Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = aircraft loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1635 KiB  
Article
The Conceptual Design of a Variable Camber Wing
by Spencer Troy P. Cortez, Seksan Winyangkul and Suwin Sleesongsom
Biomimetics 2025, 10(6), 353; https://doi.org/10.3390/biomimetics10060353 - 1 Jun 2025
Viewed by 122
Abstract
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural [...] Read more.
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural tests, still lag in development at the conceptual design stage. Therefore, this research focuses on designing a variable camber wing, a key area for the advancement of morphing aircraft. Inspired by the high-lift capabilities of traditional aircraft devices but aiming for smoother airflow through continuous shape alteration, this research proposes a novel three-step design for a structurally integrated VCW. This approach begins with a critical aerodynamic analysis to determine wing shape adaptations across various flight conditions, followed by a mechanism synthesis phase to design a four-bar linkage that accurately approximates the desired trailing edge deflections by utilizing a variant of teaching–learning-based optimization. The objective is to minimize error between the intended and actual coupler link while adhering to design constraints for proper integration in the wing structure. Finally, structural analysis evaluates the skin’s ability to withstand operational loads and ensure the integrity of the VCW system. The design result demonstrates the success of this three-step approach to synthesizing a VCW mechanism that meets the defined aerodynamic (actual deflection of 9.1764°) and structural targets (maximum Von Mises stress of 81.5 MPa and maximum deflection of 0.073 m), paving the way for enhanced aircraft performance. Full article
Show Figures

Figure 1

29 pages, 2282 KiB  
Article
Genetic Algorithm for Optimal Control Design to Gust Response for Elastic Aircraft
by Mauro Iavarone, Umberto Papa, Alberto Chiesa, Luca de Pasquale and Angelo Lerro
Aerospace 2025, 12(6), 496; https://doi.org/10.3390/aerospace12060496 - 30 May 2025
Viewed by 116
Abstract
Developing control systems for high aspect ratio aircraft can be challenging due to the flexibility of the structure involved in the control loop design. A model-based approach can be straightforward to tune the control system parameters and, to this aim, a reliable aircraft [...] Read more.
Developing control systems for high aspect ratio aircraft can be challenging due to the flexibility of the structure involved in the control loop design. A model-based approach can be straightforward to tune the control system parameters and, to this aim, a reliable aircraft flexible model is mandatory. This paper aims to present the approach pursued to design a control strategy considering the flexible aircraft simulator in the loop. Once the elastic model for the longitudinal dynamics has been set up, genetic algorithms are used to determine-together with a Linear Quadratic Regulator controller—a logic to improve the dynamic behaviour whilst encountering a gust. A relatively low order elastic model is developed for the dynamics in the longitudinal plane, including both rigid body and elastic degrees of freedom defined in a vehicle-fixed reference frame. The rigid body degrees of freedom and the associated states are the same as those of the rigid vehicle, whilst the additional states represent the elastic degrees of freedom. Modal characteristics are calculated from a finite element model of the aircraft using a commercial code, with the weight distribution added as lumped masses on grid points, while the aerodynamic rigid properties are described with a nonlinear database. Using the 2-D strip theory and neglecting the unsteady effects, the aeroelastic stability derivatives, i.e., elastic influence coefficients, are computed to superimpose the elastic effects on the rigid body degrees of freedom and vice versa. The flexible dynamics is compared to the rigid one in order to highlight the relevant changes in the aircraft modes. Following is herein proposed a control strategy combining genetic algorithms and Linear Quadratic Regulator controller to reduce the load factor, also considering the oscillation amplitude due to a deterministic gust encountered in a predefined flight condition. Full article
Show Figures

