Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,305)

Search Parameters:
Keywords = active zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6754 KiB  
Article
Railway Intrusion Risk Quantification with Track Semantic Segmentation and Spatiotemporal Features
by Shanping Ning, Feng Ding, Bangbang Chen and Yuanfang Huang
Sensors 2025, 25(17), 5266; https://doi.org/10.3390/s25175266 (registering DOI) - 24 Aug 2025
Abstract
Foreign object intrusion in railway perimeter areas poses significant risks to train operation safety. To address the limitation of current visual detection technologies that overly focus on target identification while lacking quantitative risk assessment, this paper proposes a railway intrusion risk quantification method [...] Read more.
Foreign object intrusion in railway perimeter areas poses significant risks to train operation safety. To address the limitation of current visual detection technologies that overly focus on target identification while lacking quantitative risk assessment, this paper proposes a railway intrusion risk quantification method integrating track semantic segmentation and spatiotemporal features. An improved BiSeNetV2 network is employed to accurately extract track regions, while physical-constrained risk zones are constructed based on railway structure gauge standards. The lateral spatial distance of intruding objects is precisely calculated using track gauge prior knowledge. A lightweight detection architecture is designed, adopting ShuffleNetV2 as the backbone to reduce computational complexity, with an incorporated Dilated Transformer module to enhance global context awareness and sparse feature extraction, significantly improving detection accuracy for small-scale objects. The comprehensive risk assessment formula integrates object category weights, lateral risk coefficients in intrusion zones, longitudinal distance decay factors, and dynamic velocity compensation. Experimental results demonstrate that the proposed method achieves 84.9% mean average precision (mAP) on our proprietary dataset, outperforming baseline models by 3.3%. By combining lateral distance detection with multidimensional risk indicators, the method enables quantitative intrusion risk assessment and graded early warning, providing data-driven decision support for active train protection systems and substantially enhancing intelligent safety protection capabilities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

24 pages, 1091 KiB  
Article
Eugenol@natural Zeolite Nanohybrid vs. Clove Powder as Active and Reinforcement Agents in Novel Brewer’s Spent Grain/Gelatin/Glycerol Edible, High Oxygen Barrier Active Packaging Films
by Zoe Ntari, Achilleas Kechagias, Areti A. Leontiou, Alexios Vardakas, Margarita Dormousoglou, Tarsizia Angelari, Konstantinos Zaharioudakis, Panagiota Stathopoulou, Panagiota Karahaliou, Grigorios Beligiannis, Charalampos Proestos, Constantinos E. Salmas and Aris E. Giannakas
Appl. Sci. 2025, 15(17), 9282; https://doi.org/10.3390/app15179282 (registering DOI) - 23 Aug 2025
Abstract
Following the trend of food waste valorization to produce innovative bio-based materials, this study proposes the conversion of brewer’s spent grain (BSG) into added value edible, high oxygen barrier, flexible, active packaging films via an extrusion molding compression method. Gelatin (Gel) was used [...] Read more.
Following the trend of food waste valorization to produce innovative bio-based materials, this study proposes the conversion of brewer’s spent grain (BSG) into added value edible, high oxygen barrier, flexible, active packaging films via an extrusion molding compression method. Gelatin (Gel) was used as both a reinforcement and barrier agent and glycerol (Gl) as a plasticizer. Eugenol was nanoencapsulated on natural zeolite (EG@NZ), and pure clove powder (ClP) was used as an active agent to obtain BSG/Gel/Gl/xEG@NZ and BSG/Gel/Gl/xClP (x = 5, 10, and 15 %wt.) active films. Both BSG/Gel/Gl/xEG@NZ and BSG/Gel/Gl/xClP films show enhanced tensile, oxygen barrier, antioxidant, and antibacterial properties, and low toxicity and genotoxicity values. All BSG/Gel/Gl/xEG@NZ films presented a higher oxygen barrier, higher total phenolic content (TPC) values, higher antioxidant activity according to a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, higher inhibition zones against Staphylococcus aureus and Escherichia coli, and lower toxicity and genotoxicity than all BSG/Gel/Gl/xClP films. Thus, the superiority of the nanoencapsulated EG in NZ as compared to the physical encapsulated EG in ClP is proved. Briefly, BSG/Gel/Gl/15EG@NZ active film exhibited ~218% higher tensile strength, ~93% higher TPC value, and ~90% lower effective concentration for a 60% antioxidant activity value (EC60) as compared to the pure BSG/Gel/Gl film. The zones against S. aureus and E. coli were 45 and 30 mm, respectively, and the oxygen barrier was zero. The use of this film extended the shelf life of fresh minced meat by two days and exhibited the high potential to be used as active packaging material. Full article
20 pages, 6803 KiB  
Article
Improved Corrosion Resistance of Yttrium-Bearing H13 Steel for Shield Machine Cutter Ring
by Yunxin Wang, Xingwang Feng, Li Zhang and Bin Yang
Metals 2025, 15(9), 935; https://doi.org/10.3390/met15090935 (registering DOI) - 23 Aug 2025
Abstract
H13 steel, which was used as the material for shield machine cutter rings, required tempering to attain superior mechanical properties. The Cr-rich carbide that precipitated during the tempering process definitely decreased the corrosion resistance of the steel. Here, we added rare earth Yttrium [...] Read more.
H13 steel, which was used as the material for shield machine cutter rings, required tempering to attain superior mechanical properties. The Cr-rich carbide that precipitated during the tempering process definitely decreased the corrosion resistance of the steel. Here, we added rare earth Yttrium to enhance the corrosion resistance of H13 steel. It was found that the inclusions were modified by adding yttrium in the steel, and the formation of Cr23C6 at the grain boundaries during tempering was suppressed. Furthermore, SKPFM measurements demonstrated that the surface potential of yttrium-containing inclusion was comparable to that of the surrounding matrix, thereby reducing the pitting susceptibility of H13 steel. Further investigation showed that yttrium decreased the normal stress range at grain boundaries during the tempering process, and effectively prevented C segregation. Thus, the number of Cr-depleted zones was decreased, and grain boundaries with active Cr atoms were increased. These active Cr atoms effectively sealed the ion channels between the matrix and NaCl solution within the Cr-rich oxide layer, thus improving localized corrosion resistance in the NaCl solution. On the other hand, the electrochemical test and SKPFM exhibited that yttrium reduced the potential loss during tempering, minimized the potential degradation of the matrix, and improved the corrosion resistance of H13 steel with yttrium. Accordingly, the corrosion loss of Y-bearing H13 steel was reduced by 46.6%. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

24 pages, 9686 KiB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 (registering DOI) - 23 Aug 2025
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

17 pages, 3187 KiB  
Article
Tectonic Uplift and Hydrocarbon Generation Constraints from Low-Temperature Thermochronology in the Yindongzi Area, Ordos Basin
by Guangyuan Xing, Zhanli Ren, Kai Qi, Liyong Fan, Junping Cui, Jinbu Li, Zhuo Han and Sasa Guo
Minerals 2025, 15(9), 893; https://doi.org/10.3390/min15090893 - 22 Aug 2025
Abstract
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area [...] Read more.
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area exhibits a complex structural framework shaped by multiple deformation events, leading to the formation of extensively developed fault systems. Such faulting can adversely affect hydrocarbon preservation. To better constrain the timing of fault reactivation in this area, we carried out an integrated study involving low-temperature thermochronology and burial history modeling. The results reveal a complex, multi-phase thermal-tectonic evolution since the Late Paleozoic. The ZHe ages (291–410 Ma) indicate deep burial and heating related to Late Devonian–Early Permian tectonism and basin sedimentation, reflecting early orogenic activity along the western North China Craton. During the Late Jurassic to Early Cretaceous (165–120 Ma), the study area experienced widespread and differential uplift and cooling, controlled by the Yanshanian Orogeny. Samples on the western side of the fault show earlier and more rapid cooling than those on the eastern side, suggesting a fault-controlled, basinward-propagating exhumation pattern. The cooling period indicated by AHe data and thermal models reflects the Cenozoic uplift, likely induced by far-field compression from the rising northeastern Tibetan Plateau. These findings emphasize the critical role of inherited faults not only as thermal-tectonic boundaries during the Mesozoic but also as a pathway for hydrocarbon migration. Meanwhile, thermal history models based on borehole data further reveal that the study area underwent prolonged burial and heating during the Mesozoic, reaching peak temperatures for hydrocarbon generation in the Late Jurassic. The timing of major cooling events corresponds to the main stages of hydrocarbon expulsion and migration. In particular, the differential uplift since the Mesozoic created structural traps and migration pathways that likely facilitated hydrocarbon accumulation along the western fault zones. The spatial and temporal differences among the samples underscore the structural segmentation and dynamic response of the continental interior to both regional and far-field tectonic forces, while also providing crucial constraints on the petroleum system evolution in this tectonically complex region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

11 pages, 664 KiB  
Article
Evidence of Waterborne Parasites in Mussels for Human Consumption Harvested from a Recreational and Highly Productive Bay
by Pilar Suarez, Italo Fernandez, José Luís Alonso and Gladys Vidal
Microorganisms 2025, 13(9), 1971; https://doi.org/10.3390/microorganisms13091971 - 22 Aug 2025
Abstract
Coastal fecal contamination is a global public health concern, particularly due to waterborne protozoan parasites such as Giardia duodenalis and Blastocystis sp. Concepcion Bay (Chile) is an important recreational and productive area in Chile. Nevertheless, it is impacted by two submarine outfalls and [...] Read more.
Coastal fecal contamination is a global public health concern, particularly due to waterborne protozoan parasites such as Giardia duodenalis and Blastocystis sp. Concepcion Bay (Chile) is an important recreational and productive area in Chile. Nevertheless, it is impacted by two submarine outfalls and a rural sewage treatment plant, which may contribute to fecal pollution. This study evaluated the presence of waterborne parasites in Aulacomya atra mussels intended for human consumption. The mussels were collected from three sectors of the bay: northern, central, and southern. A total of 600 mussels were analyzed as accumulators using PCR targeting SSU-rDNA and β-giardin genes for the detection of Blastocystis sp. and G. duodenalis, respectively. Additionally, thermotolerant coliforms were quantified using the most probable number (MPN) method. Both parasites and coliforms were detected in all sectors, with the southern zone showing the highest number of positive samples, indicating a localized public health concern. This is the first report of these protozoa in mussels from Concepción Bay. The findings highlight the need for regulatory frameworks to control protozoan discharge and reduce pathogen transmission risks in coastal ecosystems, especially in areas with high recreational and economic activity, both in Chile and worldwide. Full article
(This article belongs to the Section Environmental Microbiology)
20 pages, 11917 KiB  
Article
Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin
by Guohua Qu, Weiwei Hao, Xiaoguang Wu, Yan Sheng, Pengfei Huang, Xi Yang and Fang Li
Sustainability 2025, 17(17), 7594; https://doi.org/10.3390/su17177594 - 22 Aug 2025
Abstract
The Ordos section of the Yellow River Basin represents a typical semi-arid zone in northern China. Due to dual pressures from natural drivers and human activities, this region is at the forefront of desertification. Therefore, rapidly and accurately identifying desertification and analyzing its [...] Read more.
The Ordos section of the Yellow River Basin represents a typical semi-arid zone in northern China. Due to dual pressures from natural drivers and human activities, this region is at the forefront of desertification. Therefore, rapidly and accurately identifying desertification and analyzing its evolutionary trends plays a vital role in desertification control. Using six-phase Landsat imagery (2000–2023) of Ordos City, this study extracted NDVI and Albedo to construct a fitting model, thereby analyzing desertification severity, spatial distribution patterns, and evolutionary dynamics. Through integrated analysis trends in meteorological and anthropogenic data, key driving factors of desertification processes were further investigated. Conclusions: (1) By 2023, the area of extremely severe and severe desertification reduction accounted for 12.67% of the total study area, the proportion of no desertification area increased by 11.27%, and the expansion of desertification was effectively curbed. (2) Desertification intensification cluster near residential zones and grazing lands, while improved areas concentrate in the western and southern of Mu Us Sandy Land vicinity. (3) Spatial autocorrelation analysis revealed statistically significant clustering patterns across the study area, predominantly characterized by distinct low–low and high–high aggregations. (4) Wind speed, temperature, and pastoral activities were major factors contributing to desertification. These research findings provided references for the ecological restoration and sustainable development of semi-arid areas in the Yellow River Basin. Full article
26 pages, 1430 KiB  
Article
The Impact of Green Finance Policy on Environmental Performance: Evidence from China
by Xiaoling Yu and Kaitian Xiao
Sustainability 2025, 17(17), 7589; https://doi.org/10.3390/su17177589 - 22 Aug 2025
Abstract
We investigate whether and how the policy of establishing green finance pilot zones affects corporate environmental performance in China, by employing the DID model and taking 2324 Chinese A-share listed companies as the empirical sample. The main findings show that the green finance [...] Read more.
We investigate whether and how the policy of establishing green finance pilot zones affects corporate environmental performance in China, by employing the DID model and taking 2324 Chinese A-share listed companies as the empirical sample. The main findings show that the green finance policy can significantly improve corporate environmental performance in the green finance pilot zones. The policy effect varies according to enterprise ownership, sector, and degree of environmental supervision. In particular, compared with private enterprises and enterprises subject to key pollution monitoring, the environmental performance of state-owned firms and non-key pollution-monitored firms is more positively affected by the green finance policy. Through a mechanism analysis, we find that corporate innovation and financial constraints can play partially mediating roles in the linkage of green finance policy and corporate environmental performance. Among them, the mediating effects of green innovation and financial constraints are more prominent in private enterprises and key pollution-monitored enterprises. However, although the green finance policy can positively influence bank loans obtained by enterprises, there is no evidence to suggest that bank credit plays a significant mediating role between the green finance policy and corporate environmental performance. Our findings are helpful for understanding the effect of green finance policy on environmental sustainability and could provide some references for policymakers. In particular, we suggest that private and key pollution-monitored enterprises should actively respond to the green finance policy, broaden financing channels, and enhance capability of green innovation, thereby improving their environmental performance. Full article
21 pages, 6814 KiB  
Article
Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study
by Lv Zhou, Liqi Liang, Quanyu Chen, Haotian He, Hongming Li, Jie Qin, Fei Yang, Xinyi Li and Jie Bai
ISPRS Int. J. Geo-Inf. 2025, 14(9), 320; https://doi.org/10.3390/ijgi14090320 - 22 Aug 2025
Abstract
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy [...] Read more.
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy analytic hierarchy process (GD-FAHP) was proposed and integrated with the Entropy Weight Method (EWM) to assess the hazard and vulnerability of land subsidence using multiple evaluation factors, thereby deriving the spatial distribution characteristics of subsidence risk in Wuhan. Results indicated the following: (1) Maximum subsidence rates reached −49 mm/a, with the most severe deformation localized in Hongshan District, exhibiting a cumulative displacement of −135 mm. Comparative validation between InSAR results and leveling was conducted, demonstrating the reliability of InSAR monitoring. (2) Areas with frequent urban construction largely coincided with subsidence locations. In addition, the analysis indicated that rainfall and hydrogeological conditions were also correlated with land subsidence. (3) The proposed risk assessment model effectively identified high-risk areas concentrated in central urban zones, particularly the Hongshan and Wuchang Districts. This research establishes a methodological framework for urban hazard mitigation and provides actionable insights for subsidence risk reduction strategies. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

14 pages, 2569 KiB  
Article
Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
by Gabriela N. Tenea, Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu and Roua Gabriela Popescu
Antibiotics 2025, 14(9), 851; https://doi.org/10.3390/antibiotics14090851 - 22 Aug 2025
Viewed by 39
Abstract
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied [...] Read more.
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied individually or in combination thereof, against MDR-Escherichia coli strain L1PEag1. Methods: Fourteen ExAFs were screened for inhibitory activity using time–kill assays, and structural damage to bacterial cells was assessed via scanning and transmission electron microscopy (SEM/TEM). The most potent formulation was further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) employing a Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) approach for untargeted metabolite profiling. Results: Among the tested formulations, E10, comprising CFS from Weissella cibaria UTNGt21O, exhibited the strongest inhibitory activity (zone of inhibition: 17.12 ± 0.22 mm), followed by E1 (CFS from Lactiplantibacillus plantarum Gt28L and Lactiplantibacillus plantarum Gt2, 3:1 v/v) and E2 (Gt28L CFS + EPS from Gt2, 3:1 v/v). Time–kill assays demonstrated rapid, dose-dependent bactericidal activity: E1 and E10 achieved >98% reduction in viable counts within 2–3 h, at 1× MIC, while E2 sustained 98.24% inhibition over 18 h, at 0.25× MIC. SEM and TEM revealed pronounced ultrastructural damage, including membrane disruption, cytoplasmic condensation, and intracellular disintegration, consistent with a membrane-targeting mode of action. Metabolomic profiling of E10 identified 22 bioactive metabolites, including lincomycin, the proline-rich peptide Val–Leu–Pro–Val–Pro–Gln, multiple flavonoids, and loperamide. Several compounds shared structural similarity with ribosomally synthesized and post-translationally modified peptides (RiPPs), including lanthipeptides and lassopeptides, suggesting a multifaceted antimicrobial mechanism. Conclusions: These findings position ExAFs, particularly E10, as promising, peptide-rich, bio-based antimicrobial candidates for food safety or therapeutic applications. The co-occurrence of RiPP analogs and secondary metabolites in the formulation suggests the potential for complementary or multi-modal bactericidal effects, positioning these compounds as promising eco-friendly alternatives for combating MDR pathogens. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

21 pages, 5297 KiB  
Article
Biological Effect of Green Synthesis of Silver Nanoparticles Derived from Malva parviflora Fruits
by Suzan Abdullah Al-Audah, Azzah I. Alghamdi, Sumayah I. Alsanie, Ibtisam M. Ababutain, Essam Kotb, Amira H. Alabdalall, Sahar K. Aldosary, Nada F. AlAhmady, Salwa Alhamad, Amnah A. Alaudah, Munirah F. Aldayel and Arwa A. Aldakheel
Int. J. Mol. Sci. 2025, 26(17), 8135; https://doi.org/10.3390/ijms26178135 - 22 Aug 2025
Viewed by 45
Abstract
The search for novel natural resources, such as extracts from algae and plant for use as reductants and capping agents for the synthesis of nanoparticles, may be appealing to medicine and nanotechnology. This study aimed to use Malva parviflora fruit extract as a [...] Read more.
The search for novel natural resources, such as extracts from algae and plant for use as reductants and capping agents for the synthesis of nanoparticles, may be appealing to medicine and nanotechnology. This study aimed to use Malva parviflora fruit extract as a novel source for the green synthesis of silver nanoparticles (AgNPs) and to evaluate their characterization. The results of biosynthesized AgNP characterization using multiple techniques, such as UV–Vis spectroscopy, scanning electron microscopy (SEM), FTIR analysis, and zeta potential (ZP), demonstrated that M. parviflora AgNPs exhibit a peak at 477 nm; possess needle-like and nanorod morphology with diameters ranging from 156.08 to 258.41 nm; contain –OH, C=O, C-C stretching from phenyl groups, and carbohydrates, pyranoid ring, and amide functional groups; and have a zeta potential of −21.2 mV. Moreover, the antibacterial activity of the M. parviflora AgNPs was assessed against two multidrug-resistant strains, including Staphylococcus aureus MRSA and Escherichia coli ESBL, with inhibition zones of 20.33 ± 0.88 mm and 13.33 ± 0.33 mm, respectively. The minimum bactericidal concentration (MBC) was 1.56 µg/mL for both. SEM revealed structural damage to the treated bacterial cells, and RAPD-PCR confirmed these genetic alterations. Additionally, M. parviflora AgNPs showed antioxidant activity (IC50 = 0.68 mg/mL), 69% protein denaturation inhibition, and cytotoxic effects on MCF-7 breast cancer cells at concentrations above 100 µg/mL. These findings suggest that M. parviflora-based AgNPs are safe and effective for antimicrobial and biomedical applications, such as coatings for implanted medical devices, to prevent biofilm formation and facilitate drug delivery. Full article
Show Figures

Figure 1

29 pages, 28833 KiB  
Article
Mineralization Styles in the Orogenic (Quartz Vein) Gold Deposits of the Eastern Kazakhstan Gold Belt: Implications for Regional Prospecting
by Dmitry L. Konopelko, Valeriia S. Zhdanova, Sergei Y. Stepanov, Ekaterina S. Sidorova, Sergei V. Petrov, Aleksandr K. Kozin, Emil S. Aliyev, Vasiliy A. Saltanov, Mikhail A. Kalinin, Andrey V. Korneev and Reimar Seltmann
Minerals 2025, 15(8), 885; https://doi.org/10.3390/min15080885 - 21 Aug 2025
Viewed by 172
Abstract
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein [...] Read more.
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein deposits are economically less important but may potentially represent the upper parts of bigger ore systems concealed at depth. In this work, the mineralogy of the quartz vein deposits and related wall rock alteration zones was studied using microscopy and SEM-EDS analysis, and the geochemical dispersion of the ore elements in primary alteration haloes was documented utilizing spatial distribution maps and statistical treatment methods. The studied auriferous quartz veins are classified as epizonal black-shale-hosted orogenic gold deposits. The veins generally have linear shapes with an average width of ca. 1 m and length up to 150 m and contain high-grade native gold with minor amounts of sulfides. In supergene oxidation zones, the native gold is closely associated with Fe-hydroxide minerals cementing brecciated zones within the veins. The auriferous quartz veins are usually enclosed by the wall rock alteration envelopes, where two types of alteration are distinguished. Proximal phyllic alteration (sericite-albite-pyrite ± chlorite, Fe-Mg-Ca carbonates, arsenopyrite, and pyrrhotite) develops as localized alteration envelopes, and pervasive carbonation accompanied by chlorite ± sericite and albite is the dominant process in the distal alteration zones. The rocks within the alteration zones are enriched in Au and chalcophile elements, and three groups of chemical elements showing significant positive mutual correlation have been identified: (1) an early geochemical assemblage includes V, P, and Co (±Ni), which are the chemical elements characteristic for black shale formations, (2) association of Au, As, and other chalcophile elements is distinctly overprinting, and manifests the main stage of sulfide-hosted Au mineralization, and (3) association of Bi and Hg (±Sb and U) includes the chemical elements that are mobile at low temperatures, and can be explained by activity of the late-stage hydrothermal or supergene fluids. The chalcophile elements show negative slopes from proximal to distal alteration zones and form overlapping positive anomalies on spatial distribution mono-elemental maps. Thus, the geochemical methods can provide useful tools to delineate the ore elemental associations and to outline reproducible anomalies for subsequent regional gold prospecting. Full article
Show Figures

Figure 1

21 pages, 8981 KiB  
Article
The Influence of the Sediment and Water Transported by the Yellow River on the Subaqueous Delta Without Water and Sediment Regulation
by Junyao Song, Bowen Li, Kaifei He and Xuerong Cui
Water 2025, 17(16), 2493; https://doi.org/10.3390/w17162493 - 21 Aug 2025
Viewed by 165
Abstract
Globally, sediment transport from rivers and the morphological evolution of deltas are strongly shaped by human activities. The Yellow River Delta is a typical representative of this. In this paper, Delft 3D v4.01.00 software was used to simulate the sediment diffusion in the [...] Read more.
Globally, sediment transport from rivers and the morphological evolution of deltas are strongly shaped by human activities. The Yellow River Delta is a typical representative of this. In this paper, Delft 3D v4.01.00 software was used to simulate the sediment diffusion in the subaqueous delta of the Yellow River in 2017 so as to explore the influence of the sediment and water transported by the Yellow River on the subaqueous delta without water and sediment regulation. The results reveal the occurrence of a low–high–low suspended sediment concentration distribution from the coastlines to the far shore. The main accumulation areas shifted from the coasts of Bohai Bay and Laizhou Bay in the dry season to the estuary in the wet season. The sediments entering the sea formed deposition zones along the coastline, and erosion zones were formed outside these deposition zones, with a maximum depth of about 5 m. In 2017, the impact of the sediment inflow into the Yellow River on its subaqueous delta generally resulted in the erosion being greater than the sedimentation, and the erosion/deposition volume in 2017 was −1.28 × 108 m3, and the estimated critical value of the sediment inflow balance was 2.13 × 108 tons. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

23 pages, 1922 KiB  
Review
Phosphorus Cycling in Sediments of Deep and Large Reservoirs: Environmental Effects and Interface Processes
by Jue Wang, Jijun Gao, Qiwen Wang, Laisheng Liu, Huaidong Zhou, Shengjie Li, Hongcheng Shi and Siwei Wang
Sustainability 2025, 17(16), 7551; https://doi.org/10.3390/su17167551 - 21 Aug 2025
Viewed by 218
Abstract
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based [...] Read more.
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based synthesis that partitions P release fluxes among temperature, pH, dissolved oxygen, salinity, sediment properties, and microbial activity across canyon, valley, and plain-type reservoirs. By deriving standardized effect sizes from 61 data-rich papers, we show that (i) a 1 °C rise in bottom-water temperature increases soluble reactive P (SRP) flux by 12.4% (95% CI: 10.8–14.0%), with sensitivity 28% lower in Alpine oligotrophic systems and 20% higher in warm monomictic basins; (ii) a single-unit pH shift—whether acid or alkaline—stimulates P release through distinct desorption pathways,; and (iii) each 1 mg L−1 drop in dissolved oxygen amplifies release by 31% (25–37%). Critically, we demonstrate that these drivers rarely act independently: multi-factor laboratory and in situ analyses reveal that simultaneous hypoxia and warming can triple the release rate predicted from single-factor models. We further identify that >75% of measurements originate from dam-proximal zones, creating spatial blind spots that currently limit global P-load forecasts to ±50% uncertainty. To close this gap, we advocate coupled metagenomic–geochemical observatories that link gene expression (phoD, ppk, pqqC) to real-time SRP fluxes. The review advances beyond the existing literature by (1) establishing the first quantitative, globally transferable framework for temperature-, DO-, and pH-based management levers; (2) exposing the overlooked role of regional climate in modulating temperature sensitivity; and (3) providing a research agenda that reduces forecasting uncertainty to <20% within two years. Full article
Show Figures

Figure 1

23 pages, 1223 KiB  
Article
Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement
by Paula A. Figueroa-Varela and Eduardo Duque-Dussán
Appl. Microbiol. 2025, 5(3), 86; https://doi.org/10.3390/applmicrobiol5030086 - 21 Aug 2025
Viewed by 115
Abstract
Coffee pulp, the primary residue generated during the wet processing of Coffea arabica L., is frequently applied directly to fields as a crude soil amendment. However, this practice often lacks proper microbial stabilization, limiting its agronomic potential and posing risks due to the [...] Read more.
Coffee pulp, the primary residue generated during the wet processing of Coffea arabica L., is frequently applied directly to fields as a crude soil amendment. However, this practice often lacks proper microbial stabilization, limiting its agronomic potential and posing risks due to the presence of phytotoxic compounds. In Colombia, disease-resistant varieties such as Coffea arabica L. var. Castillo and var. Cenicafé 1, developed by the National Coffee Research Center (Cenicafé), are the amongst the most widely cultivated varieties in the country; however, despite their widespread adoption, the microbial ecology of postharvest residues from these varieties remains poorly characterized. This study aimed to isolate and functionally characterize native microbial communities from the pulp of Coffea arabica var. Castillo and var. Cenicafé 1, and to evaluate their role in postharvest processing and organic waste management. Fresh pulp samples were collected from a wet-processing facility located in tropical mid-elevation zones. A total of 53 microbial isolates were recovered using culture-dependent techniques on selective media targeting yeasts, lactic acid bacteria (LAB), and filamentous fungi. Amplicon sequencing of the 16S rRNA gene (V3–V4 region) and ITS1 region was conducted to profile bacterial and fungal communities, revealing diverse microbial consortia dominated by Aspergillus, Lactobacillus, Leuconostoc, Pichia, and Saccharomyces species. Enzymatic screening indicated high pectinolytic and cellulolytic activity. Composting trials using inoculated pulp showed a ~40% reduction in composting time and improved nutrient content. These findings support the use of native microbiota to enhance composting efficiency and postharvest valorization, contributing to more sustainable and circular coffee systems. Full article
Show Figures

Figure 1

Back to TopTop