Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (950)

Search Parameters:
Keywords = aggressive environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5368 KB  
Article
Biogenic ZnO Nanoparticles Synthesized by B. licheniformis: A Selective Cytotoxicity Against NG-108 Glioblastoma Cells
by Alberto Bacilio Quispe Cohaila, Gabriela de Lourdes Fora Quispe, César Julio Cáceda Quiroz, Roxana Mamani Anccasi, Telmo Agustín Mejía García, Rocío María Tamayo Calderón, Francisco Gamarra Gómez and Elisban Juani Sacari Sacari
Nanomaterials 2025, 15(17), 1338; https://doi.org/10.3390/nano15171338 (registering DOI) - 31 Aug 2025
Abstract
Glioblastoma multiforme (GBM) remains the most aggressive primary brain tumor with median survival of 14.6 months, necessitating novel therapeutic approaches. Here, we report the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) using Bacillus licheniformis strain TT14s isolated from mining environments and demonstrate [...] Read more.
Glioblastoma multiforme (GBM) remains the most aggressive primary brain tumor with median survival of 14.6 months, necessitating novel therapeutic approaches. Here, we report the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) using Bacillus licheniformis strain TT14s isolated from mining environments and demonstrate their selective anti-glioma efficacy. ZnO NPs exhibited hexagonal wurtzite structure (crystallite size: 15.48 nm) with spherical morphology (19.37 ± 5.28 nm diameter) as confirmed by XRD, HRTEM, and comprehensive physicochemical characterization. Colloidal stability analysis revealed an isoelectric point at pH 7.46, ensuring optimal dispersion in biological media. Cytotoxicity evaluation revealed remarkable selectivity: at 100 μg/mL, ZnO NPs reduced NG-108 glioblastoma cell viability to 36.07 ± 1.89% within 1 h while maintaining 78.9 ± 0.94% viability in primary retinal cells. The selective cytotoxicity was attributed to the interplay of convergent mechanisms acting under dark conditions, including defect-mediated ROS generation supported by photoluminescence analysis revealing a characteristic oxygen vacancy emission at 550 nm, pH-dependent dissolution enhanced in the acidic tumor microenvironment, and preferential cellular uptake by rapidly proliferating cancer cells with compromised antioxidant defenses. Time-course analysis demonstrated concentration-dependent effects with therapeutic windows favoring normal cell preservation. The intrinsic cytotoxic activity under dark laboratory conditions eliminates the need for external activation, providing practical advantages for therapeutic applications. These findings establish ZnO NPs as promising candidates for targeted glioblastoma therapy, warranting further in vivo validation and mechanistic elucidation for clinical translation. Full article
Show Figures

Figure 1

32 pages, 6749 KB  
Article
Cement Carbonation Under Fermentation Conditions as a Tool for CO2 Emission Management—Technological, Environmental and Economic Analysis
by Michał Pyzalski, Michał Juszczyk, Karol Durczak, Dariusz Sala, Joanna Duda, Marek Dudek and Leonas Ustinovičius
Energies 2025, 18(17), 4588; https://doi.org/10.3390/en18174588 - 29 Aug 2025
Viewed by 89
Abstract
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: [...] Read more.
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: CEM I 52.5N, CEM I 42.5R-1, and CEM I 42.5R-2, differing in phase composition and reactivity, which were evaluated in terms of their carbonation potential and resistance to chemically aggressive environments. The cement pastes were prepared with a water-to-cement ratio of 0.5 and subjected to 90-day exposure in two environments: a reference environment (tap water) and a fermentation environment (aqueous suspension of poultry manure simulating biogas reactor conditions). XRD, TG/DTA, SEM/EDS, and mercury intrusion porosimetry were applied to analyze CO2 mineralization, phase changes, and microstructural evolution. XRD results revealed a significant increase in calcite content (e.g., for CEM I 52.5N from 5.9% to 41.1%) and the presence of vaterite (19.3%), indicating intense carbonation under organic conditions. TG/DTA analysis confirmed a reduction in portlandite and C-S-H phases, suggesting their transformation into stable carbonate forms. SEM observations and EDS analysis revealed well-developed calcite crystals and the dominance of Ca, C, and O, confirming effective CO2 binding. In control samples, hydration products predominated without signs of mineralization. The highest sequestration potential was observed for CEM I 52.5N, while cements with higher C3A content (e.g., CEM I 42.5R-2) exhibited lower chemical resistance. The results confirm that carbonation under fermentation conditions may serve as an effective tool for CO2 emission management, contributing to improved durability of construction materials and generating measurable economic benefits in the context of climate policy and the EU ETS. The article highlights the need to integrate CO2 sequestration technologies with emission management systems and life cycle assessment (LCA) of biogas infrastructure, supporting the transition toward a low-carbon economy. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Carbon Dioxide Capture)
Show Figures

Figure 1

18 pages, 8980 KB  
Article
The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution
by Bowen Fan, Jincheng Yu, Tao Qin, Jinyi Wang, Ying Zhang, Chen Chen, Jiana Song and Hanmiao Ji
Crystals 2025, 15(9), 760; https://doi.org/10.3390/cryst15090760 - 27 Aug 2025
Viewed by 140
Abstract
As a kind of novel binderless composite, WC-cBN-SiCw composite possesses significant potential value in special sealing components and high-pressure medium nozzles. However, under severe wear and corrosion conditions, the surface defects caused by friction will be accelerated to become a crack source [...] Read more.
As a kind of novel binderless composite, WC-cBN-SiCw composite possesses significant potential value in special sealing components and high-pressure medium nozzles. However, under severe wear and corrosion conditions, the surface defects caused by friction will be accelerated to become a crack source in aggressive environments. Because of the intrinsic brittleness of WC cemented carbide, its strength is extremely sensitive to local surface damage. Therefore, the influence of applied load (10 N, 20 N, 40 N and 60 N) on its tribological behavior was studied. Meanwhile, the impact of corrosion resistance of WC-cBN-SiCw composite on surface damage induced by friction was further investigated. Full article
(This article belongs to the Special Issue Corrosion Phenomena in Metals)
Show Figures

Figure 1

18 pages, 12013 KB  
Article
Corrosion Failure Analysis of Nickel-Plated Tubing in CO2-Ca2+-SRB Environment of Offshore Oil Fields
by Hui Zhang, Shuo Yang, Kongyang Wang, Chuang Song, Jinyang Hu and Xiaoqi Yue
Materials 2025, 18(17), 4006; https://doi.org/10.3390/ma18174006 - 27 Aug 2025
Viewed by 275
Abstract
Corrosion failure of oil well tubing in the ocean can lead to significant economic losses. Surface treatment is often used to enhance the corrosion resistance of tubing, while corrosion acceleration will occur in a certain environment. This work combined onset failure analysis and [...] Read more.
Corrosion failure of oil well tubing in the ocean can lead to significant economic losses. Surface treatment is often used to enhance the corrosion resistance of tubing, while corrosion acceleration will occur in a certain environment. This work combined onset failure analysis and corrosion simulation measurements to understand the failure procedure and corrosion mechanism of nickel plating materials in calcium chloride water-type weak corrosion environment. The microscopic analysis results of the failed part show CO2 corrosion products co-deposit with SRB bacterial sulfide products and Ca compounds. The damage of nickel plating is accompanied by S-containing products, which was confirmed by simulated immersion experiments at 50 °C, 0.28 MPa CO2 partial pressure, and a speed of 3 m/s. The aggressive solution penetrates through the micro-damage pores, followed by the degradation of the Ni plating layer into NiS, leading to the localized loss of protection and triggering under-deposit corrosion. Concurrently, the SRB’s anaerobic environment generates CO2 corrosion byproducts and SRB-derived FeS. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

11 pages, 1549 KB  
Article
Synthesis and Characterization of Titanium Layer with Fiber-like Morphology on HDPE by Plasma Treatment
by Erick Yair Vargas-Oliva, Carolina Hernández-Navarro, Violeta Guzman-Ayon, María del Pilar Jadige Ceballos-Muez, Ernesto David García-Bustos, Marco Antonio Doñu-Ruiz, Noé López-Perrusquia, Martin Flores-Martínez and Stephen Muhl-Saunders
Coatings 2025, 15(9), 995; https://doi.org/10.3390/coatings15090995 - 27 Aug 2025
Viewed by 326
Abstract
High-density polyethylene (HDPE) is widely used for different applications, but its low resistance to ultraviolet radiation, plastic deformation, chemical stability, and wear re-sistance limits its use in high-demand work environments. Modifying of the surface characteristics could improve the work efficiency of the parts [...] Read more.
High-density polyethylene (HDPE) is widely used for different applications, but its low resistance to ultraviolet radiation, plastic deformation, chemical stability, and wear re-sistance limits its use in high-demand work environments. Modifying of the surface characteristics could improve the work efficiency of the parts exposed to an aggressive environment. Plasma treatments change the surface characteristics with deposition of a coating or by modifying the surface’s energy, varying the surface properties. This study presents the mechanical and tribological properties of a titanium (Ti) layer with fiber-like morphology produced on HDPE surfaces by plasma treatment involving plasma etching and the deposition of Ti atoms, through DC magnetron sputtering. On the HDPE substrates grew up Ti layer with fibers-like morphology with a diameter of 1.6 ± 0.44 μm. These fibers were elemental composed by 91.5 ± 0.9% Ti and 8.5 ± 0.6% O with α-Ti phase combined with HDPE crystalline structure. The Ti coating increased the hardness of the substrate and showed a good adhesion to HDPE surface. During the sliding test, the Ti layer with fiber-like morphology exhibited plastic deformation and debris accumulation, leading to the formation of a tribolayer without layer detachment. Notably, no detachment of the layer was observed, effectively protected the polymer surface, and enhanced its performance for tribological applications. Full article
Show Figures

Graphical abstract

42 pages, 9119 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 - 25 Aug 2025
Viewed by 321
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
Show Figures

Figure 1

19 pages, 1954 KB  
Article
Analyzing Possible Shifts in the Climatic Niche of Pomacea canaliculata Between Native and Chinese Ranges
by Ran Zhang, Yue Gao, Rui Wang, Shigang Liu, Qianqian Yang, Yuan Li and Longshan Lin
Biology 2025, 14(9), 1127; https://doi.org/10.3390/biology14091127 - 25 Aug 2025
Viewed by 317
Abstract
The impact of invasive alien species (IAS) is one of the direct factors causing global biodiversity decline and economic losses, and predicting the potential invasion risks of invasive species is crucial for developing prevention and control strategies. In recent years, an increasing number [...] Read more.
The impact of invasive alien species (IAS) is one of the direct factors causing global biodiversity decline and economic losses, and predicting the potential invasion risks of invasive species is crucial for developing prevention and control strategies. In recent years, an increasing number of studies have shown that invasive species undergo rapid shifts in climate niche in invaded areas. Accurately quantifying the dynamic shifts in the climate niche of invasive species in invaded areas is crucial for developing a more accurate framework for early warning of invasive species risks. Pomacea canaliculata is a freshwater snail found in South America and has become one of the most aggressive aquatic species in the world. Since its introduction to China in 1981, it has rapidly spread and caused multiple serious damages to agriculture, ecology, and public health. Therefore, based on multi-source distribution data of P. canaliculata, this study calculated the climate niche overlap by Schoener’ s D, quantified the niche shifts between the P. canaliculata in native and invaded areas (China) via the COUE scheme (a unified terminology representing niche centroid shift, overlap, unfilling, and expansion), and analyzed their changes on a time scale. The results revealed that there have been significant climate niche shifts (Schoener’s D < 0.2, niche similarity tests p > 0.01, niche equivalence tests p < 0.01) between the native and invaded areas (China) of P. canaliculata, which does not support the climate niche conservation hypothesis. The minimum temperature of the coldest month (Bio 6) and precipitation seasonality (Bio 15) were the key climate variables driving the climatic niche shift, and P. canaliculata can survive in colder and more arid regions than their native counterparts. The changes in the niche shifts in P. canaliculata on a time scale show significant temporal heterogeneity, and its invasion behavior in China presents a discontinuous and phased expansion pattern, with strong adaptability to new environments. The results are of great significance for the future development of more accurate ecological niche model (ENM), the formulation of more targeted prevention and control strategies, and the study of adaptive evolution mechanisms of invasive species. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

21 pages, 4242 KB  
Article
Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications
by John Henao, Oscar Sotelo-Mazon, Rosa M. Montiel-Ruiz, Carlos A. Poblano-Salas, Diego G. Espinosa-Arbelaez, Jorge Corona-Castuera, Astrid Giraldo-Betancur, Ana L. Islas-Garduño and Victor M. Zezatti
Appl. Sci. 2025, 15(17), 9308; https://doi.org/10.3390/app15179308 - 25 Aug 2025
Viewed by 351
Abstract
Biocompatible coatings are widely employed in dental applications to enhance the biofunctionality of metallic implants exposed to the aggressive oral environment. Among them, hydroxyapatite (HAp)-based and carbide-reinforced coatings have been explored due to their favorable mechanical and biological performance. In this study, Cr [...] Read more.
Biocompatible coatings are widely employed in dental applications to enhance the biofunctionality of metallic implants exposed to the aggressive oral environment. Among them, hydroxyapatite (HAp)-based and carbide-reinforced coatings have been explored due to their favorable mechanical and biological performance. In this study, Cr3C-20(Ni20Cr)-20HAp-XSi coatings were deposited using the high-velocity oxy-fuel (HVOF) technique. The coatings were applied onto commercially pure titanium substrates, with the silicon content varied between X = 0, 5, 10, and 20 wt%. To evaluate the coatings’ corrosion resistance, electrochemical techniques such as potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and open circuit potential (OCP) were employed. Artificial saliva was used as the corrosive medium at 37 °C for 168 h. The feasibility of producing carbide-HAp-Si coatings with excellent corrosion resistance and cytocompatibility via HVOF was demonstrated here, although some of the tested coatings (20 wt% Si) showed reduced electrochemical stability, attributed to faster dissolution processes and associated with a thinner coating layer, as confirmed by SEM analyses. X-ray diffraction (XRD) analyses revealed the formation of new phases in the coatings during thermal spraying, including Cr2O3 and Cr7C3. Additionally, MTT assays using 3T3-L1 fibroblasts showed no significant cytotoxic effects after 24 and 72 h of exposure to some of the coatings, confirming their biocompatibility for potential dental applications. Full article
(This article belongs to the Special Issue Surface Coatings: Materials and Techniques)
Show Figures

Figure 1

27 pages, 33038 KB  
Article
Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments
by Kacper Oliwa, Barbara Kozub, Katarzyna Łoś, Piotr Łoś and Kinga Korniejenko
Materials 2025, 18(16), 3892; https://doi.org/10.3390/ma18163892 - 20 Aug 2025
Viewed by 454
Abstract
This article presents experimental studies on the characterization of geopolymer composites intended for applications in aquatic environments, with particular emphasis on underwater infrastructure. The motivation for conducting the research was the growing need to develop durable and ecological building materials that will be [...] Read more.
This article presents experimental studies on the characterization of geopolymer composites intended for applications in aquatic environments, with particular emphasis on underwater infrastructure. The motivation for conducting the research was the growing need to develop durable and ecological building materials that will be resistant to long-term exposure to moisture and aggressive chemical agents, typical for the underwater environment, where traditional cement concretes undergo gradual degradation due to long-term water impact, including hydrotechnical and underwater infrastructure. Geopolymer binders were produced based on metakaolin activated by alkaline solutions containing sodium hydroxide. Several series of mixtures with additives such as blast furnace slag, amphibolite and carbon fibers were developed to evaluate the effect of these components on mechanical strength, water absorption and chemical durability. The conducted studies showed that slag additions improved mechanical properties, for the best composition it across 50 MPa. In contrast, the addition of amphibolite had an unfavorable effect, which probably results from introducing inhomogeneity into the material structure. The presence of carbon fibers promoted matrix cohesion, but their uneven distribution could lead to local strength differences. Water absorption tests have shown that geopolymers reach full water saturation within 24 to 48 h, which indicates rapid establishment of capillary equilibrium and limited further water penetration. The conclusions from the work indicate that geopolymer composites with a moderate amount of blast furnace slag and subjected to appropriate curing conditions. High strength, water and chemical resistance make them suitable for, among others, the construction of marine foundations, protection and structural shields of submerged applications. Full article
Show Figures

Figure 1

17 pages, 10574 KB  
Article
Evaluation of Corrosion Behavior of Zn–Al–Mg-Coated Steel in Corrosive Heterogeneous Soil
by Pedro Javier Lloreda-Jurado and Ernesto Chicardi
Crystals 2025, 15(8), 738; https://doi.org/10.3390/cryst15080738 - 20 Aug 2025
Viewed by 424
Abstract
The long-term durability of steel structures in contact with soil remains a critical challenge due to the complex and aggressive nature of many soil environments. This study presents a thorough evaluation of the corrosion resistance and microstructural evolution of Magnelis® ZM430-coated steel [...] Read more.
The long-term durability of steel structures in contact with soil remains a critical challenge due to the complex and aggressive nature of many soil environments. This study presents a thorough evaluation of the corrosion resistance and microstructural evolution of Magnelis® ZM430-coated steel exposed to highly aggressive, heterogeneous soils. Gravimetric analysis revealed that the Magnelis® ZM430 coating exhibits low corrosion rates and enhanced initial barrier properties, even under severe soil conditions. Although the literature frequently reports that Zn–Al–Mg coatings outperform conventional hot-dip galvanized coatings, our results highlight that this superiority is not universal and may be limited under highly aggressive, heterogeneous soils. Microstructural characterization by optical microscopy, SEM/EDS, and XRD demonstrated that the as-received coating consists of a homogeneous layer with well-distributed Zn-, MgZn2-, and Al-rich phases. Upon soil exposure, corrosion preferentially initiates in the Mg- and Al-rich interdendritic and eutectic regions, leading to selective phase depletion and localized breakdown of the protective layer. Despite these localized vulnerabilities, the overall performance of Magnelis® ZM430 remains superior, especially during the early stages of exposure. While no direct comparisons were performed in this work, our findings align with previous literature reporting superior performance of Zn–Al–Mg coatings compared to conventional hot-dip galvanized coatings in similar environments. Importantly, the integration of precise corrosion rate data with detailed soil characterization enables accurate prediction of coating service life, allowing for optimized coating thickness selection and proactive maintenance planning. These findings underscore the value of combining advanced Zn–Al–Mg coatings with site-specific environmental assessment to ensure the long-term integrity of buried steel infrastructure. Full article
Show Figures

Figure 1

18 pages, 2658 KB  
Article
Temperature-Driven Degradation Mechanisms of Steel–Concrete Interfaces in NaCl Solution Environments: Nanoscale Insights from Molecular Dynamics Simulations
by Jianchao Xu, Jiayi Mo, Wenlong Sang and Jieqiong Wu
Buildings 2025, 15(16), 2894; https://doi.org/10.3390/buildings15162894 - 15 Aug 2025
Viewed by 344
Abstract
This study aims to clarify the temperature-dependent degradation mechanisms of the steel–concrete interface in NaCl solution environments at the nanoscale, focusing on the key components of calcium silicate hydrate (C-S-H, the primary hydration product of cement) and iron oxyhydroxide (γ-FeOOH, a critical component [...] Read more.
This study aims to clarify the temperature-dependent degradation mechanisms of the steel–concrete interface in NaCl solution environments at the nanoscale, focusing on the key components of calcium silicate hydrate (C-S-H, the primary hydration product of cement) and iron oxyhydroxide (γ-FeOOH, a critical component of steel passive films in highly alkaline environments). Using Materials Studio software (2023) and molecular dynamics simulations, the evolution of the interface’s performance under temperatures ranging from 300 K to 390 K (corresponding to 27 °C to 117 °C) is systematically investigated. The results reveal that elevated temperatures degrade the performance of C-S-H/γ-FeOOH interfaces through three main mechanisms: (1) The stability of the hydration shell around aggressive ions is weakened, enabling these ions to occupy the coordination positions of calcium ions on the interface and form stable ion pairs with surface calcium ions, thereby weakening interfacial bonding. (2) The mobility of surface calcium ions is enhanced, reducing the strength of the interaction of ion pairs and diminishing the mediating role of calcium ions in connecting the C-S-H and γ-FeOOH phases. (3) Hydrogen bond stability at the interface decreases, as indicated by reduced hydrogen bond angles and numbers, coupled with increased hydrogen bond lengths. The above three reasons lead to a decrease in adsorption energy in the C-S-H/γ-FeOOH interface, which degrades the interface bond’s performance. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

45 pages, 5840 KB  
Review
Geopolymer Chemistry and Composition: A Comprehensive Review of Synthesis, Reaction Mechanisms, and Material Properties—Oriented with Sustainable Construction
by Sri Ganesh Kumar Mohan Kumar, John M. Kinuthia, Jonathan Oti and Blessing O. Adeleke
Materials 2025, 18(16), 3823; https://doi.org/10.3390/ma18163823 - 14 Aug 2025
Viewed by 664
Abstract
Geopolymers are an environmentally sustainable class of low-calcium alkali-activated materials (AAMs), distinct from high-calcium C–A–S–H gel systems. Synthesized from aluminosilicate-rich precursors such as fly ash, metakaolin, slag, waste glass, and coal gasification fly ash (CGFA), geopolymers offer a significantly lower carbon footprint, valorize [...] Read more.
Geopolymers are an environmentally sustainable class of low-calcium alkali-activated materials (AAMs), distinct from high-calcium C–A–S–H gel systems. Synthesized from aluminosilicate-rich precursors such as fly ash, metakaolin, slag, waste glass, and coal gasification fly ash (CGFA), geopolymers offer a significantly lower carbon footprint, valorize industrial by-products, and demonstrate superior durability in aggressive environments compared to Ordinary Portland Cement (OPC). Recent advances in thermodynamic modeling and phase chemistry, particularly in CaO–SiO2–Al2O3 systems, are improving precursor selection and mix design optimization, while Artificial Neural Network (ANN) and hybrid ML-thermodynamic approaches show promise for predictive performance assessment. This review critically evaluates geopolymer chemistry and composition, emphasizing precursor reactivity, Si/Al and other molar ratios, activator chemistry, curing regimes, and reaction mechanisms in relation to microstructure and performance. Comparative insights into alkali aluminosilicate (AAS) and aluminosilicate phosphate (ASP) systems, supported by SEM and XRD evidence, are discussed alongside durability challenges, including alkali–silica reaction (ASR) and shrinkage. Emerging applications ranging from advanced pavements and offshore scour protection to slow-release fertilizers and biomedical implants are reviewed within the framework of the United Nations Sustainable Development Goals (SDGs). Identified knowledge gaps include standardization of mix design, LCA-based evaluation of novel precursors, and variability management. Aligning geopolymer technology with circular economy principles, this review consolidates recent progress to guide sustainable construction, waste valorization, and infrastructure resilience. Full article
Show Figures

Figure 1

14 pages, 2685 KB  
Article
Assessing the Effects of Green Surface Coatings on the Corrosion-Related Mechanical Attributes of Materials
by Mohammed A. Albadrani
Processes 2025, 13(8), 2576; https://doi.org/10.3390/pr13082576 - 14 Aug 2025
Viewed by 274
Abstract
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed [...] Read more.
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed using Linear Sweep Voltammetry (LSV), Open Circuit Potential (OCP), and Electrochemical Impedance Spectroscopy (EIS), while mechanical performance was evaluated through tensile testing. The coating’s thickness, surface roughness, water contact angle, and composition were characterised to understand its protective behaviour. The results show that the coating significantly reduced corrosion rates, with carbon steel exhibiting a 99.99% inhibition efficiency and aluminium showing the lowest corrosion rate due to a synergistic effect between the coating and native oxide layer. Mechanical testing revealed that coated carbon steel retained higher tensile strength and stiffness compared to its uncoated counterpart, while aluminium showed notable recovery in elastic modulus. Copper displayed minimal mechanical changes due to its inherent corrosion resistance. This work highlights the potential of eco-friendly coatings in enhancing both the corrosion resistance and mechanical durability of metallic materials in aggressive environments. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 4680 KB  
Article
Combined Approach to the Synthesis of WC-(Fe, Ni) Hard Alloys: Mechanical Activation and Spark Plasma Sintering
by Gulzhaz Uazyrkhanova, Yernat Kozhakhmetov, Madina Aidarova, Małgorzata Rutkowska-Gorczyca and Yerkezhan Tabiyeva
Crystals 2025, 15(8), 724; https://doi.org/10.3390/cryst15080724 - 14 Aug 2025
Viewed by 333
Abstract
This paper presents a combined approach to the synthesis of WC-(Fe, Ni) hard alloys obtained by mechanical activation and spark plasma sintering (SPS). The main attention at this stage of the work is paid to studying the evolution of the morphology and phase [...] Read more.
This paper presents a combined approach to the synthesis of WC-(Fe, Ni) hard alloys obtained by mechanical activation and spark plasma sintering (SPS). The main attention at this stage of the work is paid to studying the evolution of the morphology and phase composition of WC-(Fe, Ni) powder mixtures during high-energy milling and their subsequent sintering by the SPS method. The study analyzed the effect of the mechanosynthesis time and the binder phase content on the change in the average particle size, the degree of defect formation, and the phase composition of the powders. It was found that an increase in the milling time to 240 min promotes the formation of the WC nanocrystalline structure and the accumulation of microdefects, which is accompanied by a decrease in the average particle size and an increase in the dislocation density. The X-ray phase analysis of the samples after SPS confirmed the preservation of the WC phase and the formation of the γ-(Fe, Ni) matrix without the formation of secondary carbide phases. The analysis of sample shrinkage showed three main stages: initial compaction, intense shrinkage, and structure stabilization. The obtained data demonstrate that optimization of the parameters of mechanical activation and SPS allow for effective control of the phase composition and morphology of WC-(Fe, Ni) powders, which opens up opportunities for their subsequent study in conditions of aggressive environments and radiation exposure. Full article
Show Figures

Figure 1

20 pages, 1930 KB  
Article
Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer
by Edyta Idalia Wolny-Rokicka and Marta Grabowska
Cancers 2025, 17(16), 2638; https://doi.org/10.3390/cancers17162638 - 13 Aug 2025
Viewed by 447
Abstract
Background: Currently, it is a priority to develop prognostic biomarkers that would allow the identification of patients with progressing prostate diseases with a low risk of progression, so that unnecessary treatment and patient burden can be avoided. Objectives: This study aimed [...] Read more.
Background: Currently, it is a priority to develop prognostic biomarkers that would allow the identification of patients with progressing prostate diseases with a low risk of progression, so that unnecessary treatment and patient burden can be avoided. Objectives: This study aimed to assess the clinical features and concentrations of selected mediators of apoptosis, markers of inflammation, and immunoexpression of Ki67 and selected mediators of inflammation in patients with PCa after prostatectomy procedures and who underwent palliative radiotherapy for bone metastases, as well as patients with benign prostatic hyperplasia (BPH). Methods: A total of 88 patients, including 54 cases with PCa and 34 with BPH, were included. Stage and tumor grades were determined according to Gleason’s grading system. Immunoenzymatic methods were used to determine apoptotic and inflammatory mediators in serum, as well as deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) reaction, and immunohistochemistry to determine selected markers of inflammation and Ki67 expression. Results: Strong differentiating indicators were revealed, such as Ki67, and tumor necrosis factor receptor 2. Ki-67 expression was significantly associated with the Gleason score. In turn, the tumor necrosis factor receptor 2 (TNFRII) showed the highest expression in the inflammatory environment of cancer in the metastatic stage. Conclusions: Ki67 and TNFRII can be classified as high-value clinical markers. These factors may be treated as markers regarding future information about the implementation or withdrawal of more aggressive treatment to possibly avoid toxic complications associated with both increased doses in radiotherapy and prolonged hormonal therapy. Full article
(This article belongs to the Collection Biomarkers for Detection and Prognosis of Prostate Cancer)
Show Figures

Figure 1

Back to TopTop