Figure 1

28 pages, 4244 KiB  
Article
Optimized Non-Integer with Disturbance Observer Frequency Control for Resilient Modern Airport Microgrid Systems
by Amr A. Raslan, Mokhtar Aly, Emad A. Mohamed, Waleed Alhosaini, Emad M. Ahmed, Loai S. Nasrat and Sayed M. Said
Fractal Fract. 2025, 9(6), 354; https://doi.org/10.3390/fractalfract9060354 - 28 May 2025
Viewed by 168
Abstract
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this [...] Read more.
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this context, maintaining proper frequency is essential for the reliable operation of AMGs, which helps maintain grid stability and reliable operation. This paper proposes a new hybrid disturbance observer-based controller with a fractional-order controller (DOBC/FOC) for operating AMGs with high levels of renewable energy integration and advanced frequency regulation (FR) capabilities. The proposed controller utilizes DOBC coupled with a non-integer FOC for load frequency control (LFC), optimized for peak performance under varying operational conditions. In addition, a decentralized control strategy is introduced to manage the participation of electric vehicles and lithium-ion battery systems within the airport’s energy ecosystem, enabling effective demand response and energy storage utilization. Furthermore, the parameters of these controllers are optimized simultaneously to ensure optimal performance in both transient and steady-state conditions. The proposed DOBC/FOC controller demonstrates strong performance and reliability according to simulation outcomes, showcasing its superior performance in maintaining frequency stability, reducing fluctuations, and ensuring continuous power supply in diverse operating scenarios, such as 55.5% and 76.5% in step load perturbations when compared to the utilization of electric vehicles (EVs) and electric aircraft (EAC), respectively. These results underline the potential of this approach in enhancing the resilience and sustainability of AMG and contributing to more intelligent and eco-friendly airport infrastructure. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

27 pages, 22809 KiB  
Article
Failure Analysis of Large-Scale Composite Fuselage Panels Under Combined Loads
by Fei Yuan, Liping Cheng, Xiangming Chen, Lei Li, Fei Yu and Yanan Chai
Aerospace 2025, 12(6), 470; https://doi.org/10.3390/aerospace12060470 - 26 May 2025
Viewed by 150
Abstract
The fuselage serves as the primary component of commercial aircraft. The strength reliability of fuselage panels is therefore crucial for commercial aircraft. In the present study, a finite element (FE)-based modeling approach has been developed to predict the post-buckling behavior of curved fuselage [...] Read more.
The fuselage serves as the primary component of commercial aircraft. The strength reliability of fuselage panels is therefore crucial for commercial aircraft. In the present study, a finite element (FE)-based modeling approach has been developed to predict the post-buckling behavior of curved fuselage panels under combined axial compression and in-plane shear loads at different shear-to-compression ratios. The intra-laminar damage was replicated using a progressive damage model driven by the Hashin’s failure criteria, while the skin−stiffener debonding was modeled using the cohesive zone model. Failure tests were performed using a bespoke Fuselage Panel Test System (FPTS), enabling comparison between experiments and simulations. The predicted buckling loads and ultimate failure loads are in good agreement with those obtained from experiments, which verify the predictive capability of the FE model. The failure load of the panels was found to be at least 30% higher than the initial buckling loads for all loading cases, indicating significant post-buckling load-carrying capacity. Under these four loading conditions studied, the load transfer mechanisms of curved panels were examined. All specimens experienced local skin buckling and subsequent global buckling, resulting in skin−stiffener debonding followed by fracture of the stiffeners, which was the dominant failure mechanism for the panel studied. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 2270 KiB  
Article
An Intellectual–Analytical Platform for Assessing the Psychophysiological Load on Flight Instructors
by Miroslav Kelemen, Volodymyr Polishchuk, Martin Kelemen, Miroslav Badida and Marek Moravec
Appl. Sci. 2025, 15(11), 5917; https://doi.org/10.3390/app15115917 - 24 May 2025
Viewed by 184
Abstract
This study aimed to develop an intellectual and analytical platform for assessing the psychophysiological load on flight instructors in a flight school (general aviation). As part of this study, an information model for evaluating the working environment’s load based on noise levels was [...] Read more.
This study aimed to develop an intellectual and analytical platform for assessing the psychophysiological load on flight instructors in a flight school (general aviation). As part of this study, an information model for evaluating the working environment’s load based on noise levels was developed, a model to predict individual psychophysiological load was created, an expert model to assess mental health was established, and a hybrid model was devised to determine the overall psychophysiological load on an instructor while performing their duties. Noise load was measured during flights with two aircraft (Zlín Z43 and Diamond DA-40 TDI), resulting in the acquisition of 4,361,300 data points. This dataset was collected during two data acquisition sessions for each aircraft, encompassing three phases of flight: takeoff, in-flight, and landing. During the flight, noise measurements were conducted based on five indicators: sound pressure, fluctuation strength, roughness, sharpness, and tonality. Based on the measured data, the platform was verified and configured, and example evaluations were demonstrated. This study employed modern methods of intelligent data analysis, utilizing both univariate and multivariate membership functions. The developed platform incorporates quantitative dynamic data obtained from devices measuring psychophysiological load, integrating professional mental health assessments and predicting dynamic work environment indicators for modeling load trends. Early detection of critical load levels helps protect the health of flight instructors, thus creating a safe working environment for training new pilots. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

