Show Figures

Figure 1

17 pages, 35407 KB  
Article
Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity
by Xiao Li, Xuanjie Zhang, Wan Zhang, Ruohan Wu, Yanyun Sun, Guotao Yao and Huaichun Wu
Appl. Sci. 2025, 15(10), 5564; https://doi.org/10.3390/app15105564 - 15 May 2025
Viewed by 763
Abstract
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the [...] Read more.
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the newest airborne gravity data of Hainan Island and its adjacent areas, this paper uses wavelet multiscale decomposition followed by power spectral analysis to estimate the average depth of each layer of the source field. We use the Parker–Oldenburg method to invert the Moho structure, incorporating constraints from seismic data to investigate the fine crustal structure and deformation characteristics to elucidate the deep seismogenic mechanism. The regional Moho depth decreases from 30 km in the northwest to 16 km in the southeast. The map of the Moho surface shows three Moho uplift zones, located in the northern Hainan Island, the southern Qiongdongnan Basin, and the southwestern tip of Hainan Island. The following findings are revealed: Firstly, a series of northeastward high-gravity anomaly strips are discovered for the first time in the middle and lower crust of Hainan Island, which may be the remnants within the continental crust of the ancient Pacific northwestward subduction during the Mesozoic era. Secondly, under the Leiqiong volcanic rocks, there is a pronounced northeastward high-value anomaly and shallower Moho depth, which may indicate the deep-seated mantle material that rose and intruded during the activity of the Hainan mantle plume. Thirdly, the seismogenic structure is discussed by combining the wavelet multiscale decomposition results with natural seismic data. The results show that earthquakes occur in the place where the NE-trending gravity anomaly is cut by the NW-trending fault in the upper crust. That place also lies in the gravity anomaly gradient or high-value anomaly in the middle and lower crust. These features reveal that the earthquakes on Hainan Island are controlled by the left strike-slip activity of the Red River Fault and deep mantle upwelling caused by Hainan Plume. Full article
Show Figures

Figure 1

15 pages, 17899 KB  
Technical Note
Coseismic Rupture and Postseismic Afterslip of the 2020 Nima Mw 6.4 Earthquake
by Shaojun Wang, Ling Bai and Chaoya Liu
Remote Sens. 2025, 17(8), 1389; https://doi.org/10.3390/rs17081389 - 14 Apr 2025
Viewed by 621
Abstract
On 22 July 2020, an Mw 6.4 earthquake occurred in Nima County in the Qiangtang Terrane of the central Tibetan Plateau. This event, caused by normal faulting, remains controversial in terms of its rupture process and causative fault due to the complex tectonics [...] Read more.
On 22 July 2020, an Mw 6.4 earthquake occurred in Nima County in the Qiangtang Terrane of the central Tibetan Plateau. This event, caused by normal faulting, remains controversial in terms of its rupture process and causative fault due to the complex tectonics of the region. In this study, we analyzed the coseismic and postseismic deformation using differential interferometric synthetic aperture radar (D-InSAR). The coseismic slip distribution was independently estimated through InSAR inversion and teleseismic waveform analysis, while the afterslip distribution was inferred from postseismic deformation. Coulomb stress failure analysis was conducted to assess the potential seismic hazard. Our results showed a maximum line-of-sight (LOS) coseismic deformation of about 29 cm away from the satellite, with quasi-vertical subsidence peaking at 35 cm. Four distinct deformation zones were observed in the quasi-east–west direction. Coseismic deformation and slip models based on InSAR and teleseismic data indicate that the Nima earthquake ruptured the West Yibu Chaka fault. The seismogenic fault had a strike of 26°, an eastward dip of 43°, and a rake of −87.28°, with rupture patches at depths of 3–13 km and a maximum slip of 1.1 m. Postseismic deformation showed cumulative LOS displacement of up to 0.05 m. Afterslip was concentrated in the up-dip and down-dip areas of the coseismic rupture zone, reaching a maximum of 0.11 m. Afterslip was also observed along the East Yibu Caka fault. Coulomb stress modeling indicates an increased seismic risk between the Yibu Caka fault and the Jiangai Zangbu fault, highlighting the vulnerability of the region to future seismic activity. Full article
Show Figures

Figure 1

18 pages, 7968 KB  
Article
Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals
by Chao Yao, Zhanfeng Qiao, Xiao Luo, Tianfu Zhang, Bing Li, Shaoying Chang, Zhenyu Zhang and Jiajun Chen
Minerals 2025, 15(3), 270; https://doi.org/10.3390/min15030270 - 6 Mar 2025
Viewed by 801
Abstract
Siliceous minerals with the property of resistance to diagenetic alteration precipitate during the migration of hydrothermal fluids through strike-slip faults and the interaction of these fluids with host rocks during fault activity. Based on petrological analyses and U-Pb dating of siliceous minerals, the [...] Read more.
Siliceous minerals with the property of resistance to diagenetic alteration precipitate during the migration of hydrothermal fluids through strike-slip faults and the interaction of these fluids with host rocks during fault activity. Based on petrological analyses and U-Pb dating of siliceous minerals, the stages of strike-slip faulting of the ultra-deep-burial Ordovician in the Fuman oilfield were subdivided and their evolutionary process was discussed in combination with seismic interpretation. The results reveal the following: (1) the strike-slip faults contain hydrothermal siliceous minerals, including cryptocrystalline silica, crystalline silica, and radial silica. (2) Based on the twelve U-Pb ages of siliceous minerals (ranging from 458 ± 78 Ma to 174 ± 35 Ma) and five U-Pb ages of calcite, the activity of the strike-slip faults was divided into six stages: the Middle Caledonian, Late Caledonian, Early Hercynian, Middle Hercynian, Late Hercynian, and Yanshanian, corresponding to twelve siliceous U-Pb ages ranging from 458 ± 78 Ma to 174 ± 35 Ma, and five calcitic U-Pb ages. The Late Caledonian and Early Hercynian were the main periods of strike-slip fault activity, while the Late Hercynian period marked the final period of the fault system. (3) Later-stage faults inherited and developed from pre-existing faults. Steep linear strike-slip faults formed during the Middle and Late Caledonian movements. During the Late Hercynian and Yanshanian movements, mid-shallow faults, branch faults, and shallow echelon faults developed on the foundation of these linear faults. The methods and results of this study can guide future hydrocarbon exploration in the Fuman oilfield and can be applied to areas with similar tectonic backgrounds. Full article
(This article belongs to the Special Issue Deformation, Diagenesis, and Reservoir in Fault Damage Zone)
Show Figures

Figure 1

17 pages, 13341 KB  
Article
The Central Mindoro Fault: An Active Sinistral Fault Within the Translational Boundary Between the Palawan Microcontinental Block and the Philippine Mobile Belt
by Rolly Rimando and Jeremy Rimando
GeoHazards 2025, 6(1), 6; https://doi.org/10.3390/geohazards6010006 - 1 Feb 2025
Cited by 1 | Viewed by 5436
Abstract
The NNW-trending Central Mindoro Fault (CMF) is an active oblique left-lateral strike-slip fault as determined from offset morphotectonic features such as spurs and streams. Mapping of the trace and determination of the sinistral strike-slip sense of motion of the CMF is essential not [...] Read more.
The NNW-trending Central Mindoro Fault (CMF) is an active oblique left-lateral strike-slip fault as determined from offset morphotectonic features such as spurs and streams. Mapping of the trace and determination of the sinistral strike-slip sense of motion of the CMF is essential not only to the assessment of hazards but also to providing a clearer perspective of its role in accommodating deformation resulting from the NW relative motion between the Philippine Sea Plate and the Sunda Plate. Its sense of motion is also kinematically congruent with the NW-SE translation along a transcurrent zone between the Philippine Mobile Belt and the Palawan Microcontinental Block on the western part of the Philippine archipelago. It is also consistent with the left-lateral motion of other structures within the zone, such as the Verde Passage Fault—another structure believed to be accommodating the NW-SE translation. Mapping of the CMF provides a key constraint in identifying the possible mechanism(s) involved in the dextral strike-slip motion of the 1994 Mindoro Earthquake ground rupture, which is subparallel to the CMF. Full article
Show Figures

Figure 1

22 pages, 17971 KB  
Article
Experimental Study on Tunnel Failure Mechanism and the Effect of Combined Anti-Dislocation Measures Under Fault Dislocation
by Jiaxuan Du, Songhong Yan, Weiyu Sun, Mingxing Cao and Yuxiang Li
Appl. Sci. 2025, 15(2), 765; https://doi.org/10.3390/app15020765 - 14 Jan 2025
Viewed by 1124
Abstract
Taking the tunnels crossing active faults in China’s Sichuan–Tibet Railway as the research background, experimental studies were conducted using a custom-developed split model box. The research focused on the cracking characteristics of the surrounding rock surface under the action of strike-slip faults, the [...] Read more.
Taking the tunnels crossing active faults in China’s Sichuan–Tibet Railway as the research background, experimental studies were conducted using a custom-developed split model box. The research focused on the cracking characteristics of the surrounding rock surface under the action of strike-slip faults, the progressive failure process of the tunnel model, and the mechanical response of the tunnel lining. In-depth analyses were performed on the tunnel damage mechanism under strike-slip fault action and the mitigation effects of combined anti-dislocation measures. The results indicate the following: Damage to the upper surface of the surrounding rock primarily occurs within the fault fracture zone. The split model box enables the graded transfer of fault displacement within this zone, improving the boundary conditions for the model test. Under a 50 mm fault displacement, the continuous tunnel experiences severe damage, leading to a complete loss of function. The damage is mainly characterized by circumferential shear and is concentrated within the fault fracture zone. The zone 20 cm to 30 cm on both sides of the fault plane is the primary area influenced by tunnel forces. The force distribution on the left and right sidewalls of the lining exhibits an anti-symmetric pattern across the fault plane. The left side wall is extruded by surrounding rock in the moving block, while the right side wall experiences extrusion from the surrounding rock in the fracture zone, and there is a phenomenon of dehollowing and loosening of the surrounding rock on both sides of the fault plane; the combination of anti-dislocation measures significantly enhances the tunnel’s stress state, reducing peak axial strain by 93% compared to a continuous tunnel. Furthermore, the extent and severity of tunnel damage are greatly diminished. The primary cause of lining segment damage is circumferential stress, with the main damage characterized by tensile cracking on both the inner and outer surfaces of the lining along the tunnel’s axial direction. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 5103 KB  
Article
Relationship Between the 2019 Ridgecrest, California, MW7.1 Earthquake and Its MW6.4 Foreshock Sequence
by Jianchang Zheng, Zhengshuai Zhang and Xiaohan Li
Entropy 2025, 27(1), 16; https://doi.org/10.3390/e27010016 - 28 Dec 2024
Viewed by 1028
Abstract
The 2019 Ridgecrest MW7.1 earthquake has received significant attention due to its complex fault activity. It is also noticeable for its MW6.4 foreshock sequence. There are intricate dynamic relationships between earthquakes in such vigorous sequences. Based on the relocated [...] Read more.
The 2019 Ridgecrest MW7.1 earthquake has received significant attention due to its complex fault activity. It is also noticeable for its MW6.4 foreshock sequence. There are intricate dynamic relationships between earthquakes in such vigorous sequences. Based on the relocated catalogue, we adopt the nearest neighbour algorithm to analyze its foreshock and aftershock sequences. Detailed links and family structures of the sequence are obtained. The results show that a MW5.0 event at 03:16 (UTC) on 6 July is a direct foreshock of the MW7.1 mainshock. It is likely related to barriers on the northwest-striking fault. The MW6.4 event on 4 July is characterized as a complex conjugate rupture. Notably, a magnitude 4.0 event occurred on the northwest-striking fault before the MW6.4 event, establishing it as a direct foreshock. The Ridgecrest sequence is predominantly influenced by northwest fault activity. It first caused small fractures on the northwest-striking fault. Then, it triggered conjugate slips on the southwest-striking fault. Lastly, it led to larger ruptures on the northwest-striking fault. Full article
(This article belongs to the Special Issue Time Series Analysis in Earthquake Complex Networks)
Show Figures

Figure 1

15 pages, 32385 KB  
Technical Note
Aftershock Spatiotemporal Activity and Coseismic Slip Model of the 2022 Mw 6.7 Luding Earthquake: Fault Geometry Structures and Complex Rupture Characteristics
by Qibo Hu, Hongwei Liang, Hongyi Li, Xinjian Shan and Guohong Zhang
Remote Sens. 2025, 17(1), 70; https://doi.org/10.3390/rs17010070 - 28 Dec 2024
Viewed by 1384
Abstract
On 5 September 2022, the moment magnitude (Mw) 6.7 Luding earthquake struck in the Xianshuihe Fault system on the eastern edge of the Tibet Plateau, illuminating the seismic gap in the Moxi segment. The fault system geometry and rupture process of this earthquake [...] Read more.
On 5 September 2022, the moment magnitude (Mw) 6.7 Luding earthquake struck in the Xianshuihe Fault system on the eastern edge of the Tibet Plateau, illuminating the seismic gap in the Moxi segment. The fault system geometry and rupture process of this earthquake are relatively complex. To better understand the underlying driving mechanisms, this study first uses the Interferometric Synthetic Aperture Radar (InSAR) technique to obtain static surface displacements, which are then combined with Global Positioning System (GPS) data to invert the coseismic slip distribution. A machine learning approach is applied to extract a high-quality aftershock catalog from the original seismic waveform data, enabling the analysis of the spatiotemporal characteristics of aftershock activity. The catalog is subsequently used for fault fitting to determine a reliable fault geometry. The coseismic slip is dominated by left-lateral strike-slip motion, distributed within a depth range of 0–15 km, with a maximum fault slip > 2 m. The relocated catalog contains 15,571 events. Aftershock activity is divided into four main seismic clusters, with two smaller clusters located to the north and south and four interval zones in between. The geometry of the five faults is fitted, revealing the complexity of the Xianshuihe Fault system. Additionally, the Luding earthquake did not fully rupture the Moxi segment. The unruptured areas to the north of the mainshock, as well as regions to the south near the Anninghe Fault, pose a potential seismic hazard. Full article
Show Figures

Graphical abstract

Back to TopTop