Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (792)

Search Parameters:
Keywords = advanced functional membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2082 KB  
Review
Point-of-Care Transesophageal Echocardiography in Emergency and Intensive Care: An Evolving Imaging Modality
by Debora Emanuela Torre and Carmelo Pirri
Biomedicines 2025, 13(11), 2680; https://doi.org/10.3390/biomedicines13112680 (registering DOI) - 31 Oct 2025
Abstract
Transesophageal echocardiography (TEE) has long been established as a cornerstone imaging modality in cardiac surgery and perioperative medicine. In recent years, however, its role has expanded into emergency and intensive care settings, where rapid and accurate hemodynamic assessment is crucial for survival. Point-of-care [...] Read more.
Transesophageal echocardiography (TEE) has long been established as a cornerstone imaging modality in cardiac surgery and perioperative medicine. In recent years, however, its role has expanded into emergency and intensive care settings, where rapid and accurate hemodynamic assessment is crucial for survival. Point-of-care TEE provides advantages over transthoracic echocardiography when acoustic windows are limited, particularly in mechanically ventilated or critically unstable patients, allowing continuous high-quality visualization of cardiac function, volume status, and great vessel pathology to guide immediate therapeutic interventions. This narrative review examines the evolving role of TEE in acute settings, with emphasis on its application in shock, cardiac arrest, pulmonary embolism, tamponade, and its value in extracorporeal membrane oxygenation (ECMO) cannulation. Advances such as three-dimensional TEE, miniaturized probes, and the integration of artificial intelligence are also discussed, as potential drivers of innovation. While bridging technological progress with clinical practice, TEE emerges as a versatile tool in critical care. However, its broader adoption is still limited by probe availability, operator training, and institutional resources. Overcoming these barriers will be essential to translating technological advances into widespread practice. Full article
(This article belongs to the Special Issue Imaging Technology for Human Diseases)
Show Figures

Figure 1

20 pages, 1119 KB  
Review
Percutaneous Mechanical Circulatory Support Devices in Cardiogenic Shock: A Narrative Review in Light of Recent Evidence
by Vincenzo Paragliola, Marco Gamardella, Luca Franchin, Maurizio Bertaina, Francesco Colombo, Paola Zanini, Salvatore Colangelo, Pierluigi Sbarra, Giacomo Boccuzzi and Mario Iannaccone
J. Clin. Med. 2025, 14(21), 7731; https://doi.org/10.3390/jcm14217731 - 30 Oct 2025
Abstract
Cardiogenic shock (CS) is a complex, life-threatening syndrome characterized by inadequate tissue perfusion due to impaired cardiac function. Acute myocardial infarction (AMI) and acute decompensated heart failure are the leading causes, with mortality remaining high despite advances in revascularization and supportive care. The [...] Read more.
Cardiogenic shock (CS) is a complex, life-threatening syndrome characterized by inadequate tissue perfusion due to impaired cardiac function. Acute myocardial infarction (AMI) and acute decompensated heart failure are the leading causes, with mortality remaining high despite advances in revascularization and supportive care. The Society for Cardiovascular Angiography and Interventions (SCAI) classification allows risk stratification and guides clinical decision making by capturing the spectrum of shock severity. Percutaneous mechanical circulatory support (pMCS) devices, such as the intra-aortic balloon pump (IABP) and Impella, aim to stabilize hemodynamics by augmenting cardiac output and unloading the left ventricle. However, randomized trials and meta-analyses have not demonstrated a consistent survival advantage of Impella over IABP, while reporting higher rates of bleeding and vascular complications. Landmark trials, including ECLS-SHOCK and DanGer, have provided conflicting results, likely reflecting differences in baseline severity and timing of device implantation. Veno-arterial extracorporeal membrane oxygenator (VA-ECMO) offers full cardiopulmonary support but increases left ventricular afterload, potentially worsening myocardial injury. Combined strategies such as ECPELLA (Impella + VA-ECMO) or ECMO + IABP may mitigate left ventricle (LV) overload and improve bridging to recovery or advanced therapies, although evidence remains largely observational and complication rates are considerable. In right-sided or biventricular failure, tailored options (e.g., Impella RP, Bi-Pella) guided by invasive hemodynamics may be required. Current evidence suggests that pMCS benefits are limited to carefully selected subgroups, underscoring the importance of early diagnosis, prompt referral, and individualized intervention. Robust randomized data are still needed to define the optimal role of pMCS in AMI-related CS. Full article
(This article belongs to the Special Issue Acute Myocardial Infarction: Diagnosis, Treatment, and Rehabilitation)
Show Figures

Figure 1

19 pages, 6114 KB  
Article
Early Taurine Administration Decreases the Levels of Receptor-Interacting Serine/Threonine Protein Kinase 1 in the Duchenne Mouse Model mdx
by Marthe Dias, Hanne Dhuyvetter, Ella Byttebier, Caroline Merckx, Jan L. De Bleecker and Boel De Paepe
Brain Sci. 2025, 15(11), 1175; https://doi.org/10.3390/brainsci15111175 - 30 Oct 2025
Abstract
Background/Objectives: The progressive life-limiting disorder Duchenne muscular dystrophy (DMD) arises from the absence of dystrophin protein at the muscle cell membrane, which leads to progressive contraction-induced damage. Despite the advancements in molecular therapies aimed at reintroducing (partially functional) dystrophin in patients, a [...] Read more.
Background/Objectives: The progressive life-limiting disorder Duchenne muscular dystrophy (DMD) arises from the absence of dystrophin protein at the muscle cell membrane, which leads to progressive contraction-induced damage. Despite the advancements in molecular therapies aimed at reintroducing (partially functional) dystrophin in patients, a cure for DMD remains elusive. Taurine supplements have been proposed as a potential supportive treatment for DMD, based upon encouraging results in the mouse model mdx. Methods: In a previous study, we observed improvements in skeletal muscle histology and a reduction in the expression of inflammatory markers after short-term treatment with 4.6 g taurine per kg body weight during the initial stages of the disease. In this follow-up study, we examined cell death and tissue restoration protein levels in mdx subjected to the same treatment regimen, utilizing proteome arrays, Western blotting, and immunofluorescence. Results: We report that, while the levels of apoptotic and autophagic proteins remained constant, selective and significant decrease in receptor-interacting Serine/Threonine protein kinase 1 (RIP1) levels could be observed in taurine-treated mdx compared to untreated mdx. RIP1 was immunolocalized to muscle fibers, with faint homogeneous staining in age-matched healthy controls shifting to a heterogeneous staining pattern in mdx, the latter diminishing with taurine treatment. Conclusions: Given its role as a molecular switch in cell fate decisions, the observed taurine-induced downregulation of RIP1 supports the potential beneficial effects of the osmolyte in mdx. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Prognosis of Neuromuscular Disorders)
21 pages, 1017 KB  
Review
Molecular Pathogenesis of Inherited Platelet Dysfunction
by Agustín Rodríguez-Alén, Antonio Moscardó, José M. Bastida and José Rivera
Biomolecules 2025, 15(11), 1528; https://doi.org/10.3390/biom15111528 - 30 Oct 2025
Abstract
Inherited platelet function disorders (IPFD) are characterized by normal platelet count and morphology but impaired function due to pathogenic variants in genes encoding membrane receptors, granule constituents, or intracellular signaling proteins. Glanzmann’s thrombasthenia, the most representative IPFD, results from ITGA2B or ITGB3 mutations [...] Read more.
Inherited platelet function disorders (IPFD) are characterized by normal platelet count and morphology but impaired function due to pathogenic variants in genes encoding membrane receptors, granule constituents, or intracellular signaling proteins. Glanzmann’s thrombasthenia, the most representative IPFD, results from ITGA2B or ITGB3 mutations that disrupt the αIIbβ3 integrin complex, producing severe mucocutaneous bleeding. Advances in molecular genetics have expanded the IPFDs landscape to include defects in other platelet receptors (Glycoprotein (GP)-VI, P2Y12, and thromboxane A2[TxA2]-R), signaling mediators (RASGRP2, FERMT3, G-protein regulators, PLC, and TxA2 pathway enzymes), and granule biogenesis disorders such as Hermansky–Pudlak and Chediak–Higashi syndromes. High-throughput sequencing technologies, including long-read approaches, have greatly improved diagnostic yield and clarified genotype–phenotype correlations. Clinically, bleeding severity varies from mild to life-threatening, and management relies on antifibrinolytics, desmopressin, or platelet transfusion; recombinant activated factor VII and hematopoietic stem cell transplantation are reserved for selected cases. Emerging strategies such as gene therapy and bispecific antibodies that link platelets and coagulation factors represent promising advances toward targeted and preventive treatment. A better knowledge of the clinical features and understanding molecular pathogenesis of IPFDs not only enhances diagnostic precision and therapeutic options but also provides key insights into platelet biology, intracellular signaling, and the broader mechanisms of human hemostasis. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Biology Section 2025)
Show Figures

Figure 1

23 pages, 1897 KB  
Review
In Vitro and Ex Vivo Models to Study Molecular Trafficking Across the Human Intestinal Barrier
by Andrea Galvan, Elsa Guidorizzi, Flavia Carton, Manuela Malatesta and Laura Calderan
Int. J. Mol. Sci. 2025, 26(21), 10535; https://doi.org/10.3390/ijms262110535 - 29 Oct 2025
Abstract
The intestine is a complex organ whose main functions are food digestion and nutrient absorption. It is therefore of great interest for pharmaceutical research as a preferred route for drug delivery. In vitro intestinal models are valuable tools for the preclinical evaluation of [...] Read more.
The intestine is a complex organ whose main functions are food digestion and nutrient absorption. It is therefore of great interest for pharmaceutical research as a preferred route for drug delivery. In vitro intestinal models are valuable tools for the preclinical evaluation of absorption, distribution, metabolism, and excretion of new therapeutic formulations; consequently, several attempts have been made to recreate the human intestine barrier in vitro. The models so far set up were aimed at mimicking specific intestinal features related to the molecules or processes under investigation. Artificial membranes are suitable to study passive absorption; systems based on 2D/3D cell cultures reproduce the transcellular pathway; organs-on-a-chip mimic the in vivo cellular and mechanical complexity, allowing the identification of the multiple factors involved in molecular interactions with the intestinal barrier; and intestine explants replicate in full the native organ under controlled conditions, thus providing the most comprehensive in vitro model. All these models have advantages and disadvantages but all have given important contribution to advance the knowledge on the interaction of drugs, toxins, and xenobiotic with the intestinal barrier. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 1601 KB  
Review
Long Non-Coding RNAs in the Cold-Stress Response of Horticultural Plants: Molecular Mechanisms and Potential Applications
by Magdalena Wielogórska, Anna Rucińska, Yuliya Kloc and Maja Boczkowska
Int. J. Mol. Sci. 2025, 26(21), 10464; https://doi.org/10.3390/ijms262110464 - 28 Oct 2025
Viewed by 167
Abstract
Cold stress reduces horticultural crop yield and postharvest quality by disrupting membrane fluidity, redox equilibrium, and the cell wall structure. This results in chilling injury, tissue softening, and loss of color. Long noncoding RNAs (lncRNAs) have emerged as key integrators of plant cold [...] Read more.
Cold stress reduces horticultural crop yield and postharvest quality by disrupting membrane fluidity, redox equilibrium, and the cell wall structure. This results in chilling injury, tissue softening, and loss of color. Long noncoding RNAs (lncRNAs) have emerged as key integrators of plant cold signaling pathways. LncRNAs mediate the interaction between calcium signaling systems and transcriptional cascades while coordinating hormone signaling networks, including those involving abscisic acid, jasmonic acid, ethylene, salicylic acid, and brassinosteroids. LncRNAs influence gene regulation through chromatin-based guidance, sequestration of repressive complexes, natural antisense transcriptional interference, microRNA-centered competing endogenous RNA networks, and control of RNA splicing, stability, localization, and translation. Studies in horticultural species revealed that cold-responsive lncRNAs regulate processes essential for fruit firmness, antioxidant levels, and shelf-life, including lipid modification, reactive oxygen species balance, and cell wall or cuticle remodeling. This review aims to summarize tissue- and developmental stage-specific expression patterns and highlight experimental approaches to validate RNA function, including gene editing, transcript recovery, advanced sequencing, and analysis of protein-RNA interactions. Integrating these results will facilitate the development of precise molecular markers and nodes of regulatory networks that increase cold tolerance, and improve the quality of horticultural crops. Full article
Show Figures

Figure 1

22 pages, 2490 KB  
Review
Nucleic Acid Nanomaterial-Mediated Single-Cell Encapsulation and Its Application
by Yue Qiu, Mengyu Huang, Xiaotong Jiang, Peiru Chen, Zhenzhen Guo and Kaixiang Zhang
Biosensors 2025, 15(11), 712; https://doi.org/10.3390/bios15110712 - 27 Oct 2025
Viewed by 134
Abstract
Single-cell encapsulation, by constructing cell-scale microenvironments, enables precise protection, regulation, and functional enhancement of individual cells, holding significant importance in biomedical fields such as bioanalysis and cell therapy. Although various materials—including polymers, nanoparticles, hydrogels, polyphenols, and inorganic minerals—have been explored for single-cell encapsulation, [...] Read more.
Single-cell encapsulation, by constructing cell-scale microenvironments, enables precise protection, regulation, and functional enhancement of individual cells, holding significant importance in biomedical fields such as bioanalysis and cell therapy. Although various materials—including polymers, nanoparticles, hydrogels, polyphenols, and inorganic minerals—have been explored for single-cell encapsulation, limitations in controllability, biocompatibility, and multifunctional integration remain. In contrast, DNA nanomaterials offer unique advantages, including programmable architecture, high biocompatibility, precise spatial control, and modular functionality, making them highly suitable for the development of intelligent single-cell encapsulation systems. In this review, a systematic summary of recent advances in DNA nanomaterial-based single-cell encapsulation is presented. The fundamental encoding and assembly principles underlying the engineered encapsulation of cells at the membrane interface using DNA nanostructures are elucidated. Subsequently, the distinctive merits of DNA-based cell encapsulation and its applications in biomedical research are comprehensively summarized. Finally, the prevailing challenges and future directions in this burgeoning field are critically discussed, aiming to provide novel insights and perspectives for the advancement of advanced functional materials in both academic and clinical research pertaining to single-cell encapsulation. Full article
Show Figures

Figure 1

21 pages, 1579 KB  
Article
Sequence Permutation Generated Lysine and Tryptophan-Rich Antimicrobial Peptides with Enhanced Therapeutic Index
by Kuang-Li Peng, Yu-Hsuan Wu, Hsuan-Che Hsu and Jya-Wei Cheng
Antibiotics 2025, 14(11), 1077; https://doi.org/10.3390/antibiotics14111077 - 26 Oct 2025
Viewed by 397
Abstract
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application [...] Read more.
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application remains limited by factors such as salt sensitivity, low bioavailability, and poor stability. To address these challenges, researchers have turned to structural optimization strategies. Recently, artificial intelligence (AI) has facilitated peptide drug design by rapidly screening large peptide libraries. Still, AI struggles to predict how subtle sequence changes affect peptide structure and function. Traditional sequence permutation offers a complementary approach by analyzing structural and functional effects without altering amino acid composition. Methods: In this study, we applied a clockwise sequence permutation strategy to the AMP W5K/A9W, generating derivative peptides with identical molecular weight, net charge, and hydrophobicity. We aimed to investigate how lysine and tryptophan distribution affects antimicrobial activity, membrane permeability, and selectivity. We assessed the secondary structures using circular dichroism (CD) spectroscopy and evaluated in vitro antimicrobial activity, salt resistance, membrane-permeabilizing ability, hemolysis, and wound healing effects. Results: The results revealed that the sequence arrangement of key residues significantly impacts peptide bioactivity and therapeutic index. Conclusions: This study highlights the importance of sequence order in determining AMP function. It also supports integrating permutation strategies with AI-based design to enhance AMP discovery. Together, these approaches offer new opportunities to combat drug-resistant pathogens and advance next-generation anti-infective therapies. Full article
Show Figures

Graphical abstract

12 pages, 2247 KB  
Review
A Review on the Structure-Response-Efficacy Optimization of Ultrasound-Responsive Micro/Nanobubbles for Cancer Therapy
by Yuting Yang, Yuan Cheng, Zhiguang Chen and Yanjun Liu
Pharmaceutics 2025, 17(11), 1378; https://doi.org/10.3390/pharmaceutics17111378 - 24 Oct 2025
Viewed by 348
Abstract
Ultrasound-responsive micro/nanobubbles (MNBs) are promising tools for targeted cancer therapy due to their controllable acoustic activation and real-time imaging. Despite extensive research, the quantitative relationship between bubble structure, acoustic response, and therapeutic efficacy remains poorly understood. This knowledge gap hinders parametric design and [...] Read more.
Ultrasound-responsive micro/nanobubbles (MNBs) are promising tools for targeted cancer therapy due to their controllable acoustic activation and real-time imaging. Despite extensive research, the quantitative relationship between bubble structure, acoustic response, and therapeutic efficacy remains poorly understood. This knowledge gap hinders parametric design and clinical standardization. This review summarizes recent advances from an engineering perspective, highlighting how structural parameters—such as size, shell, gas core, and ligand density—affect acoustic sensitivity and drug release. Furthermore, the roles of microfluidic electroporation and cell membrane coating are discussed in terms of controllable fabrication and preservation of biological functions, highlighting their significance for reproducible and predictable therapies. In conclusion, this review establishes a “Structure-Response-Efficacy (S-R-E)” framework to summarize the core relationships between structural design and acoustic modulation. We propose an engineering strategy based on a standardized parameter system to guide the predictable design and clinical translation of ultrasound-based theranostic platforms. Full article
Show Figures

Graphical abstract

50 pages, 9683 KB  
Review
Towards Fire-Safe Polymer Electrolytes for Lithium-Ion Batteries: Strategies for Electrolyte Design and Structural Design
by Khang Le Truong and Joonho Bae
Polymers 2025, 17(21), 2828; https://doi.org/10.3390/polym17212828 - 23 Oct 2025
Viewed by 509
Abstract
Lithium-ion batteries, widely used in phones and electric vehicles, pose safety concerns due to the flammability of conventional liquid electrolytes, which are prone to ignition under elevated temperatures and mechanical stress, increasing the risk of fire. Polymer electrolytes have been employed as a [...] Read more.
Lithium-ion batteries, widely used in phones and electric vehicles, pose safety concerns due to the flammability of conventional liquid electrolytes, which are prone to ignition under elevated temperatures and mechanical stress, increasing the risk of fire. Polymer electrolytes have been employed as a safer solution thanks to their superior thermal stability and mechanical strength. However, despite these advantages, many polymer matrices pose a fire hazard, limiting their potential. This review assesses recent advances in enhancing the flame retardancy of polymer electrolytes through a variety of strategies, namely the incorporation of flame-retardant additives, the addition of nanoscale fillers to improve thermal resistance, and the design of layered or hybrid polymer membrane structures that function as thermal barriers. This review evaluates the effectiveness of these methods, examining their flame-retardancy as well as their influences on ionic conductivity and overall battery performance. By highlighting recent progress and enduring safety challenges in solid-state batteries, it aims to offer insights for developing lithium batteries with enhanced safety and high performance. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Graphical abstract

33 pages, 3443 KB  
Article
Virulence and Stress-Related Proteins Are Differentially Enriched and N-Terminally Acetylated in Extracellular Vesicles from Virulent Paracoccidioides brasiliensis
by Carla E. Octaviano-Azevedo, Karolina R. F. Beraldo, Natanael P. Leitão-Júnior, Cássia M. de Souza, Camila P. da Silva, Rita C. Sinigaglia, Erix A. Milán Garcés, Evandro L. Duarte, Alexandre K. Tashima, Maria A. Juliano and Rosana Puccia
J. Fungi 2025, 11(10), 751; https://doi.org/10.3390/jof11100751 - 21 Oct 2025
Viewed by 462
Abstract
Extracellular vesicles (EVs) are bilayer-membrane cellular components that deliver protected cargo to the extracellular environment and can mediate long-distance signaling. We have previously reported that EVs isolated from the virulent fungal pathogen Paracoccidioides brasiliensis Vpb18 can revert the expression, in the attenuated variant [...] Read more.
Extracellular vesicles (EVs) are bilayer-membrane cellular components that deliver protected cargo to the extracellular environment and can mediate long-distance signaling. We have previously reported that EVs isolated from the virulent fungal pathogen Paracoccidioides brasiliensis Vpb18 can revert the expression, in the attenuated variant Apb18, of stress-related virulence traits. We presently show that the Vev and Aev, respectively, produced by these variants display distinct proteomes, with prevalent functional enrichment in Vev related to oxidative stress response, signal transduction, transport, and localization, in addition to richer protein–protein interaction. Proteome sequences were obtained by nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-ESI-MS/MS). The Vev and corresponding Vpb18 proteomes also differed, suggesting a selective bias in vesicle protein cargo. Moreover, sublethal oxidative (VevOxi) and nitrosative (VevNO) stress modulated the Vev proteome and a positive correlation between VevOxi/VevNO-enriched and Vev-enriched (relative to Aev) proteins was observed. Out of 145 fungal virulence factors detected in Vev, 64% were enriched, strongly suggesting that molecules with virulence roles in Paracoccidioides are selectively concentrated in Vev. Our study significantly advanced the field by exploring protein N-terminal acetylation to a dimension rarely investigated in fungal EV proteomics. The proportion of N-terminally acetylated proteins in Vev was higher than in Vpb18 and the presence of Nt-acetylation in Vev-enriched virulence factors varied across the samples, suggesting that it might interfere with protein sorting into EVs and/or protein functionality. Our findings highlight the relevance of our fungal model to unraveling the significance of fungal EVs in pathogenesis and phenotypic transfer. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

30 pages, 2981 KB  
Review
Polyphenols as Modulators of Gastrointestinal Motility: Mechanistic Insights from Multi-Model Studies
by Andrzej Chomentowski, Krzysztof Drygalski, Tomasz Kleszczewski, Marta Berczyńska, Marzena Tylicka, Jacek Kapała, Agnieszka Raciborska, Przemysław Zubrzycki, Hady Razak Hady and Beata Modzelewska
Pharmaceuticals 2025, 18(10), 1564; https://doi.org/10.3390/ph18101564 - 16 Oct 2025
Viewed by 547
Abstract
Dietary polyphenols are recognized as crucial modulators of gastrointestinal motility, holding therapeutic promise for conditions like irritable bowel syndrome, postoperative ileus, and functional dyspepsia. However, their reported effects are heterogeneous, ranging from spasmolytic to prokinetic. This review aims to clarify these inconsistencies by [...] Read more.
Dietary polyphenols are recognized as crucial modulators of gastrointestinal motility, holding therapeutic promise for conditions like irritable bowel syndrome, postoperative ileus, and functional dyspepsia. However, their reported effects are heterogeneous, ranging from spasmolytic to prokinetic. This review aims to clarify these inconsistencies by synthesizing experimental evidence on structure–activity relationships and underlying mechanisms. Relevant publications were identified in PubMed and Google Scholar using terms related to polyphenols and gastrointestinal motility. References were selected for relevance, and the narrative review integrates findings from in vitro, ex vivo, in vivo, and clinical studies. Across various experimental models, polyphenols function as multi-target modulators of gastrointestinal smooth muscle. The primary mechanisms identified involve the blockade of voltage-dependent L-type Ca2+ channels, activation of K+ channels (BK, KATP), and modulation of the NO/cGMP and cAMP/PKA pathways. Flavones and multiple flavonols consistently demonstrate spasmolytic activity via Ca2+ channel antagonism. In contrast, flavanones engage BK and KATP channels to induce membrane hyperpolarization. Complex extracts from plants like ginger and turmeric exhibit mixed pro- or antimotility effects, reflecting the diverse profiles of their constituent compounds. While robust ex vivo pharmacology and some in vivo and human data exist, a high degree of dataset heterogeneity and inconsistent reporting impedes direct translational efforts. Polyphenols are promising multi-mechanistic modulators of gastrointestinal motility with clear structure–activity patterns. To advance their clinical application, future research must focus on establishing standardized in vivo pharmacokinetics, conducting targeted structure–activity studies, employing bioassay-guided fractionation, and designing rigorous clinical trials. Full article
(This article belongs to the Special Issue Advances in Smooth Muscle Pharmacology)
Show Figures

Figure 1

15 pages, 1083 KB  
Article
High-Power Laser Therapy Modulates Mitochondrial Function and Redox Balance Without Cytotoxicity: An In Vitro Study in BV-2 Microglial Cells
by Luana Barbosa Dias, Thiago De Marchi, Ana Paula Vargas Visentin, Juliana Maria Chaves, Catia Santos Branco, Fernando Joel Scariot, Matheus Marinho Aguiar Lino, Older Manoel Araújo-Silva, Amanda Lima Pereira, Heliodora Leão Casalechi, Douglas Scott Johnson, Shaiane Silva Tomazoni and Ernesto Cesar Pinto Leal-Junior
Antioxidants 2025, 14(10), 1243; https://doi.org/10.3390/antiox14101243 - 16 Oct 2025
Viewed by 556
Abstract
Background: Recent technological advances have sparked growing interest in high-power laser devices due to their capacity for energy delivery and therapeutic potential, especially in deeper tissues. This promising approach may be comparable to photobiomodulation for modulating inflammatory and redox processes in various tissues. [...] Read more.
Background: Recent technological advances have sparked growing interest in high-power laser devices due to their capacity for energy delivery and therapeutic potential, especially in deeper tissues. This promising approach may be comparable to photobiomodulation for modulating inflammatory and redox processes in various tissues. However, to our knowledge, this is the first study to evaluate the safety profile and redox modulation capacity of high-power laser therapy in BV-2 microglial cells. Methods: This study investigated the cellular responses of BV-2 microglial cells exposed to three laser irradiation protocols using a high-power laser device (650/810/915/980 nm, 657 J total dose), applied at variable distances to simulate in vivo power attenuation. Cell viability, apoptosis, adenosine triphosphate(ATP) levels, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), nitric oxide (NO), and intracellular calcium levels were assessed at multiple time points (5 min to 24 h). Results: Protocol-dependent effects were observed. Protocol A promoted early increases in cell viability and ATP levels, along with decreased apoptotic markers and ROS production, suggesting a protective bioenergetic response. In contrast, Protocol C showed transient increases in oxidative stress and reduced MMP, suggesting possible mitochondrial stress. A selective increase in NO levels under Protocol A also suggests modulation of inflammatory pathways without cytotoxicity. Conclusions: High-power laser therapy modulates redox balance, mitochondrial function, and inflammatory mediators (e.g., NO) in a dual-phase manner in BV-2 microglial cells. These findings contribute to defining safe and effective parameters for potential musculoskeletal and neurological applications. Full article
Show Figures

Figure 1

22 pages, 4274 KB  
Article
Enhanced Bioavailability and Stability of Curcumin in Cosmeceuticals: Exploiting Droplet Microfluidics for Nanoemulsion Development
by Nikolaos D. Bikiaris, Afroditi Kapourani, Ioannis Pantazos and Panagiotis Barmpalexis
Cosmetics 2025, 12(5), 226; https://doi.org/10.3390/cosmetics12050226 - 15 Oct 2025
Viewed by 601
Abstract
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. [...] Read more.
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. In this work, Cur-loaded nanoemulsions (NEs) were developed using a droplet microfluidics technique to enhance Cur’s stability, bioavailability, and permeability for advanced cosmeceuticals. Various oils were screened for Cur solubility, with coconut oil demonstrating the highest capacity. Optimal oil-to-water flow ratios were determined to produce monodisperse NEs with controlled droplet sizes. Characterization via dynamic light scattering (DLS) revealed stable NEs with Z-potential values exceeding −30 mV at both room temperature and +4 °C for up to 21 days, indicating strong colloidal stability. Antioxidant activity was evaluated through DPPH assays, while in vitro permeability studies of the drug-loaded NEs after incorporation into suitable hydrogels, using Strat-M® membranes mimicking human skin, demonstrated significantly enhanced penetration of the encapsulated Cur. In sum, this work highlights the potential of droplet microfluidics as a scalable and precise method for producing high-performance Cur NEs tailored for cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

27 pages, 1343 KB  
Review
Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems
by Edith Dube
Appl. Biosci. 2025, 4(4), 46; https://doi.org/10.3390/applbiosci4040046 - 13 Oct 2025
Viewed by 359
Abstract
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic [...] Read more.
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic compound derived from Curcuma longa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising candidate for food preservation. However, its poor solubility, instability, and low bioavailability limit direct applications in food systems. Advances in nanotechnology have enabled the development of nanoformulated curcumin, enhancing solubility, stability, controlled release, and functional efficacy. This review examines the antimicrobial mechanisms of curcumin and its nanoformulations, including membrane disruption, oxidative stress via reactive oxygen species, quorum sensing inhibition, and biofilm suppression. Applications in active and smart packaging are highlighted, where curcumin nanoformulation not only extends shelf life but also enables freshness monitoring through pH-responsive color changes. Evidence across meats, seafood, fruits, dairy, and beverages shows improved microbial safety, oxidative stability, and sensory quality. Multifunctional systems, such as hybrid composites and stimuli-responsive carriers, represent next-generation tools for sustainable packaging. However, challenges remain with scale-up, migration safety, cytotoxicity, and potential promotion of antimicrobial resistance gene (ARG) transfer. Future research should focus on safety validation, advanced nanocarriers, ARG-aware strategies, and regulatory frameworks. Overall, nanoformulated curcumin offers a natural, versatile, and eco-friendly approach to food preservation that aligns with clean-label consumer demand. Full article
Show Figures

Figure 1

Back to TopTop