Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = algae removal technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2939 KB  
Review
A Review of Maricultural Wastewater Treatment Using an MBR: Insights into the Mechanism of Membrane Fouling Mitigation Through a Microalgal–Bacterial Symbiotic and Microbial Ecological Network
by Yijun You, Shuyu Zhao, Binghan Xie, Zhipeng Li, Weijia Gong, Guoyu Zhang, Qinghao Li, Xiangqian Zhao, Zhaofeng Xin, Jinkang Wu, Yuanyuan Gao and Han Xiang
Membranes 2025, 15(8), 234; https://doi.org/10.3390/membranes15080234 - 1 Aug 2025
Viewed by 747
Abstract
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and [...] Read more.
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and improving the salinity tolerance of bacteria and algae. This study centered on the mechanisms of membrane fouling mitigation via the microalgal–bacterial interactions in the MBSS, including improving the pollutant removal, optimizing the system parameters, and controlling the gel layer formation. Moreover, the contribution of electrochemistry to decreasing the inhibitory effects of high-salinity stress was investigated in the MBSS. Furthermore, patterns of shifts in microbial communities and the impacts have been explored using metagenomic technology. Finally, this review aims to offer new insights for membrane fouling mitigation in actual maricultural wastewater treatment. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

15 pages, 1006 KB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Cited by 1 | Viewed by 795
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

23 pages, 3405 KB  
Review
Reactive Filtration Water Treatment: A Retrospective Review of Sustainable Sand Filtration Re-Engineered for Advanced Nutrient Removal and Recovery, Micropollutant Destructive Removal, and Net-Negative CO2e Emissions with Biochar
by Paulo Yu, Martin C. Baker, Lusine Taslakyan, Daniel G. Strawn and Gregory Möller
Sustainability 2025, 17(13), 5799; https://doi.org/10.3390/su17135799 - 24 Jun 2025
Viewed by 890
Abstract
A core tertiary wastewater reactive filtration technology, where continuously renewed hydrous ferric oxide coated sand is created in an upflow continuous backwash filter, has been adopted in about 100 water resource recovery facilities in several countries. Primarily focused on ultralow phosphorus discharge requirements [...] Read more.
A core tertiary wastewater reactive filtration technology, where continuously renewed hydrous ferric oxide coated sand is created in an upflow continuous backwash filter, has been adopted in about 100 water resource recovery facilities in several countries. Primarily focused on ultralow phosphorus discharge requirements to address nutrient pollution impacts and harmful algae blooms, the technology has also demonstrated the capacity to address high-efficiency removals of Hg, As, Zn, N, and other pollutants of concern, in addition to water quality needs met by common sand filtration, including total suspended solids. Recent work has demonstrated the capability of an additive iron–ozone catalytic oxidation process to the core reactive filtration technology platform to address micropollutants such as pharmaceuticals. Most recently, direct injection of frangible biochar into the reactive sand filter bed as a consumable reagent demonstrates a novel biochar water treatment technology in a platform that yields dose-dependent carbon negativity. In this work, the reactive filtration technology performance is reviewed from field pilot-scale to full-scale installation scenarios for nutrient removal and recovery applications. We also review the potential of the technology for nutrient recovery with the addition of biochar and micropollutant destructive removal with catalytic oxidation. Research exploration of this reactive filtration technology includes life cycle assessment (LCA) and techno-economic assessment to evaluate the environmental and economic impacts of this advanced water treatment technology. A recent LCA study of a pilot-scale field research and full-scale municipal system with over 2200 inventory elements shows a dose-dependent carbon negativity when biochar is injected into the process stream of reactive filtration. In this study, LCA demonstrates that reactive filtration has the potential as a negative emissions technology with −1.21 kg CO2e/m3, where the negative contribution from the dosed biochar is −1.53 kg CO2e/m3. In this biochar water treatment configuration, the system not only effectively removes pollutants from wastewater but also contributes to carbon sequestration and nutrient recovery for agriculture, making it a potentially valuable approach for sustainable water treatment. Full article
(This article belongs to the Special Issue Sustainable Development and Application of Biochar)
Show Figures

Graphical abstract

17 pages, 1219 KB  
Article
Research on Carbon Sink Effect of Marine Shellfish and Algae in China
by Peng Zheng, Tianrang Chu, Wei Zhao and Yongquan Liu
Fishes 2025, 10(6), 270; https://doi.org/10.3390/fishes10060270 - 4 Jun 2025
Viewed by 539
Abstract
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries [...] Read more.
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries and studying its spatial effects are particularly crucial for mitigating global climate change. Marine fisheries encompass categories such as fish, shellfish, algae, and crustaceans. Given that marine fisheries-based carbon sinks are non-feed fisheries, with cultivated shellfish and algae being highly representative, this paper primarily focuses on the carbon sink capacity of shellfish and algae as the main assessment criteria for marine fisheries carbon sinks, aiming to apply this research to other countries worldwide to assist in addressing global warming. Thus, based on panel data of shellfish and algae cultivation in nine coastal provinces of China from 2007 to 2021, this paper employs the “removable carbon sink” model to calculate the carbon sink capacity of Chinese marine shellfish and algae aquaculture industry and utilizes the spatial Durbin model to analyze its spatial effects. The research findings are as follows: (1) The spatial distribution of carbon sink capacity in China’s marine shellfish and algae is uneven. (2) Moran’s Index indicates that the carbon sink capacity of marine shellfish and algae exhibits positive spatial correlation, but the degree of spatial agglomeration is unstable. Fujian Province has the highest average carbon sink capacity at 446,451.21 tons, while regions such as Hainan, Hebei, and Jiangsu have relatively lower average carbon sink capacities, with Hainan Province’s being only 3627.57 tons, sufficiently demonstrating the characteristic of uneven spatial distribution. (3) Through decomposition using the spatial Durbin model, it is found that the direct effects of marine shellfish and algae aquaculture production, technological input, technological promotion, and fishery disaster situations are positive, with the result for marine shellfish and algae aquaculture production being 1.617, significantly positive at the 1% level. The result for labor input is −0.847, with a negative direct effect. From the perspective of indirect effects, the indirect effects of marine shellfish and algae aquaculture production, technological input, and technological promotion are positive, with aquaculture production at 1.185, still significantly positive at the 1% level. The result for labor input is −2.140, with a negative indirect effect. These research conclusions provide important references for the formulation of global marine carbon sink-related policies, helping countries optimize resource allocation, strengthen regional collaboration, and increase investment in science and technology. Consequently, they can promote the sustainable development of marine shellfish and algae aquaculture industries, and contribute to enhancing marine carbon sink capacity and achieving global carbon neutrality goals. Full article
(This article belongs to the Special Issue Fisheries Monitoring and Management)
Show Figures

Figure 1

12 pages, 1328 KB  
Article
Comparative Analysis of Livestock Wastewater Reuse Under Summer and Winter Conditions at a Scale-Down Microalgae Culture
by César Ruiz Palomar, Alfonso García Álvaro, Daphne Hermosilla, Félix Gaspar Gonzalo Ibrahím, Raúl Muñoz and Ignacio de Godos
Water 2025, 17(10), 1483; https://doi.org/10.3390/w17101483 - 14 May 2025
Viewed by 1241
Abstract
Microalgae-based wastewater treatment systems are an environmentally friendly technology for reuse of polluted water produced in livestock farming. Since pollution removal depends on light availability, the performance should be evaluated under different seasonal conditions, even in reduced lab scale systems. This study evaluates [...] Read more.
Microalgae-based wastewater treatment systems are an environmentally friendly technology for reuse of polluted water produced in livestock farming. Since pollution removal depends on light availability, the performance should be evaluated under different seasonal conditions, even in reduced lab scale systems. This study evaluates the treatment of livestock digestate in an experimental High-Rate Algae Pond (HRAP) that recreates outdoor conditions. Chemical and biological pollution removal were analyzed, as well as the response of photosynthetic activity of the culture. Pollutant removal varied between seasons, while summer was characterized by higher nitrogen and phosphorus removal (81 and 69%, respectively), on the other hand, winter presented higher elimination of organic matter (91%) and pathogens. In this sense, P. aeruginosa removal was notably higher in winter (100%) than in summer (50%). Higher light penetration and increased photosynthetic efficiency in winter, along with greater fluctuations in pH and dissolved oxygen concentrations, contributed to higher levels of pathogen decay. Photosynthetic response tests indicated higher oxygen production per unit biomass in winter, suggesting physiological adaptations to lesser light conditions. This adaptation was correlated with the relative high pH and dissolved oxygen values registered. The findings highlight the adaptation and robustness of algae cultures as a solution for wastewater treatment and reuse in the primary sector. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

28 pages, 624 KB  
Review
Advancements in Bio-Nanotechnology: Green Synthesis and Emerging Applications of Bio-Nanoparticles
by M. D. K. M. Gunasena, G. D. C. P. Galpaya, C. J. Abeygunawardena, D. K. A. Induranga, H. V. V. Priyadarshana, S. S. Millavithanachchi, P. K. G. S. S. Bandara and K. R. Koswattage
Nanomaterials 2025, 15(7), 528; https://doi.org/10.3390/nano15070528 - 31 Mar 2025
Cited by 4 | Viewed by 2879
Abstract
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these [...] Read more.
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these organisms for nanoparticle synthesis offers an eco-friendly and sustainable alternative to conventional chemical and physical methods, which often involve toxic reagents and high energy consumption. Phytochemicals present in plant extracts, unique metabolic pathways, and biomolecules in bacteria and fungi, and the rich biochemical composition of algae facilitate the production of nanoparticles with diverse shapes and sizes. This review further explores the wide-ranging applications of BNPs in various fields like therapeutics, fuel cells, energy generation, and wastewater treatment. In therapeutics, BNPs have shown efficacy in antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In the energy sector, BNPs are being integrated into fuel cells and other energy generation systems like bio-diesel to improve efficiency and sustainability. Their catalytic properties and large surface area enhance the performance of these devices. Wastewater treatment is another critical area where BNPs are employed for the removal of heavy metals, organic pollutants, and microbial contaminants, offering a cost-effective and environmentally friendly solution to water purification. This comprehensive review highlights the potential of bio-nanoparticles synthesized through green methods. It highlights the need for further research to optimize synthesis processes, understand mechanisms of action, and expand the scope of their applications. BNPs can be utilized to address advantages and some of the pressing challenges in medicine, energy, and environmental sustainability, paving the way for innovative and sustainable technological advancements in future prospects. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

29 pages, 1234 KB  
Review
Advancing Dye Degradation: Integrating Microbial Metabolism, Photocatalysis, and Nanotechnology for Eco-Friendly Solutions
by Anjuman Ayub, Atif Khurshid Wani, Chirag Chopra, Devinder Kumar Sharma, Owais Amin, Ab Waheed Wani, Anjuvan Singh, Subaya Manzoor and Reena Singh
Bacteria 2025, 4(1), 15; https://doi.org/10.3390/bacteria4010015 - 7 Mar 2025
Cited by 19 | Viewed by 5666
Abstract
Textile dyes pose a major environmental threat due to their toxicity, persistence in water bodies, and resistance to conventional wastewater treatment. To address this, researchers have explored biological and physicochemical degradation methods, focusing on microbial, photolytic, and nanoparticle-mediated approaches, among others. Microbial degradation [...] Read more.
Textile dyes pose a major environmental threat due to their toxicity, persistence in water bodies, and resistance to conventional wastewater treatment. To address this, researchers have explored biological and physicochemical degradation methods, focusing on microbial, photolytic, and nanoparticle-mediated approaches, among others. Microbial degradation depends on fungi, bacteria, yeasts, and algae, utilizing enzymatic pathways involving oxidoreductases like laccases, peroxidases, and azoreductases to breakdown or modify complex dye molecules. Photolytic degradation employs hydroxyl radical generation and electron-hole pair formation, while nanoparticle-mediated degradation utilizes titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag) nanoparticles to enhance dye removal. To improve efficiency, microbial consortia have been developed to enhance decolorization and mineralization, offering a cost-effective and eco-friendly alternative to physicochemical methods. Photocatalytic degradation, particularly using TiO2, harnesses light energy for dye breakdown. Research advancements focus on shifting TiO2 activation from UV to visible light through doping and composite materials, while optimizing surface area and mesoporosity for better adsorption. Nanoparticle-mediated approaches benefit from a high surface area and rapid adsorption, with ongoing improvements in synthesis, functionalization, and reusability, particularly through magnetic nanoparticle integration. These emerging technologies provide sustainable solutions for dye degradation. The primary aim of this review is to comprehensively evaluate and synthesize current research and advancements in the degradation of azo dyes through microbial methods, photolytic processes, and nanotechnology-based approaches. The review also provides detailed information on salient mechanistic aspects of these methods, efficiencies, advantages, challenges, and potential applications in industrial and environmental contexts. Full article
Show Figures

Figure 1

21 pages, 1284 KB  
Review
Recent Advances in Pharmaceuticals Biosorption on Microbial and Algal-Derived Biosorbents
by Zdravka Velkova, Kristiana Lazarova, Gergana Kirova and Velizar Gochev
Processes 2025, 13(2), 561; https://doi.org/10.3390/pr13020561 - 17 Feb 2025
Cited by 4 | Viewed by 1902
Abstract
The removal of pharmaceuticals from aqueous environments has become a critical ecological challenge. Biosorption has emerged as a promising and cost-effective solution for pharmaceutical removal. This review examines the potential of microbial and algal-derived biosorbents, including fungi, bacteria, and algae, in the biosorption [...] Read more.
The removal of pharmaceuticals from aqueous environments has become a critical ecological challenge. Biosorption has emerged as a promising and cost-effective solution for pharmaceutical removal. This review examines the potential of microbial and algal-derived biosorbents, including fungi, bacteria, and algae, in the biosorption of pharmaceuticals from water. The removal efficiency of various types of biosorbents is discussed in relation to the chemical structure and functional groups presented on the biosorbent surfaces at various process parameters, such as pH, contact time, biosorbent dosage, and initial pharmaceutical concentration. Additionally, the benefits of chemical and physical modifications, immobilization techniques, and the reusability of biosorbents are highlighted. The major goal of the present review is not just to gather and discuss information about possible mechanisms of biosorption, which to some extent are still speculative, and to explain the effect of process parameters on the removal but also to highlight the advantages and disadvantages of various types of microbial/algal biosorbents and to ease the selection of proper biosorbents for pharmaceuticals removal. In this way, the review will benefit and induce more technological studies in the field of biosorption. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

21 pages, 2376 KB  
Article
Ground-Based Green Façade for Enhanced Greywater Treatment and Sustainable Water Management
by Nisreen Obeidat, Ahmad Abu Awwad, Ahmed Al-Salaymeh, Riccardo Bresciani, Fabio Masi, Anacleto Rizzo, Jomanah AlBtoosh and Mutaz M. Zoubi
Water 2025, 17(3), 346; https://doi.org/10.3390/w17030346 - 26 Jan 2025
Cited by 3 | Viewed by 1915
Abstract
Urban areas face challenges with water scarcity, and the use of non-conventional water resources for uses not requiring potable quality is being promoted more and more by governments and international agencies. However, non-conventional water resources, such as rainwater and greywater, need to be [...] Read more.
Urban areas face challenges with water scarcity, and the use of non-conventional water resources for uses not requiring potable quality is being promoted more and more by governments and international agencies. However, non-conventional water resources, such as rainwater and greywater, need to be treated before use to avoid health risks and possible nuisance (smell, bacteria and algae proliferation in storage tanks, etc.). This study is aimed at demonstrating the feasibility of a system reusing treated greywater for toilet flushing, relying on a nature-based treatment technology—ground-based green façades—with limited maintenance requirements which is therefore easily replicable for decentralized treatment systems, like those of greywater reuse at building scales. The demonstrative system has been installed at the University of Jordan’s Al-Zahra dormitory in Amman and uses a degreaser as the primary treatment followed by ground-based green façade technology as a secondary treatment mechanism. The effluent is stored in an underground tank and directed to a tertiary treatment mechanism with UV lamps to remove pathogens before being reused for lawn irrigation and toilet flushing. Samples from influent and effluent were analyzed for various physical, chemical, and microbiological characteristics. The degreaser significantly reduced turbidity, TSS, total BOD5, and total COD levels in greywater. When combined with the green wall façades, the system demonstrated high removal efficiencies, particularly for turbidity, TSS, total COD, and total BOD5. The treated effluent met irrigation reuse standards for all the parameters, including total coliform and E. coli concentrations. The UV disinfection unit proved to be an effective post-treatment step, ensuring that water quality standards for reuse were met. The system’s overall performance highlights its ability to manage low- to medium-strength greywater. Results suggest the applied green wall system has significant potential for wider adoption in urban settings. Full article
Show Figures

Figure 1

17 pages, 2944 KB  
Article
Efficiency of Cerium Nitrate and Hydrogen Peroxide in Removing Ammonia and Nitrite from Aquaculture Wastewater and Its Impact on Microbial Community Dynamics
by Yu Qiao, Zhongyi Qu, Wenhuan Yang, Zhichao Wang, Ke Li and Weiping Li
Water 2024, 16(24), 3601; https://doi.org/10.3390/w16243601 - 14 Dec 2024
Viewed by 1238
Abstract
Aquaculture wastewater is rich in nutrients such as nitrogen and phosphorus. If discharged directly without treatment, it can cause eutrophication of water bodies and the proliferation of algae. This study explores the treatment of aquaculture wastewater using cerium nitrate and hydrogen peroxide. To [...] Read more.
Aquaculture wastewater is rich in nutrients such as nitrogen and phosphorus. If discharged directly without treatment, it can cause eutrophication of water bodies and the proliferation of algae. This study explores the treatment of aquaculture wastewater using cerium nitrate and hydrogen peroxide. To improve the treatment efficiency of ammonia and nitrite in aquaculture wastewater, a Box–Behnken design with three factors at three levels was used to optimize the process of treating aquaculture wastewater with cerium nitrate and hydrogen peroxide. The optimal process conditions for removing ammonia and nitrite were determined to be a Ce(NO3)3 dosage of 0.18 g/L, an H2O2 reaction concentration of 1.0%, and a reaction time of 30 min. Under the optimal reaction conditions, the degradation rate of ammonia and nitrite can reach 80% or more. Finally, high-throughput sequencing technology was used to explore the impact of cerium nitrate and hydrogen peroxide treatment on microbial community structure and metabolic pathways. The results showed that, at the phylum level, the dominant positions of Actinobacteriota, Proteobacteria, and Bacteroidota were maintained throughout the entire culture period. At the genus level, the relative abundance of the hgcI_clade genus under Actinobacteriota significantly increased, becoming the main dominant genus throughout the culture period. Under the condition of adding cerium nitrate and hydrogen peroxide, the metabolic functions of the microbial community were enhanced. The addition of cerium nitrate and hydrogen peroxide increased the abundance of key nitrogen metabolism genes such as amo, hao, and nap, thereby enhancing the potential nitrification/denitrification capabilities of microorganisms. The combination of cerium nitrate and hydrogen peroxide showed positive effects in the treatment of aquaculture wastewater, providing a new strategy for the green treatment of wastewater. Full article
(This article belongs to the Special Issue Water Quality, Wastewater Treatment and Water Recycling)
Show Figures

Figure 1

28 pages, 1782 KB  
Article
Algal-Mediated Carbon Dioxide Separation in Biological Hydrogen Production
by Natascha Eggers, Sachin Kumar Ramayampet and Torsten Birth-Reichert
Energies 2024, 17(24), 6261; https://doi.org/10.3390/en17246261 - 11 Dec 2024
Viewed by 1096
Abstract
The production of hydrogen via dark fermentation generates carbon dioxide, which needs to be separated and re-utilized to minimize the environmental impact. This research investigates the potential of utilizing algae for carbon dioxide sequestration in hydrogen production via dark fermentation. However, algae alone [...] Read more.
The production of hydrogen via dark fermentation generates carbon dioxide, which needs to be separated and re-utilized to minimize the environmental impact. This research investigates the potential of utilizing algae for carbon dioxide sequestration in hydrogen production via dark fermentation. However, algae alone cannot fully use all the carbon dioxide produced, necessitating the implementation of a multistage separation process. This study proposes a purification approach that integrates membrane separation with a photobioreactor in a multistage design layout. Mathematical models were used to simulate the performance efficiency of multistage design layout using MATLAB 2015b (Version 9.3). A detailed parametric analysis and the key parameters influencing the separation efficiency were conducted for each stage. This study explores how reactor geometry, operational dynamics (such as gas transfer rates and light availability), and algae growth impact both CO2 removal and hydrogen purity. An optimization strategy was used to obtain the set of optimal operating and design parameters. Our results have shown a significant improvement in hydrogen purity, increasing from 55% to 99% using this multistage separation process, while CO2 removal efficiency rose from 35% to 85% over a week. This study highlights the potential of combining membrane technology with photobioreactors to enhance hydrogen purification, offering a more sustainable and efficient solution for hydrogen production. Full article
(This article belongs to the Special Issue Sustainable Biomass Energy Production and Utilization)
Show Figures

Figure 1

15 pages, 4167 KB  
Article
Study on the Extraction Technology and Antioxidant Capacity of Rhodymenia intricata Polysaccharides
by Shiyi Dong, Yu Wu, Yutong Luo, Wanxia Lv, Shuyi Chen, Nannan Wang, Meihan Meng, Ke Liao and Yichao Yang
Foods 2024, 13(23), 3964; https://doi.org/10.3390/foods13233964 - 9 Dec 2024
Cited by 1 | Viewed by 1577
Abstract
A red alga named Rhodymenia intricata was explored, and the extraction technology and antioxidant capacity of its polysaccharides were investigated. The crude polysaccharides were extracted using the ultrasound-assisted water extraction method, precipitated by alcohol, and purified using the trichloroacetic acid method. Subsequently, the [...] Read more.
A red alga named Rhodymenia intricata was explored, and the extraction technology and antioxidant capacity of its polysaccharides were investigated. The crude polysaccharides were extracted using the ultrasound-assisted water extraction method, precipitated by alcohol, and purified using the trichloroacetic acid method. Subsequently, the scavenging rates of polysaccharides on hydroxyl, DPPH, and ABTS free radicals, were determined both prior to and following purification to evaluate their antioxidant activity. Extraction technology was optimized to improve polysaccharide yield, and the optimal parameters were as follows: particle size 100 mesh, material–liquid ratio 1:84 (g/mL), ultrasonic time 30 min, and extraction for 95 min at 80 °C. The maximized extraction rate of crude polysaccharides was 37.78 ± 0.15%. The obtained crude polysaccharides were purified with different concentrations of trichloroacetic acid, and the purification effect was evaluated according to protein removal rate and polysaccharide retention rate, which could reach 62.61 ± 1.82% and 96.10 ± 1.60%, respectively. Infrared spectrum analysis suggested that Rhodymenia intricata polysaccharide might be α-pyranose. The Congo red test illustrated that the polysaccharide contained a triple helix structure. In the antioxidant activity assessment, the scavenging rates of polysaccharide prior to purification for RIP-1 (10 mg/mL) for hydroxyl, DPPH, and ABTS free radicals were observed to achieve maximum values of 94.71 ± 0.13%, 42.80 ± 7.12%, and 76.30 ± 5.20%, respectively. In contrast, the scavenging rates of polysaccharide following purification for RIP-2 (10 mg/mL) for the same free radicals reached maximum values of 94.10 ± 0.27%, 32.37 ± 0.78%, and 98.30 ± 0.34%, respectively. Notably, these scavenging rates exhibited a dose-dependent relationship. These results demonstrated the potential of the extraction method for polysaccharides from Rhodymenia intricata, and for adding value to the by-product for its potential application as an antioxidant in food and pharmaceutical products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 3850 KB  
Article
Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation
by Wen Yan, Chuqiao Li, Yunjuan Meng, Yao Yue, Teer Wen, Jiafeng Ding and Hangjun Zhang
Toxins 2024, 16(11), 455; https://doi.org/10.3390/toxins16110455 - 24 Oct 2024
Cited by 1 | Viewed by 1642
Abstract
Heterogeneous persulfate activation is an advanced technology for treating harmful algae in drinking water sources, while it remains a significant hurdle in the efficient management of cyanobacterial blooms. In this study, super-dispersed cobalt-doped carbon nitride (2CoCN) was prepared to activate peroxymonosulfate (PMS) for [...] Read more.
Heterogeneous persulfate activation is an advanced technology for treating harmful algae in drinking water sources, while it remains a significant hurdle in the efficient management of cyanobacterial blooms. In this study, super-dispersed cobalt-doped carbon nitride (2CoCN) was prepared to activate peroxymonosulfate (PMS) for simultaneous Microcystis aeruginosa inhibition and microcystin (MC-LR) degradation. When the initial PMS and 2CoCN concentrations were 0.3 g/L and 0.4 g/L, respectively, the efficiency of algal cell removal reached 97% in 15 min, and the degradation of MC-LR reached 96%. Analyses by SEM, TEM, and EEM spectra revealed that the reaction led to changes in algal cell morphology, damage to the cell membrane and cell wall, and the diffusion of thylakoid membranes and liposomes. The activities of antioxidant enzymes (superoxide dismutase and catalase) and antioxidants (glutathione) in algal cells generally increased, and the content of malondialdehyde increased, indicating severe damage to the cell membrane. Radical capture experiments confirmed that singlet oxygen (1O₂) was the key species destroying algal cells in the 2CoCN/PMS system. The 2CoCN/PMS system was effective in removing M. aeruginosa within a wide pH range (3–9), and 2CoCN had good reusability. Additionally, three degradation products of MC-LR were identified by LC–MS/MS analysis, and a possible mechanism for the inactivation of M. aeruginosa and the degradation of MC-LR was proposed. In conclusion, this study pioneered the 2CoCN/PMS system for inhibiting M. aeruginosa and degrading microcystin, aiming to advance water purification and algae removal technology. Full article
Show Figures

Figure 1

16 pages, 2643 KB  
Article
CuO Nanoparticles Reduce Toxicity and Enhance Bioaccumulation of Cadmium and Lead in the Cells of the Microalgae Desmodesmus communis
by Svetlana P. Chebotaryova, Peter A. Baranchikov, Olga V. Zakharova, Tatiana A. Kozlova, Yevhen I. Maltsev, Maxim S. Kulikovskiy, Gregory V. Grigoriev and Alexander A. Gusev
Int. J. Mol. Sci. 2024, 25(17), 9167; https://doi.org/10.3390/ijms25179167 - 23 Aug 2024
Cited by 3 | Viewed by 1445
Abstract
The removal of pollutants, including heavy metals, from the aquatic environment is an urgent problem worldwide. Actively developing nanotechnology areas is becoming increasingly important for solving problems in the field of the remediation of aquatic ecosystems. In particular, methods for removing pollutants using [...] Read more.
The removal of pollutants, including heavy metals, from the aquatic environment is an urgent problem worldwide. Actively developing nanotechnology areas is becoming increasingly important for solving problems in the field of the remediation of aquatic ecosystems. In particular, methods for removing pollutants using nanoparticles (NPs) are proposed, which raises the question of the effect of a combination of NPs and heavy metals on living organisms. In this work, we investigated the role of CuO-NPs in changing the toxicity of Cd and Pb salts, as well as the bioaccumulation of these elements in a culture of the microalga Desmodesmus communis. It was found that CuO-NPs at concentrations of 10, 100, and 1000 µg L−1 had no effect on the viability of microalgae cells. On the 14th day of the experiment, Cd at a concentration of 1 mg L−1 reduced the viability index by 30% and, when combined with CuO-NPs, by 25%, i.e., CuO-NPs slightly reduced the toxic effect of Cd. At the same time, in this experiment, when CuO-NPs and Cd were used together, the level of oxidative stress increased, including on the first day in mixtures with 1 mg L−1 Cd. Under the influence of Pb, the cell viability index decreased by 70% by the end of the experiment, regardless of the metal concentration. The presence of CuO-NPs slightly reduced the toxicity of Pb in terms of viability and reactive oxygen species (ROS). At the same time, unlike Cd, Pb without NPs caused ROS production on the first day, whereas the addition of CuO-NPs completely detoxified Pb at the beginning and had a dose-dependent effect on mixtures at the end of the experiment. Also, the introduction of CuO-NPs slightly reduced the negative effect of Pb on pigment synthesis. As a molecular mechanism of the observed effects, we prioritized the provocation of oxidative stress by nanoparticles and related gene expression and biochemical reactions of algae cells. Analysis of the effect of CuO-NPs on the Cd and Pb content in microalgae cells showed increased accumulation of heavy metals. Thus, when algae were cultured in an environment with Cd and CuO-NPs, the Cd content per cell increased 4.2 times compared to the variant where cells were cultured only with Cd. In the case of Pb, the increase in its content per one cell increased 6.2 times when microalgae were cultured in an environment containing CuO-NPs. Thus, we found that CuO-NPs reduce the toxic effects of Cd and Pb, as well as significantly enhance the bioaccumulation of these toxic elements in the cells of D. communis microalgae. The results obtained can form the basis of technology for the nanobioremediation of aquatic ecosystems from heavy metals using microalgae. Full article
Show Figures

Figure 1

20 pages, 3057 KB  
Review
Carbon Capture and Resource Utilization by Algal–Bacterial Consortium in Wastewater Treatment: A Mini-Review
by Ting Yu, Siya Wang, Hui Yang, Yuxin Sun, Zhongtai Chen, Guangjing Xu and Cuiya Zhang
Water 2024, 16(15), 2197; https://doi.org/10.3390/w16152197 - 2 Aug 2024
Cited by 3 | Viewed by 4322
Abstract
This review critically evaluates the algal–bacterial consortium (ABC) as a promising technology for wastewater treatment, carbon capture and storage, while also assessing its challenges and opportunities. The ABC system, characterized by the coupling of algae and bacteria, not only removes pollutants and reclaims [...] Read more.
This review critically evaluates the algal–bacterial consortium (ABC) as a promising technology for wastewater treatment, carbon capture and storage, while also assessing its challenges and opportunities. The ABC system, characterized by the coupling of algae and bacteria, not only removes pollutants and reclaims resources but also helps in reducing greenhouse gas emissions. This system harnesses algal photosynthesis and bacterial degradation of organic matters to establish a carbon cycle, enhancing biomass production and pollutant removal. Despite its promise, the ABC process is subject to several hurdles, including sensitivity to low temperatures, reliance on artificial illumination, and the potential for algal biomass contamination by toxic substances. To capitalize on its full potential, continued research and technological advancements are imperative. Future investigations should focus on optimizing the system’s operational efficiency, developing precise process models, exploring avenues for resource recovery, and broadening the scope of its applications. By surmounting these challenges, the ABC system has the capacity to make a significant impact on sustainable wastewater management and carbon fixation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop