Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (952)

Search Parameters:
Keywords = adhesion coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5161 KB  
Article
Structure and Tribological Properties of TiN/DLC, CrN/DLC, TiAlCN/DLC, AlTiCN/DLC and AlCrTiN/DLC Hybrid Coatings on Tool Steel
by Marcin Staszuk, Daniel Pakuła, Magdalena Olszowska, Anna Kloc-Ptaszna, Magdalena Szindler, Andrzej N. Wieczorek, Rafał Honysz, Ewa Jonda and Marcin Basiaga
Materials 2025, 18(17), 4188; https://doi.org/10.3390/ma18174188 (registering DOI) - 6 Sep 2025
Abstract
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron [...] Read more.
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron sputtering). The structural characteristics of the coatings were determined using SEM (Scanning Electron Microscope) and AFM (Atomic Force Microscope) microscopy, as well as Raman spectroscopy, which confirmed the compact structure and amorphous nature of the DLC layer. Tribological tests were performed using a ball-on-disc test, revealing that DLC hybrid coatings significantly reduce the coefficient of friction (stabilisation in the range of 0.10 to 0.14 due to DLC graphitisation), limiting tool wear even under increased load. The SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy) microscopic examination revealed that the dominant wear mechanisms are abrasive and adhesive damage, and the AlCrTiN/DLC system is characterised by low wear and high adhesion (Lc = 105 N), making it the optimal configuration for the given loads. Microhardness tests showed that high hardness does not always automatically translate into increased wear resistance (e.g., the AlTiCN coating with 4220 HV showed the highest wear), while coating systems with moderate hardness (TiAlCN/DLC, CrN/DLC) achieved very low wear values (~0.17 × 10−5 mm3/Nm), which highlights the importance of synergy between the hardness of the sublayer and the low friction of DLC in the design of protective coatings. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

10 pages, 5534 KB  
Article
The Effect of Novel Support Layer by Titanium-Modified Plasma Nitriding on the Performance of AlCrN Coating
by Jiqiang Wu, Longchen Zhao, Jianbin Ji, Fei Sun, Jing Hu, Xilang Liu, Dandan Wang, Xulong An, Xiangkui Liu and Wei Wei
Materials 2025, 18(17), 4186; https://doi.org/10.3390/ma18174186 (registering DOI) - 6 Sep 2025
Abstract
In order to obtain a gradient coating with excellent performance, novel titanium-modified plasma nitriding was primarily used as a support layer for the PVD coating of 38CrMoAl steel. The samples were subjected to titanium-modified plasma nitriding by placing sponge titanium around the samples, [...] Read more.
In order to obtain a gradient coating with excellent performance, novel titanium-modified plasma nitriding was primarily used as a support layer for the PVD coating of 38CrMoAl steel. The samples were subjected to titanium-modified plasma nitriding by placing sponge titanium around the samples, resulting in a thicker ductile diffusion layer and a thinner and denser compound layer. The research results showed that this thinner, denser compound layer formed by titanium-modified plasma nitriding provides stronger support for the AlCrN coating and thus bring about better performance compared to a conventional plasma nitrided layer, with the adhesion strength increasing from 16.8 N to 29.4 N, which is 42.8% higher than the conventional PN compound layer; the surface hardness increasing from 3650 HV0.05 to 3780 HV0.05; the friction coefficient and wear rate reducing from 0.64 and 5.4849 × 10−6 mm3/(N·m) to 0.61 and 2.3060 × 10−6 mm3/(N·m), respectively; and the wear performance improving by 137.85%. Additionally, the corrosion potential increased from −979.2 mV to −711.51 mV, and the value of impedance increased from 1.5515 × 104 Ω·cm2 to 9.4518 × 104 Ω·cm2, resulting in a significant improvement in corrosion resistance. In all, the novel support layer by titanium-modified plasma nitriding can provide much better support for AlCrN coating and thus bring about excellent enhanced performances, including adhesion strength and wear and corrosion resistance. Therefore, it is of great value in the PVD coating field, and it can provide valuable insights into gradient coating technology. Full article
(This article belongs to the Special Issue Advances in Coatings on Metals for Corrosion Protection)
Show Figures

Figure 1

25 pages, 11232 KB  
Article
Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V
by Zichuan Zou, Ting Zhang and Lin He
Materials 2025, 18(17), 4160; https://doi.org/10.3390/ma18174160 - 4 Sep 2025
Viewed by 137
Abstract
Tool structure design methodologies predominantly rely on trial-and-error approaches or single-objective optimization but fail to achieve coordinated enhancement of multiple performance metrics while lacking thorough investigation into complex cutting coupling mechanisms. This study proposes a multi-objective optimization framework integrating joint simulation approaches. First, [...] Read more.
Tool structure design methodologies predominantly rely on trial-and-error approaches or single-objective optimization but fail to achieve coordinated enhancement of multiple performance metrics while lacking thorough investigation into complex cutting coupling mechanisms. This study proposes a multi-objective optimization framework integrating joint simulation approaches. First, a finite element model for orthogonal turning was developed, incorporating the hyperbolic tangent (TANH) constitutive model and variable coefficient friction model. The cutting performance of four micro-groove configurations is comparatively analyzed. Subsequently, parametric modeling coupled with simulation–data interaction enables multi-objective optimization targeting minimized cutting force, reduced cutting temperature, and decreased wear rate. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) explores Pareto-optimized solutions for arc micro-groove geometric parameters. Finally, optimized tools manufactured via powder metallurgy undergo experimental validation. The results demonstrate that the optimized tool achieves significant improvements: a 19.3% reduction in cutting force, a 14.2% decrease in cutting temperature, and tool life extended by 33.3% compared to baseline tools. Enhanced chip control is evidenced by an 11.4% reduction in chip curl radius, accompanied by diminished oxidation/adhesive wear and superior surface finish. This multi-objective optimization methodology effectively overcomes the constraints of conventional single-parameter optimization, substantially improving comprehensive tool performance while establishing a reference paradigm for cutting tool design under complex operational conditions. Full article
Show Figures

Figure 1

23 pages, 7482 KB  
Article
DEM-Based Parameter Calibration of Soils with Varying Moisture Contents in Southern Xinjiang Peanut Cultivation Zones
by Wen Zhou, Hui Guo, Yu Zhang, Xiaoxu Gao, Chuntian Yang and Tianlun Wu
Agriculture 2025, 15(17), 1879; https://doi.org/10.3390/agriculture15171879 - 3 Sep 2025
Viewed by 190
Abstract
To address the insufficient adaptability of imported peanut harvesting equipment’s soil-engaging components to the specific soil conditions in Xinjiang, this study conducted Discrete Element Method (DEM)-based calibration of soil mechanical parameters using field soil samples with 1–20% moisture content from typical peanut cultivation [...] Read more.
To address the insufficient adaptability of imported peanut harvesting equipment’s soil-engaging components to the specific soil conditions in Xinjiang, this study conducted Discrete Element Method (DEM)-based calibration of soil mechanical parameters using field soil samples with 1–20% moisture content from typical peanut cultivation areas in southern Xinjiang. Through the EDEM simulation platform, a comprehensive approach integrating the Hertz–Mindlin with the JKR adhesion model and Hertz–Mindlin with the Bonding model was employed to systematically calibrate nine key parameters: coefficient of restitution, static friction coefficient, rolling friction coefficient, JKR surface energy, normal/tangential stiffness per unit area, critical normal/tangential force, and soil bonding disk radius. Adopting static angle of repose (SAOR) and unconfined compressive force (UCF) as dual-response indicators, a hybrid experimental design strategy combining Central Composite Design (CCD), Plackett–Burman (PB) screening, and Box–Behnken Design (BBD) optimization was implemented. Regression models for SAOR and UCS were established, yielding six sets of soil parameters optimized for different moisture conditions through parameter optimization. Field validation demonstrated the following: ≤3.27% error in SAOR, ≤1.46% error in UCF, and ≤5.05% error in drawbar resistance validation for field digging shanks. Experimental results confirm that the model demonstrates strong prediction accuracy for soils in typical peanut harvesting regions of southern Xinjiang, thereby providing key parameter references for the future self-developed, highly adaptive soil-engaging components with drag reduction optimization in peanut harvesters for the Xinjiang region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 7663 KB  
Article
Multi-Field Coupling- and Data-Driven-Based Optimization of Cooling Process Parameters for Planetary Rolling Rolls
by Fengli Yue, Yang Shao, Hongyun Sun, Jinsong Liu, Dayong Chen and Zhuo Sha
Materials 2025, 18(17), 4111; https://doi.org/10.3390/ma18174111 - 1 Sep 2025
Viewed by 307
Abstract
In the three-roll planetary rolling process, excessively high surface temperature of the rolls can easily lead to copper adhesion, deterioration of roll surface quality, shortened rolling lifespan, and severely affect the quality of copper tube products as well as production efficiency. To improve [...] Read more.
In the three-roll planetary rolling process, excessively high surface temperature of the rolls can easily lead to copper adhesion, deterioration of roll surface quality, shortened rolling lifespan, and severely affect the quality of copper tube products as well as production efficiency. To improve the cooling efficiency of the roll cooling system, this study developed a fluid–solid–heat coupled model and validated it experimentally to investigate the effects of nozzle diameter, spray angle, and axial position of the spray ring on the cooling performance of the roll surface. Given the low computational efficiency of finite element simulations, three machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Machine (SVM)—were introduced and evaluated to identify the most suitable predictive model. Subsequently, the Particle Swarm Optimization (PSO) algorithm was employed to optimize the geometric parameters of the spray ring. The results show that the maximum deviation between the coupled model predictions and experimental data was 4.36%, meeting engineering accuracy requirements. Among the three machine learning models, the RF model demonstrated the best performance, achieving RMSE, MAE, and R2 values of 1.7336, 1.3203, and 0.9082, respectively, on the test set. The combined RF-PSO optimization approach increased the heat transfer coefficient by 44.72%, providing a robust theoretical foundation for practical process parameter optimization and precision tube manufacturing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

22 pages, 2508 KB  
Article
Intelligent Vehicle Driving Decisions and Longitudinal–Lateral Trajectory Planning Considering Road Surface State Mutation
by Yongjun Yan, Chao Du, Yan Wang and Dawei Pi
Actuators 2025, 14(9), 431; https://doi.org/10.3390/act14090431 - 1 Sep 2025
Viewed by 186
Abstract
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact [...] Read more.
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact of real-time road status changes on the dynamic feasible domain of vehicles. This paper proposes an intelligent driving decision-making and trajectory planning method that comprehensively considers the influence factors of vehicle–road interaction. Firstly, real-time estimation of road adhesion coefficients was achieved based on the recursive least squares method, and a dynamic adhesion perception mechanism was constructed to guide the decision-making module to restrict lateral maneuvering behavior under low-adhesion conditions. A multi-objective lane evaluation function was designed for adaptive lane decision-making. Secondly, a longitudinal and lateral coupled trajectory planning framework was constructed based on the traditional lattice method to achieve smooth switching between lateral trajectory planning and longitudinal speed planning. The planned path is tracked based on a model predictive control algorithm and dual PID algorithm. Finally, the proposed method was verified on a co-simulation platform. The results show that this method has good safety, adaptability, and control stability in complex environments and dynamic adhesion conditions. Full article
Show Figures

Figure 1

29 pages, 12480 KB  
Review
Advances of Welding Technology of Glass for Electrical Applications
by Dejun Yan, Lili Ma, Jiaqi Lu, Dasen Wang and Xiaopeng Li
Materials 2025, 18(17), 4096; https://doi.org/10.3390/ma18174096 - 1 Sep 2025
Viewed by 361
Abstract
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is [...] Read more.
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is close to having good thermal shock resistance and chemical stability, can be applied to MEMS packaging and aerospace fields. SiO2 glass exhibits excellent thermal stability, extremely low optical absorption, and high light transmittance, while also possessing strong chemical stability and extremely low dielectric loss. It is widely used in semiconductors, photolithography, and micro-optical devices. However, the stress sensitivity of traditional mechanical joints and the poor weather resistance of adhesive bonding make conventional methods unsuitable for glass joining. Welding technology, with its advantages of high joint strength, structural integrity, and scalability for mass production, has emerged as a key approach for precision glass joining. In the field of glass welding, technologies such as glass brazing, ultrasonic welding, anodic bonding, and laser welding are being widely studied and applied. With the advancement of laser technology, laser welding has emerged as a key solution to overcoming the bottlenecks of conventional processes. This paper, along with the application cases for these technologies, includes an in-depth study of common issues in glass welding, such as residual stress management and interface compatibility design, as well as prospects for the future development of glass welding technology. Full article
Show Figures

Figure 1

18 pages, 1520 KB  
Article
Research of Fog Seal Performance with Sand Materials for Airport Asphalt Pavements
by Hui Zhang, Zhe Hu, Yongsheng Guan and Dongliang Hu
Materials 2025, 18(17), 4050; https://doi.org/10.3390/ma18174050 - 29 Aug 2025
Viewed by 346
Abstract
Asphalt pavements are widely used in airports due to their excellent skid resistance, vibration damping, and ease of construction. However, traditional fog seal materials often suffer from insufficient adhesion between fine sand and the emulsified asphalt binder, resulting in limited durability of the [...] Read more.
Asphalt pavements are widely used in airports due to their excellent skid resistance, vibration damping, and ease of construction. However, traditional fog seal materials often suffer from insufficient adhesion between fine sand and the emulsified asphalt binder, resulting in limited durability of the maintenance effect. This study aims to optimize the design of traditional fog seal materials and systematically evaluate their surface and durability performance. Firstly, a composite modified emulsified asphalt was prepared as the sand suspension slurry for the sand-containing fog seal. Through the dry wheel abrasion test, the optimal fine aggregates content was determined for four different spraying amounts (0.8, 0.9, 1.0, and 1.1 kg/m2). When the proportion of fine aggregates increases, the spraying amount needs to be increased accordingly to ensure the wrapping effect. Subsequently, pavement performance evaluation was conducted based on several indicators, including surface curing time, British Pendulum Number (BPN) friction coefficient, permeability coefficient, and mass loss rate. The results showed that the designed sand-containing fog seal significantly reduced surface curing time and exhibited superior skid resistance and permeability property compared to styrene-butadiene rubber (SBR)-modified emulsified asphalt. After freeze–thaw cycles, the maximum decrease in friction coefficient was 10.2%, and the mass loss rate after abrasion was approximately 67%, which were lower than those of SBR-modified emulsified asphalt (22.2% and 81%, respectively). Finally, considering the comprehensive performance comparison and evaluation, the optimal mix proportion was determined as 1.0 kg/m2 spraying amount with 30% fine aggregates content. The findings of this study provide practical support for improving the durability and service life of airport asphalt pavements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 20679 KB  
Article
Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying
by Sherzod Kurbanbekov, Zhamila Suierkulova, Gaukhar Omashova, Berik Kaldar, Alisher Temirbekov, Sardor Kambarbekov, Nurdaulet Shektibayev and Dilnoza Baltabayeva
Crystals 2025, 15(9), 762; https://doi.org/10.3390/cryst15090762 - 27 Aug 2025
Viewed by 373
Abstract
The development of thin, wear-resistant coatings is a relevant area in the field of surface engineering, especially given the increasing demand for resource efficiency and reliability of machine elements. In this study, we investigate the structural and phase composition, tribological characteristics, and physical [...] Read more.
The development of thin, wear-resistant coatings is a relevant area in the field of surface engineering, especially given the increasing demand for resource efficiency and reliability of machine elements. In this study, we investigate the structural and phase composition, tribological characteristics, and physical and mechanical properties of zirconium carbonitride (ZrCN) coatings deposited by high-velocity oxygen-fuel spraying (HVOF) on U8G carbon steel substrates. Particular attention is paid to the influence of spraying parameters, in particular air pressure, on the formation of coatings and their performance properties. X-ray phase analysis methods revealed the formation of Zr2CN, ZrC, ZrN, ZrO2, and Fe3O4 phases, with the dominance of the cubic phase ZrN(C) with a lattice parameter of a = 4.6360 Å. Tribological tests have shown that at an air pressure of 0.38 MPa, the minimum friction coefficient is achieved, presumably due to the formation of an amorphous CNx phase with a self-lubricating effect. The wear mechanism is predominantly abrasive in nature; the width of wear tracks is 329–759 μm. The coatings demonstrate a significant increase in microhardness—up to 1512–1857 HV, which is 4–4.5 times higher than the substrate. The results of adhesion tests carried out in accordance with ASTM D4541-22 showed a maximum adhesion strength of 14.56 MPa. The results obtained confirm the high efficiency of thin ZrCN coatings obtained by the HVOF method as a promising solution for protecting metal surfaces subject to intense wear in tribological systems. Full article
Show Figures

Figure 1

21 pages, 3228 KB  
Article
Research on Active Collision Avoidance Control of Vehicles Based on Estimation of Road Surface Adhesion Coefficient
by Hongxiang Wang, Jian Wang and Ruofei Du
World Electr. Veh. J. 2025, 16(9), 489; https://doi.org/10.3390/wevj16090489 - 27 Aug 2025
Viewed by 309
Abstract
In order to solve the problem that intelligent vehicle active collision avoidance systems have different decision-making results under different road conditions, the square-root cubature Kalman filtering algorithm is used to estimate the road adhesion coefficients, which are introduced into the safety distance model [...] Read more.
In order to solve the problem that intelligent vehicle active collision avoidance systems have different decision-making results under different road conditions, the square-root cubature Kalman filtering algorithm is used to estimate the road adhesion coefficients, which are introduced into the safety distance model and combined with the fireworks algorithm for braking and steering weight coefficient allocation to ensure that the vehicle can safely avoid collision. The simulation results show that the square-root cubature Kalman filter has higher estimation accuracy and robustness compared with the cubature Kalman filter, and a more reasonable collision avoidance control can be adopted in the subsequent collision avoidance control. Therefore, the proposed new estimation method of road adhesion coefficients proves effective in mitigating vehicle collision risks. Full article
Show Figures

Figure 1

11 pages, 1928 KB  
Article
Development and Performance Analysis of a Modified Polyurea Hydrophobic Coating for Improving Water Conveyance Efficiency in Concrete Channel Linings
by Ling-Yun Feng, Qi-Hui Chai, Chun-Li Liu and Jing-Jing Liu
Water 2025, 17(17), 2535; https://doi.org/10.3390/w17172535 - 26 Aug 2025
Viewed by 525
Abstract
To overcome the shortcomings of traditional concrete coatings, such as high roughness and poor frost resistance, this study developed and evaluated a new hydrophobic coating—modified polyurea hydrophobic coating (MPHC). MPHC features strong adhesion, high hydrophobicity and excellent durability. The coating performance was evaluated [...] Read more.
To overcome the shortcomings of traditional concrete coatings, such as high roughness and poor frost resistance, this study developed and evaluated a new hydrophobic coating—modified polyurea hydrophobic coating (MPHC). MPHC features strong adhesion, high hydrophobicity and excellent durability. The coating performance was evaluated through contact angle measurement, tensile bond strength test, and assessment of environmental durability under several aging conditions including immersion, heat resistance and freeze–thaw cycles. The experimental results showed that the surface contact angle of MPHC reached 131.2°, demonstrating strong hydrophobicity. After durability testing, there was no significant decrease in contact angle and bond strength, confirming the robustness of the coating. The coating combines a “dual structure” formed by polydimethylsiloxane and microsilica powder, thereby creating a hydrophobic rough surface. This structure minimizes the fluid–solid interface area and adhesion, thereby enhancing drag reduction performance. In drag reduction tests on channel model linings, compared with ordinary concrete, MPHC reduced the roughness coefficient by 10.0–11.6%, and by 7.4–7.5% compared with ordinary polyurea coatings. The outstanding hydrophobicity, durability and drag reduction performance of MPHC make it a promising solution for improving the water conveyance efficiency of concrete-lined channels. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

17 pages, 2754 KB  
Article
Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
by Anna V. Vlasova, Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov and Sergey O. Ilyin
Polymers 2025, 17(17), 2297; https://doi.org/10.3390/polym17172297 - 25 Aug 2025
Viewed by 605
Abstract
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary [...] Read more.
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary blends free of solvents and byproducts, which serve for reversible adhesive bonding. The ratio between individual polymer components differing in molecular weight affected the rheological, relaxation, and adhesion properties of the constituted adhesive blends, allowing for their tuning. The viscosity and viscoelasticity of the adhesives were studied using rotational rheometry, while their adhesive bonds with steel were examined by probe tack and shear lap tests at different temperatures. The adhesive bond durability at shear and pull-off detachments depended on the adhesive composition, temperature, and contact time under pressure. The double differentiation of the continuous relaxation spectra of the adhesives enabled the accurate determination of their characteristic relaxation times, which controlled the durability of the adhesive bonds. A universal linear correlation between the reduced failure time of adhesive bonds and their reduced formation time enabled the prediction of their durability with high precision (Pearson correlation coefficient = 0.958, p-value < 0.001) over at least a four-order-of-magnitude time range. The reduction in the formation/failure times of adhesive bonds was most accurately achieved using the longest relaxation time of the adhesives, associated with their highest-molecular-weight polyisobutylene component. Thus, the highest-molecular-weight polymer played a dominant role in adhesive performance, determining both the stress relaxation during the formation of adhesive bonds and their durability under applied load. In turn, this finding enables the prediction and improvement of adhesive bond durability by increasing the bond formation time (a durability rise by up to 10–100 times) and extending the adhesive’s longest relaxation time through elevating the molecular weight or proportion of its highest-molecular-weight component (a durability rise by 100–350%). Full article
Show Figures

Figure 1

12 pages, 4110 KB  
Article
Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel
by Xiya Qiao, Boyong Li, Xiao Han, Xiangyun Zhang and Xin Yang
Metals 2025, 15(9), 937; https://doi.org/10.3390/met15090937 - 24 Aug 2025
Viewed by 397
Abstract
We explored the effects of different solution treatment temperatures on the microstructure, mechanical properties and wear resistance of alloyed high-manganese steel, as well as the correlations among the three parameters. The results indicated that the average grain size of high-manganese steel first decreases [...] Read more.
We explored the effects of different solution treatment temperatures on the microstructure, mechanical properties and wear resistance of alloyed high-manganese steel, as well as the correlations among the three parameters. The results indicated that the average grain size of high-manganese steel first decreases and then gradually increases with an increasing solution temperature. After solution treatment, the surface hardness of the high-manganese steel is lower than that of untreated steel. At a solution treatment temperature of 1050 °C, the surface hardness value is lowest, at 253.1 HV. In addition, the optimal combination of tensile strength, yield strength and work hardening rate is observed at a solution treatment temperature of 950 °C. The friction performance test results revealed that the average friction coefficient on the surface of the high-manganese steel first decreased and then increased with the increase in solution treatment temperature. After solution treatment at 950 °C, it reached a minimum value 0.273 due to oxidation friction. Meanwhile, the hardness of the steel after friction increased rapidly because of its excellent work hardening ability, so the wear rate was relatively low, approximately 0.223 × 10−13 m2/N, demonstrating optimal wear resistance. After solution treatment, the average grain size of high-manganese steel changed, and there was a transformation of the wear mechanism; the friction and wear mechanism shifted from a combination of particle wear and fatigue wear to adhesive wear, with particle wear as the auxiliary. Full article
(This article belongs to the Special Issue Novel Insights and Advances in Steels and Cast Irons)
Show Figures

Figure 1

20 pages, 8484 KB  
Article
Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization
by Biplab Baran Mandal, Vikash Kumar, Sovan Sahoo, Buddhadeb Oraon and Sumanta Mukherjee
Materials 2025, 18(17), 3949; https://doi.org/10.3390/ma18173949 - 22 Aug 2025
Viewed by 495
Abstract
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary [...] Read more.
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary (Ni-W-P) alloy and composite coating on API X60 steel, a high-strength carbon steel pipe grade widely used in oil and gas pipelines, using an alkaline hypophosphite-reduced bath. The surface morphology, microstructure, elemental composition, structure, phase evolution, adhesion, and roughness of the coatings were analyzed using optical microscopy, FESEM, EDS, XRD, AFM, cross-cut tape test, and 3D profilometry. The tribological performance was evaluated via Vickers microhardness measurements and reciprocating wear tests conducted under dry conditions at a 5 N load. The TiO2 nanoparticle-reinforced composite coating achieved a consistent thickness of approximately 24 µm and exhibited enhanced microhardness and reduced coefficient of friction (COF), although the addition of nanoparticles increased surface roughness (Sa). Annealing the electroless composites at 400 °C led to a significant improvement in their tribological properties, primarily owing to the grain growth, phase transformation, and Ni3P crystallization. XRD analysis revealed phase evolution from an amorphous state to crystalline Ni3P upon annealing. Both the alloy and composite coatings exhibited excellent adhesion performances. The combined effect of TiO2 nanoparticles, tungsten, and Ni3P crystallization greatly improved the wear resistance, with abrasive and adhesive wear identified as the dominant mechanisms, making these coatings well suited for high-wear applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 3903 KB  
Article
Integrated Assessment of Coating-Steel Substrate Adhesion—Comparison of Mechanical and Ultrasonic Methods
by Dariusz Ulbrich, Jakub Jezierski, Piotr Banas, Dariusz Bartkowski, Aneta Bartkowska and Zbigniew Strumiński
Appl. Sci. 2025, 15(17), 9230; https://doi.org/10.3390/app15179230 - 22 Aug 2025
Viewed by 319
Abstract
Adhesive coatings, including car paints and car putties, have found application in the construction of motor vehicles. This article contains the results of mechanical and ultrasonic tests of the adhesion of the car putty coating to a steel substrate. The main objective of [...] Read more.
Adhesive coatings, including car paints and car putties, have found application in the construction of motor vehicles. This article contains the results of mechanical and ultrasonic tests of the adhesion of the car putty coating to a steel substrate. The main objective of this article is to determine the correlation between mechanical adhesion and the ultrasonic measure of adhesion—the reflection coefficient |r|. The results indicate that with the increase in the value of the coefficient |r|, the mechanical adhesion of the coating to the substrate decreases. The highest average mechanical adhesion of the coating to the substrate was obtained for sandblasted samples and was 2.74 MPa, corresponding to a coefficient reflection value of 0.71. The test results have an important application aspect and may be useful at the stage of assessing the adhesion of adhesive coatings in a non-destructive manner. Full article
(This article belongs to the Special Issue Application of Ultrasonic Non-Destructive Testing—Second Edition)
Show Figures

Figure 1

Back to TopTop