23 pages, 8506 KiB  
Article
Destructive and Non-Destructive Analysis of Lightning-Induced Damage in Protected and Painted Composite Aircraft Laminates
by Audrey Bigand, Christine Espinosa and Jean-Marc Bauchire
Aerospace 2025, 12(5), 446; https://doi.org/10.3390/aerospace12050446 - 19 May 2025
Viewed by 214
Abstract
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which [...] Read more.
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which cannot evacuate the current without high Joule heating. Lightning strike-induced damage in a composite laminate is composed of in-depth delamination, fibre breakage, and resin deterioration due to the surface explosion and the core current flow linked to interaction of the arc with the surface. But very rare previous studies dedicated to the analysis of damage as a direct effect of lightning have considered the spurious effect of the paint that always covers real aeronautic structures neither on the thermal nor the mechanical loads that are the root cause of these damages. We present in this paper a coupled non-destructive and destructive damage analysis to support the proposition of damage scenarios depending on the presence and thickness of the paint. The mechanical and thermal sources contribution in the global loading on the core damage is discussed, which confirms previous studies’ analysis and modelling and is in accordance with existing works in the literature. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 2618 KiB  
Article
An Analysis of the Literature Data on the Impact of Steel and Polypropylene Fibers on the Thickness Design of Airfield Concrete Pavements
by Angeliki Armeni and Christina Plati
Eng 2025, 6(5), 103; https://doi.org/10.3390/eng6050103 - 19 May 2025
Viewed by 244
Abstract
The construction of concrete airfield pavements aims to ensure sufficient load-bearing capacity for the safe operation of aircraft. In order to reduce the pavement thickness and the associated costs, materials with improved properties compared to conventional concrete mixtures are generally used. This measure [...] Read more.
The construction of concrete airfield pavements aims to ensure sufficient load-bearing capacity for the safe operation of aircraft. In order to reduce the pavement thickness and the associated costs, materials with improved properties compared to conventional concrete mixtures are generally used. This measure also aims to reduce the use of cement raw materials as part of a more sustainable strategy. On this basis, various fibers can be added to conventional concrete to improve the compressive and flexural strength of the concrete. Against this background, the present study aims to quantify the effect of polypropylene and steel fibers on the thickness of airfield concrete pavements. For this reason, international experience on this topic is first summarized in order to select suitable weighted values of concrete flexural strength for further analysis. Subsequently, an airfield concrete pavement for the edge of an airport runway is designed according to the Unified Facility Criteria (UFC) of the US Department of Defense. Comparisons are made between the pavement thicknesses determined using the above method and conclusions are drawn on the effects of using steel and polypropylene fibers on the design of airfield pavements. The analysis showed that the use of steel fibers can lead to a 25% reduction in concrete layer thickness, while the use of polypropylene fibers reduces the concrete layer thickness by 8–16%. Full article
(This article belongs to the Special Issue Emerging Trends in Inorganic Composites for Structural Enhancement)
Show Figures

Figure 1

19 pages, 2666 KiB  
Article
Conceptual Design and Analysis of a Trans-Domain Aircraft Based on the Camber Morphing Wing
by Mingzhen Wang, Mingxuan Xu, Xing Shen, Zhenyang Lai, Yan Zhao, Chen Wang and Qi Hu
Machines 2025, 13(5), 428; https://doi.org/10.3390/machines13050428 - 19 May 2025
Viewed by 224
Abstract
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet [...] Read more.
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet various flight conditions in different domains. Therefore, the design of wing structures must consider the mechanical effects of different media on the aircraft. In the current study, a fishbone variable camber wing is proposed based on the concept of a camber morphing wing. The relationship between the actuation force and the trailing edge deflection is analyzed using the fluid–structure interaction. The flight performance of the flight conditions including cruise or climb underneath and cruise above the water can also be evaluated in the design iteration since the load-carrying capability can be satisfied and the structural deformation of the fluid loads and the actuators is taken into account. Finite element analysis is also employed for the structural verification. Finally, a structural model is manufactured, which is tested above and under water by measuring the trailing edge deflection using the digital image correlation technology. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 8626 KiB  
Article
LSCD-Pose: A Feature Point Detection Model for Collaborative Perception in Airports
by Ruifeng Meng, Jinlei Wang, Yuanhao Huang, Zhaofeng Xue, Yihao Hu and Biao Li
Sensors 2025, 25(10), 3176; https://doi.org/10.3390/s25103176 - 18 May 2025
Viewed by 250
Abstract
Ensuring safety on busy airport aprons remains challenging, particularly in preventing aircraft wingtip collisions. In this study, first, a simplified coordinate mapping method converts pixel detections into accurate spatial coordinates, improving aircraft position and velocity estimates. Next, an innovative dynamic warning area with [...] Read more.
Ensuring safety on busy airport aprons remains challenging, particularly in preventing aircraft wingtip collisions. In this study, first, a simplified coordinate mapping method converts pixel detections into accurate spatial coordinates, improving aircraft position and velocity estimates. Next, an innovative dynamic warning area with a classification mechanism is introduced to enable faster responses from airport staff. Finally, this study proposes LSCD-Pose, a real-time detection network enhanced by lightweight shared modules, significantly reducing model size and computational load without sacrificing accuracy. Experiments on real airport datasets representing various apron scenarios demonstrate frame rates up to 461.7 FPS and a 90.5% reduction in model size compared with the baseline. Visualizations confirm the solution’s versatility and efficiency in effectively mitigating wingtip collisions and enhancing apron safety. Full article
Show Figures

Figure 1

28 pages, 7524 KiB  
Article
A Supervised Scene Adaptive Model for Identifying Impact Load with Few Samples
by Shengbao Bai, Ji Yao, Chenhui Huang, Yuan Tian, Zhigang Xiong, Gang Chen and Hu Sun
Sensors 2025, 25(10), 3169; https://doi.org/10.3390/s25103169 - 17 May 2025
Viewed by 273
Abstract
Deep learning-based impact load identification technology for the next generation of large aircraft structures has garnered significant attention and has become one of the focal points in aircraft structural health monitoring. However, this technology relies on a large number of training samples and [...] Read more.
Deep learning-based impact load identification technology for the next generation of large aircraft structures has garnered significant attention and has become one of the focal points in aircraft structural health monitoring. However, this technology relies on a large number of training samples and exhibits poor scalability. One of the current challenges in system-level multi-structure monitoring is how to construct deep learning models with a small number or even zero impact training samples, and improve the models’ ability to migrate between different structures. To address this challenge, a novel method for impact load identification using only a small number of samples, based on a supervised scene adaptive model, is proposed. The performance of the model is validated on real aircraft structures. For large and complex structures, the model can be applied to other similar structural areas or different structural areas by using samples from the baseline area for training. Then, a very small number of calibration samples from the migrated area can be used for calibration. The results demonstrate that the proposed model, calibrated with just a single sample, achieves 97.22% accuracy in impact location identification and 99.44% accuracy in energy identification under similar regional structural conditions. Under different structural region conditions, the location identification accuracy of the proposed model is 87.65%, while the energy identification accuracy remains at 98.85%. The position identification accuracy of the model is 91.98% under different impact energy level conditions, and the identification accuracy remains at 87.04% even under varying impact energy levels and structural region conditions. Full article
Show Figures

Figure 1

19 pages, 3454 KiB  
Article
Development of a Novel Biomechanical Framework for Quantifying Dynamic Risks in Motor Behaviors During Aircraft Maintenance
by Mingjiu Yu, Di Zhao, Yu Zhang, Jing Chen, Gongbing Shan, Ying Cao and Jun Ye
Appl. Sci. 2025, 15(10), 5390; https://doi.org/10.3390/app15105390 - 12 May 2025
Viewed by 232
Abstract
Aircraft mechanical maintenance involves high loads, repetitive movements, and awkward postures, significantly increasing the risk of work-related musculoskeletal disorders (WMSDs). Traditional static evaluation methods based on posture analysis fail to capture the complexity and dynamic nature of these tasks, limiting their applicability in [...] Read more.
Aircraft mechanical maintenance involves high loads, repetitive movements, and awkward postures, significantly increasing the risk of work-related musculoskeletal disorders (WMSDs). Traditional static evaluation methods based on posture analysis fail to capture the complexity and dynamic nature of these tasks, limiting their applicability in maintenance settings. To address this limitation, this study introduces a novel quantitative WMSD risk assessment model that leverages 3D motion data collected through an optical motion capture system. The model evaluates dynamic human postures and employs an inverse trigonometric function algorithm to quantify the loading effects on working joints. Experimental validation was conducted through quasi-real-life scenarios to ensure the model’s reliability and applicability. The findings demonstrate that the proposed methodology provides both innovative and practical advantages, overcoming the constraints of conventional assessment techniques. Specifically, it enables precise quantification of physical task loads and enhances occupational injury risk assessments. The model is particularly valuable in physically demanding industries, such as aircraft maintenance, where accurate workload and fatigue monitoring are essential. By facilitating real-time ergonomic analysis, this approach allows managers to monitor worker health, optimize task schedules, and mitigate excessive fatigue and injury risks, ultimately improving both efficiency and workplace safety. Full article
Show Figures

Figure 1

14 pages, 5368 KiB  
Article
Impact of Scanning Speed on Microstructure and Mechanical and Thermal Expansion Properties of Fe-36Ni Alloy Fabricated by Selective Laser Melting
by Zijian Yang, Zhihao Feng, Yufei Di, Tianyu Wang, Kaimin Wei, Zhe Zhang, Junqi Ge, Jiangang Wang, Mingqiang Fan and Jianhui Li
Coatings 2025, 15(5), 572; https://doi.org/10.3390/coatings15050572 - 10 May 2025
Viewed by 337
Abstract
The Fe-36Ni alloy, with ultra-low thermal expansion and stable properties, is essential for aerospace remote sensors and aircraft load-bearing structures, widely used in aerospace. Additive Manufacturing, an emerging rapid prototyping technology with short cycles, high efficiency, and flexibility, addresses complex structural fabrication challenges. [...] Read more.
The Fe-36Ni alloy, with ultra-low thermal expansion and stable properties, is essential for aerospace remote sensors and aircraft load-bearing structures, widely used in aerospace. Additive Manufacturing, an emerging rapid prototyping technology with short cycles, high efficiency, and flexibility, addresses complex structural fabrication challenges. While selective laser melting (SLM) enables complex geometry fabrication, post-process treatments (e.g., annealing-induced homogenization, thermal aging for stress relief, surface polishing) remain critical for attaining metallurgical stability in as-built components. The impact of different laser scanning speeds (500 mm/s, 1000 mm/s, 1500 mm/s, 2000 mm/s) on the microstructure and mechanical and thermal expansion properties of the Fe-36Ni alloy fabricated by selective laser melting was studied. The results indicate that all Fe-36Ni alloys predominantly exhibit the γ-phase. Interestingly, a small amount of α precipitates was also observed, which is primarily attributed to the formation of a supercooled region. Notably, at a scanning speed of 1000 mm/s, the Fe-36Ni alloy samples exhibit optimal mechanical properties, with a tensile strength of 439 MPa and an elongation of 49.0%. This improvement is primarily attributed to the enhanced molding quality and grain refinement. The minimum coefficient of thermal expansion occurs at a scanning speed of 2000 mm/s, likely due to the elevated defect density. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Figure 1

14 pages, 3035 KiB  
Article
Experimental Study on the Effect of Impactor Hardness and Shape on the Impact Response of Composite Panels
by Zoe E. C. Hall, Yuancheng Yang, James P. Dear, Jun Liu, Richard A. Brooks, Yuzhe Ding, Haibao Liu and John P. Dear
J. Compos. Sci. 2025, 9(5), 230; https://doi.org/10.3390/jcs9050230 - 2 May 2025
Viewed by 365
Abstract
In recent decades, the application of composite materials in aerostructures has significantly increased, with modern commercial aircraft progressively replacing aluminum alloys with composite components. This shift is exemplified by comparing the material compositions of the Boeing 777 and the Boeing 787 (Dreamliner). The [...] Read more.
In recent decades, the application of composite materials in aerostructures has significantly increased, with modern commercial aircraft progressively replacing aluminum alloys with composite components. This shift is exemplified by comparing the material compositions of the Boeing 777 and the Boeing 787 (Dreamliner). The Boeing 777 incorporates approximately 50% aluminum alloy and 12% composite materials, whereas the Dreamliner reverses this ratio, utilizing around 50% composites and 12% aluminum alloy. While metals remain advantageous due to their availability and ease of machining, composites offer greater potential for property tailoring to meet specific performance requirements. They also provide superior strength-to-weight ratios and enhanced resistance to corrosion and fatigue. To ensure the reliability of composites in aerospace applications, comprehensive testing under various loading conditions, particularly impact, is essential. Impacts were performed on quasi-isotropic (QIT) carbon-fiber reinforced epoxy panels with stainless steel, round-nosed and flat-ended impactors with rubber discs of 1-, 1.5- and 2 mm thickness, adhered to the flat-ended impactor to simulate the transition between hard and soft impact loading conditions. QIT composite panels were tested in this research employing similar lay-ups often being implemented in aircraft wings and other structures. The rubber discs were applied in the flat-ended impactor case but not for the round-nosed impactor due to the limited adhesion between the rubber and the rounded stainless-steel surface. Impact energies of 7.5, 15 and 30 J were investigated, and the performance of the panels was evaluated using force-time and force-displacement data alongside post-impact ultrasonic C-scan imaging to assess the damaged area. Damage was observed at all three energy values for the round-nosed impacts but only at the highest impact energy when using the flat-ended impactor, leading to the hardness study with adhered rubber discs being performed at 30 J. The most noticeable difference with the addition of rubber discs was the reduction in the damage in the plies nearest the top (impacted) surface. This suggests that the rubber reduces the severity of the impact, but increasing the thickness of the rubber from 1 to 2 mm does not notably increase this effect. Indentation clearly plays a significant role in promoting delamination at low-impact energies for the round-nosed impactors. Full article
Show Figures

Figure 1

24 pages, 7603 KiB  
Article
Active Vibration Control of Cantilever Structures by Integrating the Closed Loop Control Action into Transient Solution of Finite Element Model and an Application to Aircraft Wing
by İlker Bülbül, Murat Akdağ and Hira Karagülle
Machines 2025, 13(5), 379; https://doi.org/10.3390/machines13050379 - 30 Apr 2025
Viewed by 322
Abstract
In this study, the active vibration control (AVC) of a cantilever beam with an end mass is considered first and studied experimentally and through simulation. The Laplace transform method, Newmark method, and ANSYS are used for simulations. An impulse force applied to the [...] Read more.
In this study, the active vibration control (AVC) of a cantilever beam with an end mass is considered first and studied experimentally and through simulation. The Laplace transform method, Newmark method, and ANSYS are used for simulations. An impulse force applied to the mass and the velocity actuation applied to the base are assumed to be disturbance and controlling input, respectively. The displacement of the mass is taken as the feedback signal in simulations. Four strain gauges are located near the bottom point, connected with a Wheatstone bridge, and the output voltage of a load-cell amplifier (LCA) is used as the feedback signal in experiments. Strain feedback is considered in experiments because it is easy to implement, cost-effective, and can be used in applications. Experimental displacement signals obtained from the top of the beam are compared with the output signals from LCA and it is observed that they are approximately linearly dependent. Velocity input is generated with a servo motor-driven linear actuator in experiments. The closed loop control is achieved by a personal computer with an Adlink-9222 PCI DAQ card and a C program in the experiments. The integration of the closed loop control action into the transient solution with Newmark method and ANSYS is implemented in simulations. The input reference value is taken as zero for vibration control. The instantaneous value of the feedback signal at a time step is subtracted from zero to find the error signal value and the error value is multiplied by the control gain to calculate the controlling signal. The simulation results obtained with the Newmark method and ANSYS are in good agreement with the analytical results obtained with Laplace transform method. Simulation results are also in acceptable agreement with the experimental results for explaining the behavior of the success of AVC depending on the control gain, Kp. After verifying ANSYS solutions, the ANSYS procedure is applied to an aircraft wing as a real complex cantilever structure. The wing, with a length of 810.8 mm, 13 ribs with a length of 300 mm, and NACA 4412 airfoil, is considered in this study. It is observed that the AVC of real engineering structures can be simulated by integrating control action into transient solution in ANSYS. Full article
(This article belongs to the Special Issue Active Vibration Control System)
Show Figures

Figure 1

25 pages, 11875 KiB  
Article
Multibody Analysis of Lever-Spring Landing Gear with Elastomer Shock Absorbers: Modelling, Simulations and Drop Tests
by Fuyou Li, Jianxin Zhu, Xiangfu Zou, Zhongjian Pan and Jian Chen
Aerospace 2025, 12(5), 367; https://doi.org/10.3390/aerospace12050367 - 23 Apr 2025
Viewed by 339
Abstract
This study investigates the ground reaction force of lever-spring landing gear (LSLG) equipped with compressible elastomer shock absorbers (ESA) during the landing process. First, a numerical dynamic model of the LSLG was developed in MATLAB/Simulink, revealing that runway roughness exerts a negligible influence [...] Read more.
This study investigates the ground reaction force of lever-spring landing gear (LSLG) equipped with compressible elastomer shock absorbers (ESA) during the landing process. First, a numerical dynamic model of the LSLG was developed in MATLAB/Simulink, revealing that runway roughness exerts a negligible influence on the ground reaction force during landing. The load characteristics established fundamental references for subsequent FEA-based structural design. Furthermore, an FEA model integrating the LSLG and the aircraft was developed with parameters calibrated for elastic units. The multibody dynamics simulation (MBDS) quantified the vertical ground reaction force and the structural stresses of LSLG, demonstrating two critical relationships: (1) the overload coefficient correlated with the sinking velocity yet exhibits no correlation with aircraft mass and (2) the peak of oscillating force attenuated faster with heavier landing weight at higher sinking velocities. A nonlinear multi-variables function was fitted to predict the maximum vertical ground reaction force. Subsequently, experimental validation via a landing gear drop test (LGDT) showed a maximum error of 8.39% between the results of the LGDT and the MBDS, confirming the accuracy of simulation and the fitting surface function for force prediction. The study further validates the feasibility and reliability of using the MBDS to model and study the LSLG with ESAs. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop